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1. Introduction: IBCP

Def. 1 A conservative q-matrix Q = {qij , i, j ∈ Z+} is called
an Interacting Branching Collision q-matrix (IBC q-matrix) if
it takes the form:

qij =

{

i(i−1)
2 aj−i+2 + ibj−i+1 if j ≥ i− 2, i ≥ 2,

0 otherwise,
(1)

where aj ≥ 0 (j 6= 2) and − a2 =
∑

j 6=2 aj < +∞,

together with a0 > 0 and
∑∞

j=3 aj > 0. Also

bj ≥ 0 (j 6= 1) and − b1 =
∑

j 6=1

bj < +∞, (2)

together with b0 > 0, b−1 = 0 and
∑∞

j=2 bj > 0.
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1. Introduction: IBCP

Def. 2 An Interacting Branching Collision Process (IBCP)
is a Z+-valued CTMC whose transition function P (t)
satisfies the forward equation

P ′(t) = P (t)Q (3)

where Q is an IBC q-matrix.
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1. Introduction: IBCP

Def. 2 An Interacting Branching Collision Process (IBCP)
is a Z+-valued CTMC whose transition function P (t)
satisfies the forward equation

P ′(t) = P (t)Q (4)

where Q is an IBC q-matrix.

We see that
Q = Qb +Qc

where Qb and Qc are the conservative MBP and MCP
q-matrices, respectively and thus IBCP has 2 components:
MBP and MCP. The former one is well-known while the
latter can be seen Chen et al JAP (2004).
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1. Introduction: IBCP:

The first component is an MBP whose properties can be
analysed by using the generating function of the sequence
{bj , j ≥ 0}:

B(s) =

∞
∑

j=0

bjs
j , |s| ≤ 1.

Note that B(0) = b0 > 0 and B(1) = 0.
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1. Introduction: IBCP:

The first component is an MBP whose properties can be
analysed by using the generating function of the sequence
{bj , j ≥ 0}:

B(s) =

∞
∑

j=0

bjs
j , |s| ≤ 1.

Note that B(0) = b0 > 0 and B(1) = 0.

Also B ′(1) =
∑∞

j=1 jbj+1 − b0 satisfies −∞ < B ′(1) ≤ +∞.
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1. Introduction: IBCP

Note also that the sign of B ′(1) determines the number of
zeros of B(s) in [0, 1].
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1. Introduction: IBCP

Note also that the sign of B ′(1) determines the number of
zeros of B(s) in [0, 1].

Lemma 1.1 The equation B(s) = 0 has at most two distinct
roots in [0, 1]. More specifically, if B ′(1) ≤ 0 then B(s) > 0 for
all s ∈ [0, 1) and 1 is the only root of the equation B(s) = 0 in
[0, 1], while if B ′(1) > 0 (including B ′(1) = +∞) then
B(s) = 0 has an additional root qb satisfying 0 < qb < 1 such
that B(s) > 0 for 0 ≤ s < qb and B(s) < 0 for qb < s < 1.
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1. Introduction: IBCP

Note also that the sign of B ′(1) determines the number of
zeros of B(s) in [0, 1].

Lemma 1.1 The equation B(s) = 0 has at most two distinct
roots in [0, 1]. More specifically, if B ′(1) ≤ 0 then B(s) > 0 for
all s ∈ [0, 1) and 1 is the only root of the equation B(s) = 0 in
[0, 1], while if B ′(1) > 0 (including B ′(1) = +∞) then
B(s) = 0 has an additional root qb satisfying 0 < qb < 1 such
that B(s) > 0 for 0 ≤ s < qb and B(s) < 0 for qb < s < 1.

Moreover, B(s) = 0 does not have any other roots in the unit
complex disk.
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1. Introduction: IBCP

The second component is an MCP whose properties can
be analysed by using the generating function of the
sequence {aj , j ≥ 0}:

A(s) =

∞
∑

j=0

ajs
j , |s| ≤ 1.

This satisfies A(0) = a0 > 0 and A(1) = 0.
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1. Introduction: IBCP

The second component is an MCP whose properties can
be analysed by using the generating function of the
sequence {aj , j ≥ 0}:

A(s) =

∞
∑

j=0

ajs
j , |s| ≤ 1.

This satisfies A(0) = a0 > 0 and A(1) = 0.

Also

A ′(1) =

∞
∑

j=1

jaj+2 − 2a0 − a1

satisfies
−∞ < A ′(1) ≤ +∞.
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1. Introduction: IBCP

The sign of A ′(1) determines the number of zeros of A(s) in
[0, 1].

