Asymptotic Behavior for Extinction Probability of the Interacting Branching Collision Process

Anyue Chen, University of Liverpool and

Junping Li, Central South University
The 8th Workshop on Markov Processes and Related Topics

$$
\begin{gathered}
\text { at } \\
\text { Beijing Normal University } \\
16-21 \text { July } 2012
\end{gathered}
$$

Outline

- Introduction (IBCP)

Outline

- Introduction (IBCP)
- Known Results: Revisited

Outline

- Introduction (IBCP)
- Known Results: Revisited
- Main Results: New

Outline

- Introduction (IBCP)
- Known Results: Revisited
- Main Results: New
- Ideas of Proofs

1. Introduction: IBCP

Def. 1 A conservative q-matrix $Q=\left\{q_{i j}, i, j \in Z_{+}\right\}$is called an Interacting Branching Collision q-matrix (IBC q-matrix) if it takes the form:

$$
q_{i j}=\left\{\begin{array}{cc}
\frac{i(i-1)}{2} a_{j-i+2}+i b_{j-i+1} & \text { if } j \geq i-2, i \geq 2 \tag{1}\\
0 & \text { otherwise }
\end{array}\right.
$$

where $a_{j} \geq 0 \quad(j \neq 2) \quad$ and $\quad-a_{2}=\sum_{j \neq 2} a_{j}<+\infty$, together with $a_{0}>0$ and $\sum_{j=3}^{\infty} a_{j}>0$. Also

$$
\begin{equation*}
b_{j} \geq 0 \quad(j \neq 1) \quad \text { and } \quad-b_{1}=\sum_{j \neq 1} b_{j}<+\infty \tag{2}
\end{equation*}
$$

together with $b_{0}>0, b_{-1}=0$ and $\sum_{j=2}^{\infty} b_{j}>0$.

1. Introduction: IBCP

Def. 2 An Interacting Branching Collision Process (IBCP) is a Z_{+}-valued CTMC whose transition function $P(t)$ satisfies the forward equation

$$
\begin{equation*}
P^{\prime}(t)=P(t) Q \tag{3}
\end{equation*}
$$

where Q is an IBC q-matrix.

1. Introduction: IBCP

Def. 2 An Interacting Branching Collision Process (IBCP) is a Z_{+}-valued CTMC whose transition function $P(t)$ satisfies the forward equation

$$
\begin{equation*}
P^{\prime}(t)=P(t) Q \tag{4}
\end{equation*}
$$

where Q is an IBC q-matrix.
We see that

$$
Q=Q^{b}+Q^{c}
$$

where Q^{b} and Q^{c} are the conservative MBP and MCP q-matrices, respectively and thus IBCP has 2 components: MBP and MCP. The former one is well-known while the latter can be seen Chen et al JAP (2004).

1. Introduction: IBCP:

The first component is an MBP whose properties can be analysed by using the generating function of the sequence $\left\{b_{j}, j \geq 0\right\}$:

$$
B(s)=\sum_{j=0}^{\infty} b_{j} s^{j}, \quad|s| \leq 1 .
$$

Note that $B(0)=b_{0}>0$ and $B(1)=0$.

1. Introduction: IBCP:

The first component is an MBP whose properties can be analysed by using the generating function of the sequence $\left\{b_{j}, j \geq 0\right\}$:

$$
B(s)=\sum_{j=0}^{\infty} b_{j} s^{j}, \quad|s| \leq 1 .
$$

Note that $B(0)=b_{0}>0$ and $B(1)=0$.
Also $B^{\prime}(1)=\sum_{j=1}^{\infty} j b_{j+1}-b_{0}$ satisfies $-\infty<B^{\prime}(1) \leq+\infty$.

1. Introduction: IBCP

Note also that the sign of $B^{\prime}(1)$ determines the number of zeros of $B(s)$ in $[0,1]$.

1. Introduction: IBCP

Note also that the sign of $B^{\prime}(1)$ determines the number of zeros of $B(s)$ in $[0,1]$.

Lemma 1.1 The equation $B(s)=0$ has at most two distinct roots in $[0,1]$. More specifically, if $B^{\prime}(1) \leq 0$ then $B(s)>0$ for all $s \in[0,1)$ and 1 is the only root of the equation $B(s)=0$ in $[0,1]$, while if $B^{\prime}(1)>0$ (including $\left.B^{\prime}(1)=+\infty\right)$ then $B(s)=0$ has an additional root q_{b} satisfying $0<q_{b}<1$ such that $B(s)>0$ for $0 \leq s<q_{b}$ and $B(s)<0$ for $q_{b}<s<1$.

1. Introduction: IBCP

Note also that the sign of $B^{\prime}(1)$ determines the number of zeros of $B(s)$ in $[0,1]$.

Lemma 1.1 The equation $B(s)=0$ has at most two distinct roots in $[0,1]$. More specifically, if $B^{\prime}(1) \leq 0$ then $B(s)>0$ for all $s \in[0,1)$ and 1 is the only root of the equation $B(s)=0$ in $[0,1]$, while if $B^{\prime}(1)>0$ (including $\left.B^{\prime}(1)=+\infty\right)$ then $B(s)=0$ has an additional root q_{b} satisfying $0<q_{b}<1$ such that $B(s)>0$ for $0 \leq s<q_{b}$ and $B(s)<0$ for $q_{b}<s<1$.

Moreover, $B(s)=0$ does not have any other roots in the unit complex disk.

1. Introduction: IBCP

The second component is an MCP whose properties can be analysed by using the generating function of the sequence $\left\{a_{j}, j \geq 0\right\}$:

$$
A(s)=\sum_{j=0}^{\infty} a_{j} s^{j}, \quad|s| \leq 1 .
$$

This satisfies $A(0)=a_{0}>0$ and $A(1)=0$.

1. Introduction: IBCP

The second component is an MCP whose properties can be analysed by using the generating function of the sequence $\left\{a_{j}, j \geq 0\right\}$:

$$
A(s)=\sum_{j=0}^{\infty} a_{j} s^{j}, \quad|s| \leq 1 .
$$

This satisfies $A(0)=a_{0}>0$ and $A(1)=0$.
Also

$$
A^{\prime}(1)=\sum_{j=1}^{\infty} j a_{j+2}-2 a_{0}-a_{1}
$$

satisfies

$$
-\infty<A^{\prime}(1) \leq+\infty .
$$

1. Introduction: IBCP

The sign of $A^{\prime}(1)$ determines the number of zeros of $A(s)$ in $[0,1]$.

1. Introduction: IBCP

The sign of $A^{\prime}(1)$ determines the number of zeros of $A(s)$ in $[0,1]$.

Lemma 2.1 The equation $A(s)=0$ has at most two distinct roots in $[0,1]$. More specifically, if $A^{\prime}(1) \leq 0$ then $A(s)>0$ for all $s \in[0,1)$ and 1 is the only root of the equation $A(s)=0$ in $[0,1]$, while if $A^{\prime}(1)>0$ (including $\left.A^{\prime}(1)=+\infty\right)$ then $A(s)=0$ has an additional root q_{c} satisfying $0<q_{c}<1$ such that $A(s)>0$ for $0 \leq s<q_{c}$ and $A(s)<0$ for $q_{c}<s<1$.

1. Introduction: IBCP

The sign of $A^{\prime}(1)$ determines the number of zeros of $A(s)$ in $[0,1]$.

Lemma 2.1 The equation $A(s)=0$ has at most two distinct roots in $[0,1]$. More specifically, if $A^{\prime}(1) \leq 0$ then $A(s)>0$ for all $s \in[0,1)$ and 1 is the only root of the equation $A(s)=0$ in $[0,1]$, while if $A^{\prime}(1)>0$ (including $\left.A^{\prime}(1)=+\infty\right)$ then $A(s)=0$ has an additional root q_{c} satisfying $0<q_{c}<1$ such that $A(s)>0$ for $0 \leq s<q_{c}$ and $A(s)<0$ for $q_{c}<s<1$.

The equation $A(s)=0$ has a unique root η_{c} in $(-1,0)$. Moreover, $A(s)=0$ does not have any other roots in the unit complex disk.