Beijing Normal University 18th July 2012 - Page 8



1. Introduction: IBCP

The sign of A ′(1) determines the number of zeros of A(s) in
[0, 1].

Lemma 2.1 The equation A(s) = 0 has at most two distinct
roots in [0, 1]. More specifically, if A ′(1) ≤ 0 then A(s) > 0 for
all s ∈ [0, 1) and 1 is the only root of the equation A(s) = 0 in
[0, 1], while if A ′(1) > 0 (including A ′(1) = +∞) then A(s) = 0
has an additional root qc satisfying 0 < qc < 1 such that
A(s) > 0 for 0 ≤ s < qc and A(s) < 0 for qc < s < 1.
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1. Introduction: IBCP

The sign of A ′(1) determines the number of zeros of A(s) in
[0, 1].

Lemma 2.1 The equation A(s) = 0 has at most two distinct
roots in [0, 1]. More specifically, if A ′(1) ≤ 0 then A(s) > 0 for
all s ∈ [0, 1) and 1 is the only root of the equation A(s) = 0 in
[0, 1], while if A ′(1) > 0 (including A ′(1) = +∞) then A(s) = 0
has an additional root qc satisfying 0 < qc < 1 such that
A(s) > 0 for 0 ≤ s < qc and A(s) < 0 for qc < s < 1.

The equation A(s) = 0 has a unique root ηc in (−1, 0).
Moreover, A(s) = 0 does not have any other roots in the unit
complex disk.
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2. Known Results: Revisited

Regularity, Uniqueness and PDE
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2. Known Results: Revisited

Regularity, Uniqueness and PDE

Let {Z(t), t ≥ 0} be the unique IBCP and let

P (t) = {pij(t)}

and
R(λ) = {rij(λ)}

denote its transition function and resolvent, respectively.
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2. Known Results: Revisited

Theorem 2.1 (PDF) Suppose P (t), R(λ) are the Q-function
and Q-resolvent of IBCP, respectively. Then

∂Fi(t, s)

∂t
=

A(s)

2

∂2Fi(t, s)

∂s2
+ B(s)

∂Fi(t, s)

∂s

and

λGi(λ, s)− si =
A(s)

2

∂2Gi(λ, s)

∂s2
+B(s)

∂Gi(λ, s)

∂s
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2. Known Results: Revisited

where

Fi(t, s) =

∞
∑

j=0

pij(t)s
j , (i ≥ 2),

and

Gi(λ, s) =

∞
∑

j=0

rij(λ)s
j , (i ≥ 2).
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2. Known Results: Revisited

Theorem 2.2. (Regularity ) Assume that B′(1) < ∞. The
IBCP q-matrix Q is regular iff A′(1) ≤ 0.
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2. Known Results: Revisited

Theorem 2.2. (Regularity ) Assume that B′(1) < ∞. The
IBCP q-matrix Q is regular iff A′(1) ≤ 0.

Theorem 2.3 (Uniqueness ) There always exists only one
Q-function which satisfies the forward equations. That is
that there always exists only one IBCP.
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2. Known Results: Revisited

Let {Z(t), t ≥ 0} be the unique IBCP and define the
extinction time τ by

τ =

{

inf{t > 0, Z(t) = 0} if Z(t) = 0 for some t > 0

+∞ if Z(t) 6= 0 for all t > 0

and denote the corresponding extinction probabilities by

ai = P{τ < +∞|Z(0) = i}
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2. Known Results: Revisited

Recall IBCP is regular iff A′(1) ≤ 0.
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2. Known Results: Revisited

Recall IBCP is regular iff A′(1) ≤ 0.

Theorem 2.4 If A′(1) ≤ 0 and B′(1) ≤ 0, then

ai ≡ 1 (i ≥ 1)

.
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2. Known Results: Revisited

Recall IBCP is regular iff A′(1) ≤ 0.

Theorem 2.4 If A′(1) ≤ 0 and B′(1) ≤ 0, then

ai ≡ 1 (i ≥ 1)

.
Theorem 2.5 If A′(1) < 0 and 0 < B′(1) < +∞ then

ai = 1 (i ≥ 1).
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2. Known Results: Revisited

Recall IBCP is regular iff A′(1) ≤ 0.

Theorem 2.4 If A′(1) ≤ 0 and B′(1) ≤ 0, then

ai ≡ 1 (i ≥ 1)

.
Theorem 2.5 If A′(1) < 0 and 0 < B′(1) < +∞ then

ai = 1 (i ≥ 1).