2. Known Results: Revisited

Regularity, Uniqueness and PDE

2. Known Results: Revisited

Regularity, Uniqueness and PDE

Let $\{Z(t), t \geq 0\}$ be the unique IBCP and let

$$
P(t)=\left\{p_{i j}(t)\right\}
$$

and

$$
R(\lambda)=\left\{r_{i j}(\lambda)\right\}
$$

denote its transition function and resolvent, respectively.

2. Known Results: Revisited

Theorem 2.1 (PDF) Suppose $P(t), R(\lambda)$ are the Q-function and Q-resolvent of IBCP, respectively. Then

$$
\frac{\partial F_{i}(t, s)}{\partial t}=\frac{A(s)}{2} \frac{\partial^{2} F_{i}(t, s)}{\partial s^{2}}+B(s) \frac{\partial F_{i}(t, s)}{\partial s}
$$

and

$$
\lambda G_{i}(\lambda, s)-s^{i}=\frac{A(s)}{2} \frac{\partial^{2} G_{i}(\lambda, s)}{\partial s^{2}}+B(s) \frac{\partial G_{i}(\lambda, s)}{\partial s}
$$

2. Known Results: Revisited

where

$$
F_{i}(t, s)=\sum_{j=0}^{\infty} p_{i j}(t) s^{j}, \quad(i \geq 2)
$$

and

$$
G_{i}(\lambda, s)=\sum_{j=0}^{\infty} r_{i j}(\lambda) s^{j}, \quad(i \geq 2)
$$

2. Known Results: Revisited

Theorem 2.2. (Regularity) Assume that $B^{\prime}(1)<\infty$. The IBCP q-matrix Q is regular iff $A^{\prime}(1) \leq 0$.

2. Known Results: Revisited

Theorem 2.2. (Regularity) Assume that $B^{\prime}(1)<\infty$. The IBCP q-matrix Q is regular iff $A^{\prime}(1) \leq 0$.

Theorem 2.3 (Uniqueness) There always exists only one Q-function which satisfies the forward equations. That is that there always exists only one IBCP.

2. Known Results: Revisited

Let $\{Z(t), t \geq 0\}$ be the unique IBCP and define the extinction time τ by

$$
\tau= \begin{cases}\inf \{t>0, Z(t)=0\} & \text { if } Z(t)=0 \text { for some } t>0 \\ +\infty & \text { if } Z(t) \neq 0 \text { for all } t>0\end{cases}
$$

and denote the corresponding extinction probabilities by

$$
a_{i}=P\{\tau<+\infty \mid Z(0)=i\}
$$

2. Known Results: Revisited

Recall IBCP is regular iff $A^{\prime}(1) \leq 0$.

2. Known Results: Revisited

Recall IBCP is regular iff $A^{\prime}(1) \leq 0$.
Theorem 2.4 If $A^{\prime}(1) \leq 0$ and $B^{\prime}(1) \leq 0$, then

$$
a_{i} \equiv 1 \quad(i \geq 1)
$$

2. Known Results: Revisited

Recall IBCP is regular iff $A^{\prime}(1) \leq 0$.
Theorem 2.4 If $A^{\prime}(1) \leq 0$ and $B^{\prime}(1) \leq 0$, then

$$
a_{i} \equiv 1 \quad(i \geq 1)
$$

Theorem 2.5 If $A^{\prime}(1)<0$ and $0<B^{\prime}(1)<+\infty$ then

$$
a_{i}=1 \quad(i \geq 1) .
$$

2. Known Results: Revisited

Recall IBCP is regular iff $A^{\prime}(1) \leq 0$.
Theorem 2.4 If $A^{\prime}(1) \leq 0$ and $B^{\prime}(1) \leq 0$, then

$$
a_{i} \equiv 1 \quad(i \geq 1)
$$

Theorem 2.5 If $A^{\prime}(1)<0$ and $0<B^{\prime}(1)<+\infty$ then

$$
a_{i}=1 \quad(i \geq 1) .
$$

Remaining case: $A^{\prime}(1)=0$ and $0<B^{\prime}(1)<+\infty$

2. Known Results: Revisited

In order to consider the remaining case of $A^{\prime}(1)=0$ and $0<B^{\prime}(1)<+\infty$

2. Known Results: Revisited

In order to consider the remaining case of $A^{\prime}(1)=0$ and $0<B^{\prime}(1)<+\infty$
we need to introduce a "testing" function

$$
H(y)=\exp \left\{2 \int_{0}^{y} \frac{B(x)}{A(x)} d x\right\}
$$

which possesses many interesting and important properties (but omitted here).