Remaining case: A′(1) = 0 and 0 < B′(1) < +∞
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2. Known Results: Revisited

In order to consider the remaining case of A′(1) = 0 and
0 < B′(1) < +∞
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2. Known Results: Revisited

In order to consider the remaining case of A′(1) = 0 and
0 < B′(1) < +∞

we need to introduce a "testing" function

H(y) = exp

{

2

∫ y

0

B(x)

A(x)
dx

}

which possesses many interesting and important properties
(but omitted here).
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2. Known Results: Revisited

Now define

J =

∫ 1

ηc

H(y)

A(y)
dy

and

J0 =

∫ 1

0

H(y)

A(y)
dy

then either 0 < J < +∞ or J = +∞.
and J = +∞ iff J0 = +∞
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2. Known Results: Revisited

Now define

J =

∫ 1

ηc

H(y)

A(y)
dy

and

J0 =

∫ 1

0

H(y)

A(y)
dy

then either 0 < J < +∞ or J = +∞.
and J = +∞ iff J0 = +∞

Note that Checking J0 is easier.
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2. Known Results: Revisited

Theorem 2.6 Suppose A′(1) = 0 and 0 < B′(1) < ∞.

(i) If J0 = +∞, then

ai = 1 (i ≥ 1)

.

(ii) If J0 < ∞ then

ai = J−1 ·

∫ 1

ηc

yiH(y)

A(y)
dy, i ≥ 1

.
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2. Known Results: Revisited

The following conclusion is useful since it reduces the
possibly hard job in checking of J , or even J0.
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2. Known Results: Revisited

The following conclusion is useful since it reduces the
possibly hard job in checking of J , or even J0.
Theorem 2.7 Suppose A′(1) = 0, 0 < B′(1) < +∞ and
A′′(1) < ∞.
(i) If A′′(1) ≥ 4B′(1) then J0 = +∞ and thus

ai = 1

.
(ii) If A′′(1) < 4B′(1) (including B′(1) = +∞) then J0 < ∞
and thus ai < 1 and

ai = J−1 ·

∫ 1

ηc

yiH(y)

A(y)
dy, i ≥ 1

.
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2. Known Results: Revisited

Recall IBCP is irregular iff

A′(1) > 0

or, equivalently, iff
qc < 1

Beijing Normal University 18th July 2012 - Page 19



2. Known Results: Revisited

For irregular case it is necessary to further classify into a
few sub-categories
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2. Known Results: Revisited

For irregular case it is necessary to further classify into a
few sub-categories

An irregular IBC q-matrix Q is called super-explosive if

qb < qc < 1

critical-explosive if
qb = qc < 1

or sub-explosive if
qc < qb ≤ 1
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2. Known Results: Revisited

The critical-explosive case (qb = qc < 1) is simple. Indeed,
by using the PDE in Theorem 2.1 , we immediately obtain
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2. Known Results: Revisited

The critical-explosive case (qb = qc < 1) is simple. Indeed,
by using the PDE in Theorem 2.1 , we immediately obtain

Theorem 2.8 If qb = qc, then ai = qib.
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2. Known Results: Revisited

The critical-explosive case (qb = qc < 1) is simple. Indeed,
by using the PDE in Theorem 2.1 , we immediately obtain

Theorem 2.8 If qb = qc, then ai = qib.

The super-explosive case is also not difficult.

Beijing Normal University 18th July 2012 - Page 21



2. Known Results: Revisited

The critical-explosive case (qb = qc < 1) is simple. Indeed,
by using the PDE in Theorem 2.1 , we immediately obtain

Theorem 2.8 If qb = qc, then ai = qib.

The super-explosive case is also not difficult.

Theorem 2.9 If qb < qc < 1 (super-explosive). Then the
extinction probability ai starting from i ≥ 1, is

ai =

∫ qc
ηc

yiH(y)
A(y) dy

∫ qc
ηc

H(y)
A(y)

dy
. (8)

.
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2. Known Results: Revisited

However, the sub-explosive is surprisingly subtle. First we
consider a subcase.

Beijing Normal University 18th July 2012 - Page 22



2. Known Results: Revisited

However, the sub-explosive is surprisingly subtle. First we
consider a subcase.

Theorem 2.10 Suppose that qc < qb ≤ 1 (sub-explosive).
Further assume

A′(qc) + 2B(qc) = 0

Then

ai = qic + iσqn−1
c (10)

where the positive constant σ is independent of i and given
by

σ = −
B(qc)

B′(qc)
.
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2. Known Results: Revisited

Closed form could also be provided for another subcase of
A′(qc) + 2B(qc) < 0
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2. Known Results: Revisited

Closed form could also be provided for another subcase of
A′(qc) + 2B(qc) < 0

Theorem 2.11 Suppose the IBC q-matrix Q is
sub-explosive and

A′(qc) + 2B(qc) < 0

Then

ai =

∫ qc
ηc

yiB′(y)−iyi−1B(y)
A1(y)

e
∫ y

0

B1(x)

A1(x)
dx
dy

∫ ρc
ξc

B′(y)
A1(y)

e
∫ y

0

B1(x)

A1(x)
dx
dy

.
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2. Known Results: Revisited

Closed form could also be provided for another subcase of
A′(qc) + 2B(qc) < 0

Theorem 2.11 Suppose the IBC q-matrix Q is
sub-explosive and

A′(qc) + 2B(qc) < 0

Then

ai =

∫ qc
ηc

yiB′(y)−iyi−1B(y)
A1(y)

e
∫ y

0

B1(x)

A1(x)
dx
dy

∫ ρc
ξc

B′(y)
A1(y)

e
∫ y

0

B1(x)

A1(x)
dx
dy

.

For Definition of A1(x) and B1(x), see below
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2. Known Results: Revisited

How about the final sub-case of A′(qc) + 2B(qc) > 0 of
sub-explosive IBCP??
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2. Known Results: Revisited

How about the final sub-case of A′(qc) + 2B(qc) > 0 of
sub-explosive IBCP??

By Lemmas 1.1 and 3.1 we know qc < qb ≤ 1
(sub-explosive)implies

A′(qc) < 0

and
B(qc) > 0
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2. Known Results: Revisited

How about the final sub-case of A′(qc) + 2B(qc) > 0 of
sub-explosive IBCP??

By Lemmas 1.1 and 3.1 we know qc < qb ≤ 1
(sub-explosive)implies

A′(qc) < 0

and
B(qc) > 0

One thus could find the smallest positive integer k such that

kA′(qc) + 2B(qc) ≤ 0.
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2. Known Results: Revisited

Now, recursively define

Beijing Normal University 18th July 2012 - Page 25



2. Known Results: Revisited

Now, recursively define

A0(s) =
A(s)

2
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2. Known Results: Revisited

Now, recursively define

A0(s) =
A(s)

2

B0(s) = B(s)
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2. Known Results: Revisited

Now, recursively define

A0(s) =
A(s)

2

B0(s) = B(s)

An+1(s) = An(s)Bn(s)
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2. Known Results: Revisited

Now, recursively define

A0(s) =
A(s)

2

B0(s) = B(s)

An+1(s) = An(s)Bn(s)

Bn+1(s) = Bn(s)[Bn(s) + A′
n(s)]−An(s)B

′
n(s)
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2. Known Results: Revisited

Now, recursively define

A0(s) =
A(s)

2

B0(s) = B(s)

An+1(s) = An(s)Bn(s)

Bn+1(s) = Bn(s)[Bn(s) + A′
n(s)]−An(s)B

′
n(s)

We may get (details omitted including the definitions of
Dm,k etc.

Beijing Normal University 18th July 2012 - Page 25



2. Known Results: Revisited

We have
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2. Known Results: Revisited

We have

Theorem 2.12 Suppose that Q is a sub-explosive
IBC-q-matrix satisfying

A′(qc) + 2B(qc) > 0

and that
−2B(qc)/A

′(qc)

is not an integer. Let

m = min{k ≥ 1; kA′(qc) + 2B(qc) < 0}

.
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2. Known Results: Revisited

Then
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2. Known Results: Revisited

Then

ai =

∑m∧i
k=0

i!
(i−k)!

∫ qc
ηc

yi−kDm,k(y)
Am(y)

eHm(y)dy
∫ qc
ηc

Dm,0(y)
Am(y) e

Hm(y)dy
. (12)
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2. Known Results: Revisited

Then

ai =

∑m∧i
k=0

i!
(i−k)!

∫ qc
ηc

yi−kDm,k(y)
Am(y)

eHm(y)dy
∫ qc
ηc

Dm,0(y)
Am(y) e

Hm(y)dy
. (13)

Remark: If

−2B(qc)/A
′(qc)

is an integer, the problem is much simpler.
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3. Main Results: New

By Th. 2.12, in particular, we see that the expressions are
very complicated and thus informative. Asymptotic
properties, say? In considering asymptotic behavior, only
need to consider the following two cases since otherwise
trivial.
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3. Main Results: New

By Th. 2.12, in particular, we see that the expressions are
very complicated and thus informative. Asymptotic
properties, say? In considering asymptotic behavior, only
need to consider the following two cases since otherwise
trivial.