2. Known Results: Revisited

Now define

$$
J=\int_{\eta_{c}}^{1} \frac{H(y)}{A(y)} d y
$$

and

$$
J_{0}=\int_{0}^{1} \frac{H(y)}{A(y)} d y
$$

then either $0<J<+\infty$ or $J=+\infty$. and $J=+\infty$ iff $J_{0}=+\infty$

2. Known Results: Revisited

Now define

$$
J=\int_{\eta_{c}}^{1} \frac{H(y)}{A(y)} d y
$$

and

$$
J_{0}=\int_{0}^{1} \frac{H(y)}{A(y)} d y
$$

then either $0<J<+\infty$ or $J=+\infty$. and $J=+\infty$ iff $J_{0}=+\infty$

Note that Checking J_{0} is easier.

2. Known Results: Revisited

Theorem 2.6 Suppose $A^{\prime}(1)=0$ and $0<B^{\prime}(1)<\infty$.
(i) If $J_{0}=+\infty$, then

$$
a_{i}=1 \quad(i \geq 1)
$$

(ii) If $J_{0}<\infty$ then

$$
a_{i}=J^{-1} \cdot \int_{\eta_{c}}^{1} \frac{y^{i} H(y)}{A(y)} d y, \quad i \geq 1
$$

2. Known Results: Revisited

The following conclusion is useful since it reduces the possibly hard job in checking of J, or even J_{0}.

2. Known Results: Revisited

The following conclusion is useful since it reduces the possibly hard job in checking of J, or even J_{0}.
Theorem 2.7 Suppose $A^{\prime}(1)=0,0<B^{\prime}(1)<+\infty$ and $A^{\prime \prime}(1)<\infty$.
(i) If $A^{\prime \prime}(1) \geq 4 B^{\prime}(1)$ then $J_{0}=+\infty$ and thus

$$
a_{i}=1
$$

(ii) If $A^{\prime \prime}(1)<4 B^{\prime}(1)$ (including $\left.B^{\prime}(1)=+\infty\right)$ then $J_{0}<\infty$ and thus $a_{i}<1$ and

$$
a_{i}=J^{-1} \cdot \int_{\eta_{c}}^{1} \frac{y^{i} H(y)}{A(y)} d y, \quad i \geq 1
$$

2. Known Results: Revisited

Recall IBCP is irregular iff

$$
A^{\prime}(1)>0
$$

or, equivalently, iff

$$
q_{c}<1
$$

2. Known Results: Revisited

For irregular case it is necessary to further classify into a few sub-categories

2. Known Results: Revisited

For irregular case it is necessary to further classify into a few sub-categories

An irregular IBC q-matrix Q is called super-explosive if

$$
q_{b}<q_{c}<1
$$

critical-explosive if

$$
q_{b}=q_{c}<1
$$

or sub-explosive if

$$
q_{c}<q_{b} \leq 1
$$

2. Known Results: Revisited

The critical-explosive case ($q_{b}=q_{c}<1$) is simple. Indeed, by using the PDE in Theorem 2.1, we immediately obtain

2. Known Results: Revisited

The critical-explosive case ($q_{b}=q_{c}<1$) is simple. Indeed, by using the PDE in Theorem 2.1, we immediately obtain

Theorem 2.8 If $q_{b}=q_{c}$, then $a_{i}=q_{b}^{i}$.

2. Known Results: Revisited

The critical-explosive case ($q_{b}=q_{c}<1$) is simple. Indeed, by using the PDE in Theorem 2.1, we immediately obtain

Theorem 2.8 If $q_{b}=q_{c}$, then $a_{i}=q_{b}^{i}$.
The super-explosive case is also not difficult.

2. Known Results: Revisited

The critical-explosive case ($q_{b}=q_{c}<1$) is simple. Indeed, by using the PDE in Theorem 2.1, we immediately obtain

Theorem 2.8 If $q_{b}=q_{c}$, then $a_{i}=q_{b}^{i}$.
The super-explosive case is also not difficult.
Theorem 2.9 If $q_{b}<q_{c}<1$ (super-explosive). Then the extinction probability a_{i} starting from $i \geq 1$, is

$$
\begin{equation*}
a_{i}=\frac{\int_{\eta_{c}}^{q_{c}} \frac{y^{i} H(y)}{A(y)} d y}{\int_{\eta_{c}}^{q_{c}} \frac{H(y)}{A(y)} d y} \tag{8}
\end{equation*}
$$

2. Known Results: Revisited

However, the sub-explosive is surprisingly subtle. First we consider a subcase.

2. Known Results: Revisited

However, the sub-explosive is surprisingly subtle. First we consider a subcase.

Theorem 2.10 Suppose that $q_{c}<q_{b} \leq 1$ (sub-explosive). Further assume

$$
A^{\prime}\left(q_{c}\right)+2 B\left(q_{c}\right)=0
$$

Then

$$
\begin{equation*}
a_{i}=q_{c}^{i}+i \sigma q_{c}^{n-1} \tag{10}
\end{equation*}
$$

where the positive constant σ is independent of i and given by

$$
\sigma=-\frac{B\left(q_{c}\right)}{B^{\prime}\left(q_{c}\right)}
$$

2. Known Results: Revisited

Closed form could also be provided for another subcase of $A^{\prime}\left(q_{c}\right)+2 B\left(q_{c}\right)<0$

2. Known Results: Revisited

Closed form could also be provided for another subcase of $A^{\prime}\left(q_{c}\right)+2 B\left(q_{c}\right)<0$

Theorem 2.11 Suppose the IBC q-matrix Q is sub-explosive and

$$
A^{\prime}\left(q_{c}\right)+2 B\left(q_{c}\right)<0
$$

Then

2. Known Results: Revisited

Closed form could also be provided for another subcase of $A^{\prime}\left(q_{c}\right)+2 B\left(q_{c}\right)<0$

Theorem 2.11 Suppose the IBC q-matrix Q is sub-explosive and

$$
A^{\prime}\left(q_{c}\right)+2 B\left(q_{c}\right)<0
$$

Then

For Definition of $A_{1}(x)$ and $B_{1}(x)$, see below

2. Known Results: Revisited

How about the final sub-case of $A^{\prime}\left(q_{c}\right)+2 B\left(q_{c}\right)>0$ of sub-explosive IBCP??

2. Known Results: Revisited

How about the final sub-case of $A^{\prime}\left(q_{c}\right)+2 B\left(q_{c}\right)>0$ of sub-explosive IBCP??
By Lemmas 1.1 and 3.1 we know $q_{c}<q_{b} \leq 1$ (sub-explosive)implies

$$
A^{\prime}\left(q_{c}\right)<0
$$

and

$$
B\left(q_{c}\right)>0
$$

2. Known Results: Revisited

How about the final sub-case of $A^{\prime}\left(q_{c}\right)+2 B\left(q_{c}\right)>0$ of sub-explosive IBCP??
By Lemmas 1.1 and 3.1 we know $q_{c}<q_{b} \leq 1$ (sub-explosive)implies

$$
A^{\prime}\left(q_{c}\right)<0
$$

and

$$
B\left(q_{c}\right)>0
$$

One thus could find the smallest positive integer k such that

$$
k A^{\prime}\left(q_{c}\right)+2 B\left(q_{c}\right) \leq 0 .
$$

2. Known Results: Revisited

Now, recursively define

2. Known Results: Revisited

Now, recursively define

$$
A_{0}(s)=\frac{A(s)}{2}
$$

2. Known Results: Revisited

Now, recursively define

$$
\begin{aligned}
& A_{0}(s)=\frac{A(s)}{2} \\
& B_{0}(s)=B(s)
\end{aligned}
$$

2. Known Results: Revisited

Now, recursively define

$$
\begin{gathered}
A_{0}(s)=\frac{A(s)}{2} \\
B_{0}(s)=B(s) \\
A_{n+1}(s)=A_{n}(s) B_{n}(s)
\end{gathered}
$$