Q is regular and hence ρc = 1. Then only need to consider
the case that C ′(1) = 0 and C ′′(1) < 4B′(1) < +∞
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3. Main Results: New

By Th. 2.12, in particular, we see that the expressions are
very complicated and thus informative. Asymptotic
properties, say? In considering asymptotic behavior, only
need to consider the following two cases since otherwise
trivial.

Q is regular and hence ρc = 1. Then only need to consider
the case that C ′(1) = 0 and C ′′(1) < 4B′(1) < +∞

Q is irregular and hence ρc < 1. Then only need to
consider the case that ρc 6= ρb
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3. Main Results: New

Our main conclusions are the following six theorems which
describe the asymptotic behavior for several different cases
when the extinction probability is less then 1.
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3. Main Results: New

Our main conclusions are the following six theorems which
describe the asymptotic behavior for several different cases
when the extinction probability is less then 1.

Theorem 3.1 If C ′(1) = 0 and C ′′(1) < 4B′′(1) < +∞, then
the extinction probability an satisfies

an ∼ kn1−α as n → +∞

where k is a constant (independent of n) and α =
4B′(1)
C ′′(1) > 1.
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3. Main Results: New

Our main conclusions are the following six theorems which
describe the asymptotic behavior for several different cases
when the extinction probability is less then 1.

Theorem 3.1 If C ′(1) = 0 and C ′′(1) < 4B′′(1) < +∞, then
the extinction probability an satisfies

an ∼ kn1−α as n → +∞

where k is a constant (independent of n) and α =
4B′(1)
C ′′(1) > 1.

Next, consider the case Q is irregular and hence ρc < 1.
There are a few sub-cases as follows.
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3. Main Results: New

Theorem 3.2 If ρb < ρc < 1, then the extinction probability
of the IBCP, starting from n ≥ 1, denoted by {an},
possesses the following asymptotic behavior

an ∼ kn−αρnc ( as n → +∞)

where k is a constant and α =
2B(ρc)
C ′(ρc)

> 0.
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3. Main Results: New

Theorem 3.2 If ρb < ρc < 1, then the extinction probability
of the IBCP, starting from n ≥ 1, denoted by {an},
possesses the following asymptotic behavior

an ∼ kn−αρnc ( as n → +∞)

where k is a constant and α =
2B(ρc)
C ′(ρc)

> 0.

Repeat: For this case α = 2B(ρc)
C ′(ρc)

> 0
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3. Main Results: New

Theorem 3.3 If ρc < ρb ≤ 1 and C ′(ρc) + 2B(ρc) = 0.
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3. Main Results: New

Theorem 3.3 If ρc < ρb ≤ 1 and C ′(ρc) + 2B(ρc) = 0.

Then the extinction probability {an}, possesses the
asymptotic behavior as

an ∼ σnρn−1
c (n → +∞)
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3. Main Results: New

Theorem 3.3 If ρc < ρb ≤ 1 and C ′(ρc) + 2B(ρc) = 0.

Then the extinction probability {an}, possesses the
asymptotic behavior as

an ∼ σnρn−1
c (n → +∞)

or saying another way, the extinction probability of the

IBCP, {an}, possesses the asymptotic behavior

an ∼ kn−αρnc ( as n → +∞)

where k is a constant and α = 2B(ρc)
C ′(ρc)

= −1.
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3. Main Results: New

Theorem 3.3 If ρc < ρb ≤ 1 and C ′(ρc) + 2B(ρc) = 0.

Then the extinction probability {an}, possesses the
asymptotic behavior as

an ∼ σnρn−1
c (n → +∞)

or saying another way, the extinction probability of the

IBCP, {an}, possesses the asymptotic behavior

an ∼ kn−αρnc ( as n → +∞)

where k is a constant and α = 2B(ρc)
C ′(ρc)

= −1.

Note: For this case α = −1.
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3. Main Results: New

Theorem 3.4 If ρc < ρb ≤ 1 and C ′(ρc) + 2B(ρc) < 0. Then
the extinction probability {an} possesses the asymptotic
behavior
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3. Main Results: New

Theorem 3.4 If ρc < ρb ≤ 1 and C ′(ρc) + 2B(ρc) < 0. Then
the extinction probability {an} possesses the asymptotic
behavior

an ∼ kn−αρnc ( as n → +∞)

where k is a constant and −1 < α = 2B(ρc)
C ′(ρc)

< 0.
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3. Main Results: New

Theorem 3.4 If ρc < ρb ≤ 1 and C ′(ρc) + 2B(ρc) < 0. Then
the extinction probability {an} possesses the asymptotic
behavior

an ∼ kn−αρnc ( as n → +∞)

where k is a constant and −1 < α = 2B(ρc)
C ′(ρc)

< 0.

Note: For this case −1 < α < 0.
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3. Main Results: New

Theorem 3.5 Suppose ρc < ρb ≤ 1 and C ′(ρc) + 2B(ρc) > 0
and that if there exists a positive integer m > 1 such that
mC ′(ρc) + 2B(ρc) = 0, then the extinction probability {an}
possesses the asymptotic behavior
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Theorem 3.5 Suppose ρc < ρb ≤ 1 and C ′(ρc) + 2B(ρc) > 0
and that if there exists a positive integer m > 1 such that
mC ′(ρc) + 2B(ρc) = 0, then the extinction probability {an}
possesses the asymptotic behavior

an ∼ knmρnc (n → ∞)
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Theorem 3.5 Suppose ρc < ρb ≤ 1 and C ′(ρc) + 2B(ρc) > 0
and that if there exists a positive integer m > 1 such that
mC ′(ρc) + 2B(ρc) = 0, then the extinction probability {an}
possesses the asymptotic behavior

an ∼ knmρnc (n → ∞)

or saying another way

an ∼ kn−αρnc ( as n → +∞)

where k is a constant and α = 2B(ρc)
C ′(ρc)

= −m.
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3. Main Results: New

Theorem 3.5 Suppose ρc < ρb ≤ 1 and C ′(ρc) + 2B(ρc) > 0
and that if there exists a positive integer m > 1 such that
mC ′(ρc) + 2B(ρc) = 0, then the extinction probability {an}
possesses the asymptotic behavior

an ∼ knmρnc (n → ∞)

or saying another way

an ∼ kn−αρnc ( as n → +∞)

where k is a constant and α = 2B(ρc)
C ′(ρc)

= −m.

Note: For this case α = −m where m > 1.
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3. Main Results: New

Theorem 3.6 Suppose ρc < ρb ≤ 1 and C ′(ρc) + 2B(ρc) > 0

and that −2B(ρc)
C ′(ρc)

is not an integer.
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3. Main Results: New

Theorem 3.6 Suppose ρc < ρb ≤ 1 and C ′(ρc) + 2B(ρc) > 0

and that −2B(ρc)
C ′(ρc)

is not an integer.

Let m = min {k ≥ 1, kC ′(ρc) + 2B(ρc) < 0}.
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3. Main Results: New

Theorem 3.6 Suppose ρc < ρb ≤ 1 and C ′(ρc) + 2B(ρc) > 0

and that −2B(ρc)
C ′(ρc)

is not an integer.

Let m = min {k ≥ 1, kC ′(ρc) + 2B(ρc) < 0}. Then the

extinction probability {an} possesses the asymptotic
behavior as
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3. Main Results: New

Theorem 3.6 Suppose ρc < ρb ≤ 1 and C ′(ρc) + 2B(ρc) > 0

and that −2B(ρc)
C ′(ρc)

is not an integer.

Let m = min {k ≥ 1, kC ′(ρc) + 2B(ρc) < 0}. Then the

extinction probability {an} possesses the asymptotic
behavior as

an ∼ kn−αρnc ( as n → +∞)

where k is a constant and −(m+ 1) < α = 2B(ρc)
C ′(ρc)

< −m.
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3. Main Results: New

SUMMARY If Q is not regular, i.e. if ρc < 1, then the
extinction probability {an} possesses the asymptotic
behavior
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3. Main Results: New

SUMMARY If Q is not regular, i.e. if ρc < 1, then the
extinction probability {an} possesses the asymptotic
behavior

an ∼ kn−αρnc ( as n → +∞) where α =
2B(ρc)
C ′(ρc)

and k is a
constant
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3. Main Results: New

SUMMARY If Q is not regular, i.e. if ρc < 1, then the
extinction probability {an} possesses the asymptotic
behavior

an ∼ kn−αρnc ( as n → +∞) where α =
2B(ρc)
C ′(ρc)

and k is a
constant

Th. 3.2: α > 0
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3. Main Results: New

SUMMARY If Q is not regular, i.e. if ρc < 1, then the
extinction probability {an} possesses the asymptotic
behavior

an ∼ kn−αρnc ( as n → +∞) where α =
2B(ρc)
C ′(ρc)

and k is a
constant

Th. 3.2: α > 0

Th. 3.4: −1 < α < 0
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3. Main Results: New