2. Known Results: Revisited

Now, recursively define

$$
\begin{gathered}
A_{0}(s)=\frac{A(s)}{2} \\
B_{0}(s)=B(s) \\
A_{n+1}(s)=A_{n}(s) B_{n}(s) \\
B_{n+1}(s)=B_{n}(s)\left[B_{n}(s)+A_{n}^{\prime}(s)\right]-A_{n}(s) B_{n}^{\prime}(s)
\end{gathered}
$$

2. Known Results: Revisited

Now, recursively define

$$
\begin{gathered}
A_{0}(s)=\frac{A(s)}{2} \\
B_{0}(s)=B(s) \\
A_{n+1}(s)=A_{n}(s) B_{n}(s) \\
B_{n+1}(s)=B_{n}(s)\left[B_{n}(s)+A_{n}^{\prime}(s)\right]-A_{n}(s) B_{n}^{\prime}(s)
\end{gathered}
$$

We may get (details omitted including the definitions of $D_{m, k}$ etc.

2. Known Results: Revisited

We have

2. Known Results: Revisited

We have
Theorem 2.12 Suppose that Q is a sub-explosive IBC- q-matrix satisfying

$$
A^{\prime}\left(q_{c}\right)+2 B\left(q_{c}\right)>0
$$

and that

$$
-2 B\left(q_{c}\right) / A^{\prime}\left(q_{c}\right)
$$

is not an integer. Let

$$
m=\min \left\{k \geq 1 ; k A^{\prime}\left(q_{c}\right)+2 B\left(q_{c}\right)<0\right\}
$$

2. Known Results: Revisited

Then

2. Known Results: Revisited

Then

$$
\begin{equation*}
a_{i}=\frac{\sum_{k=0}^{m \wedge i} \frac{i!}{(i-k)!} \int_{\eta_{c}}^{q_{c}} \frac{y^{i-k} D_{m, k}(y)}{A_{m}(y)} e^{H_{m}(y)} d y}{\int_{\eta_{c}}^{q_{c}} \frac{D_{m, 0}(y)}{A_{m}(y)} e^{H_{m}(y)} d y} \tag{12}
\end{equation*}
$$

2. Known Results: Revisited

Then

$$
\begin{equation*}
a_{i}=\frac{\sum_{k=0}^{m \wedge i} \frac{i!}{(i-k)!} \int_{\eta_{c}}^{q_{c}} \frac{y^{i-k} D_{m, k}(y)}{A_{m}(y)} e^{H_{m}(y)} d y}{\int_{\eta_{c}}^{q_{c}} \frac{D_{m, 0}(y)}{A_{m}(y)} e^{H_{m}(y)} d y} \tag{13}
\end{equation*}
$$

Remark: If

$$
-2 B\left(q_{c}\right) / A^{\prime}\left(q_{c}\right)
$$

is an integer, the problem is much simpler.

3. Main Results: New

By Th. 2.12, in particular, we see that the expressions are very complicated and thus informative. Asymptotic properties, say? In considering asymptotic behavior, only need to consider the following two cases since otherwise trivial.

3. Main Results: New

By Th. 2.12, in particular, we see that the expressions are very complicated and thus informative. Asymptotic properties, say? In considering asymptotic behavior, only need to consider the following two cases since otherwise trivial.

Q is regular and hence $\rho_{c}=1$. Then only need to consider the case that $C^{\prime}(1)=0$ and $C^{\prime \prime}(1)<4 B^{\prime}(1)<+\infty$

3. Main Results: New

By Th. 2.12, in particular, we see that the expressions are very complicated and thus informative. Asymptotic properties, say? In considering asymptotic behavior, only need to consider the following two cases since otherwise trivial.

Q is regular and hence $\rho_{c}=1$. Then only need to consider the case that $C^{\prime}(1)=0$ and $C^{\prime \prime}(1)<4 B^{\prime}(1)<+\infty$

Q is irregular and hence $\rho_{c}<1$. Then only need to consider the case that $\rho_{c} \neq \rho_{b}$

3. Main Results: New

Our main conclusions are the following six theorems which describe the asymptotic behavior for several different cases when the extinction probability is less then 1.

3. Main Results: New

Our main conclusions are the following six theorems which describe the asymptotic behavior for several different cases when the extinction probability is less then 1.