SUMMARY If Q is not regular, i.e. if ρc < 1, then the
extinction probability {an} possesses the asymptotic
behavior

an ∼ kn−αρnc ( as n → +∞) where α =
2B(ρc)
C ′(ρc)

and k is a
constant

Th. 3.2: α > 0

Th. 3.4: −1 < α < 0

Th. 3.3: α = −1
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3. Main Results: New

SUMMARY If Q is not regular, i.e. if ρc < 1, then the
extinction probability {an} possesses the asymptotic
behavior

an ∼ kn−αρnc ( as n → +∞) where α =
2B(ρc)
C ′(ρc)

and k is a
constant

Th. 3.2: α > 0

Th. 3.4: −1 < α < 0

Th. 3.3: α = −1

Th. 3.5: α = −m where m is a positive integer and m > 1.
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3. Main Results: New

SUMMARY If Q is not regular, i.e. if ρc < 1, then the
extinction probability {an} possesses the asymptotic
behavior

an ∼ kn−αρnc ( as n → +∞) where α =
2B(ρc)
C ′(ρc)

and k is a
constant

Th. 3.2: α > 0

Th. 3.4: −1 < α < 0

Th. 3.3: α = −1

Th. 3.5: α = −m where m is a positive integer and m > 1.

Th. 3.6: −(m+ 1) < α < −m where m > 1: an integer.
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3. Main Results: New

SUMMARY If Q is not regular, i.e. if ρc < 1, then the
extinction probability {an} possesses the asymptotic
behavior

an ∼ kn−αρnc ( as n → +∞) where α =
2B(ρc)
C ′(ρc)

and k is a
constant

Th. 3.2: α > 0

Th. 3.4: −1 < α < 0

Th. 3.3: α = −1

Th. 3.5: α = −m where m is a positive integer and m > 1.

Th. 3.6: −(m+ 1) < α < −m where m > 1: an integer.

Question: α = 0 ?
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3. Main Results: New

SUMMARY If Q is not regular, i.e. if ρc < 1, then the
extinction probability {an} possesses the asymptotic
behavior

an ∼ kn−αρnc ( as n → +∞) where α =
2B(ρc)
C ′(ρc)

and k is a
constant

Th. 3.2: α > 0

Th. 3.4: −1 < α < 0

Th. 3.3: α = −1

Th. 3.5: α = −m where m is a positive integer and m > 1.

Th. 3.6: −(m+ 1) < α < −m where m > 1: an integer.

Question: α = 0 ?

Answer: ρc = ρb. Recall Th 2.8 (an = ρnc ≡ n0ρnc )
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4. Ideas of Proofs

Main steps in Proving Th.3.2 Step 1: Show that if ρc < 1,
then ∃ some constant k such that

A(y) = exp

{
∫ y

0

2B(x)

C(x)
dx

}

∼ k (ρc − y)α as y → ρ−c ,
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4. Ideas of Proofs

Main steps in Proving Th.3.2 Step 1: Show that if ρc < 1,
then ∃ some constant k such that

A(y) = exp

{
∫ y

0

2B(x)

C(x)
dx

}

∼ k (ρc − y)α as y → ρ−c ,

Indeed, let

g(x) =
2B(x)(ρc − x)

C(x)

then g(x) is "qualified" to be expanded in the interval [0, ρc]
as a power series g(x) =

∑∞
k=0 gkx

k
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4. Ideas of Proofs

Now for 0 < y < ρc we have

∫ y

0

2B(x)

C(x)
dx =

∫ y

0

g(x)

ρc − x
dx =

∞
∑

k=0

gk

∫ y

0

xk

ρc − x
dx

= g0

∫ y

0

dx

ρc − x
+

∞
∑

k=1

gk

∫ y

0

ρkc +
∑k

m=1(−1)m
(

k
m

)

(ρc − x)mρk−c
ρc − x

=

(

∞
∑

k=0

gkρ
k
c

)

∫ y

0

dx

ρc − x
+

∞
∑

k=1

gk

k
∑

m=1

(−1)m
(

k

m

)

ρk−m
c

∫ y

0

(ρc

= J1 + J2

where the meaning of J1 and J2 are self-explained.
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4. Ideas of Proofs

Easy to see

J1 =

(

∞
∑

k=1

gkρ
k
c

)

∫ y

0

dx

ρc − x
= g(ρc)

∫ y

0

dx

ρc − x

where g(ρc) = limx→ρ+c

2B(x)(ρc−x)
C(x) = −2B(ρc)

C ′(ρc)
which is finite.
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4. Ideas of Proofs

Easy to see

J1 =

(

∞
∑

k=1

gkρ
k
c

)

∫ y

0

dx

ρc − x
= g(ρc)

∫ y

0

dx

ρc − x

where g(ρc) = limx→ρ+c

2B(x)(ρc−x)
C(x) = −2B(ρc)

C ′(ρc)
which is finite.

By some algebra and applying the integral mean-valued
theorem we are able to show that J2 can be written as as a
constant which is independent of y. This finishes the proof
of Step 1.
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4. Ideas of Proofs

Main steps in Proving Th.3.2 Step 2: Show that there
exists a constant k such that

I
(n)
1 =

∫ ρc

0

ynA(y)

C(y)
dy = k ·

∫ ρc

0

yn (ρc − y)α−1 dy

where α = 2B(ρc)
C ′(ρc)

> 0 since both B(ρc) and C ′(ρc) are
negative under the conditions of this Theorem.

Beijing Normal University 18th July 2012 - Page 39



4. Ideas of Proofs

Main steps in Proving Th.3.2 Step 2: Show that there
exists a constant k such that

I
(n)
1 =

∫ ρc

0

ynA(y)

C(y)
dy = k ·

∫ ρc

0

yn (ρc − y)α−1 dy

where α = 2B(ρc)
C ′(ρc)

> 0 since both B(ρc) and C ′(ρc) are
negative under the conditions of this Theorem.

This step could be easily proved by applying the results
obtained in the first step together with some algebras.
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4. Ideas of Proofs

Main steps in Proving Th.3.2 Step 3: Show that

I
(n)
1 ∼ kn−αρnc .

where α = 2B(ρc)
C ′(ρc)

> 0.
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4. Ideas of Proofs

Main steps in Proving Th.3.2 Step 3: Show that

I
(n)
1 ∼ kn−αρnc .

where α = 2B(ρc)
C ′(ρc)

> 0.

Just note that
∫ ρc

0

yn (ρc − y)α−1 dy = ρn+α
c ·

∫ 1

0

xn(1− x)α−1dx

which is just

ρn+α
c

Γ(n+ 1)Γ(α)

Γ(n+ α + 1)
.
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4. Ideas of Proofs

Main steps in Proving Th.3.2 Step 3: Show that

I
(n)
1 ∼ kn−αρnc .

where α = 2B(ρc)
C ′(ρc)

> 0.

Just note that
∫ ρc

0

yn (ρc − y)α−1 dy = ρn+α
c ·

∫ 1

0

xn(1− x)α−1dx

which is just

ρn+α
c

Γ(n+ 1)Γ(α)

Γ(n+ α + 1)
.
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4. Ideas of Proofs

Now applying the well-known results that

lim
z→+∞

Γ(z + a)

Γ(z)
z−α = 1

(provided that ℜ(a) > 0.)
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4. Ideas of Proofs

Now applying the well-known results that

lim
z→+∞

Γ(z + a)

Γ(z)
z−α = 1

(provided that ℜ(a) > 0.)

We could finishes the proof of Step 3 by noting that our
α > 0.
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4. Ideas of Proofs

Main steps in Proving Th.3.2 Final Step 4: Show that

I
(n)
1 ∼ an

and thus finishes the proof.
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4. Ideas of Proofs

Main steps in Proving Th.3.2 Final Step 4: Show that

I
(n)
1 ∼ an

and thus finishes the proof.

Just note that an ∼ I
(n)
1 + I

(n)
2 where I

(n)
2 =

∫ 0
ξc

ynA(y)
C(y)

dy.
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4. Ideas of Proofs

Main steps in Proving Th.3.2 Final Step 4: Show that

I
(n)
1 ∼ an

and thus finishes the proof.

Just note that an ∼ I
(n)
1 + I

(n)
2 where I

(n)
2 =

∫ 0
ξc

ynA(y)
C(y)

dy.

I
(n)
2 could be similarly analyzed as I

(n)
1 as above. Then use

the fact that |ξc| < ρc to prove the conclusion. The details for
this last step omitted.
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4. Ideas of Proofs

Main ideas in proving other theorems. Similarly, but
details different and omitted.
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4. Ideas of Proofs

Main ideas in proving other theorems. Similarly, but
details different and omitted.

A key point in proving the last theorem, in particular, is that
(by recalling the definitions of An(s) and Bn(s)) we have

Bm(s)

Am(s)
=

Bm−1(s)

Am−1(s)
+

A′
m−1(s)

Am−1(s)
−

B′
m−1(s)

Bm−1(s)
.

By integrating the above from 0 to y and then raising to the
exponential, we could decrease m to m− 1. By repeating
this procedure, we could reduce the problem into a question
similar to Theorem 3.2.
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