Theorem 3.1 If $C^{\prime}(1)=0$ and $C^{\prime \prime}(1)<4 B^{\prime \prime}(1)<+\infty$, then the extinction probability a_{n} satisfies

$$
a_{n} \sim k n^{1-\alpha} \quad \text { as } n \rightarrow+\infty
$$

where k is a constant (independent of n) and $\alpha=\frac{4 B^{\prime}(1)}{C^{\prime \prime}(1)}>1$.

3. Main Results: New

Our main conclusions are the following six theorems which describe the asymptotic behavior for several different cases when the extinction probability is less then 1.

Theorem 3.1 If $C^{\prime}(1)=0$ and $C^{\prime \prime}(1)<4 B^{\prime \prime}(1)<+\infty$, then the extinction probability a_{n} satisfies

$$
a_{n} \sim k n^{1-\alpha} \quad \text { as } n \rightarrow+\infty
$$

where k is a constant (independent of n) and $\alpha=\frac{4 B^{\prime}(1)}{C^{\prime \prime}(1)}>1$.
Next, consider the case \mathbf{Q} is irregular and hence $\rho_{c}<1$. There are a few sub-cases as follows.

3. Main Results: New

Theorem 3.2 If $\rho_{b}<\rho_{c}<1$, then the extinction probability of the IBCP, starting from $n \geq 1$, denoted by $\left\{a_{n}\right\}$, possesses the following asymptotic behavior

$$
a_{n} \sim k n^{-\alpha} \rho_{c}^{n} \quad(\text { as } n \rightarrow+\infty)
$$

where k is a constant and $\alpha=\frac{2 B\left(\rho_{c}\right)}{C^{\prime}\left(\rho_{c}\right)}>0$.

3. Main Results: New

Theorem 3.2 If $\rho_{b}<\rho_{c}<1$, then the extinction probability of the IBCP, starting from $n \geq 1$, denoted by $\left\{a_{n}\right\}$, possesses the following asymptotic behavior

$$
a_{n} \sim k n^{-\alpha} \rho_{c}^{n} \quad(\text { as } n \rightarrow+\infty)
$$

where k is a constant and $\alpha=\frac{2 B\left(\rho_{c}\right)}{C^{\prime}\left(\rho_{c}\right)}>0$.
Repeat: For this case $\alpha=\frac{2 B\left(\rho_{c}\right)}{C^{\prime}\left(\rho_{c}\right)}>0$

3. Main Results: New

Theorem 3.3 If $\rho_{c}<\rho_{b} \leq 1$ and $C^{\prime}\left(\rho_{c}\right)+2 B\left(\rho_{c}\right)=0$.

3. Main Results: New

Theorem 3.3 If $\rho_{c}<\rho_{b} \leq 1$ and $C^{\prime}\left(\rho_{c}\right)+2 B\left(\rho_{c}\right)=0$.
Then the extinction probability $\left\{a_{n}\right\}$, possesses the asymptotic behavior as

$$
a_{n} \sim \sigma n \rho_{c}^{n-1} \quad(n \rightarrow+\infty)
$$

3. Main Results: New

Theorem 3.3 If $\rho_{c}<\rho_{b} \leq 1$ and $C^{\prime}\left(\rho_{c}\right)+2 B\left(\rho_{c}\right)=0$.
Then the extinction probability $\left\{a_{n}\right\}$, possesses the asymptotic behavior as

$$
a_{n} \sim \sigma n \rho_{c}^{n-1} \quad(n \rightarrow+\infty)
$$

or saying another way, the extinction probability of the
IBCP, $\left\{a_{n}\right\}$, possesses the asymptotic behavior

$$
a_{n} \sim k n^{-\alpha} \rho_{c}^{n} \quad(\text { as } n \rightarrow+\infty)
$$

where k is a constant and $\alpha=\frac{2 B\left(\rho_{c}\right)}{C^{\prime}\left(\rho_{c}\right)}=-1$.

3. Main Results: New

Theorem 3.3 If $\rho_{c}<\rho_{b} \leq 1$ and $C^{\prime}\left(\rho_{c}\right)+2 B\left(\rho_{c}\right)=0$.
Then the extinction probability $\left\{a_{n}\right\}$, possesses the asymptotic behavior as

$$
a_{n} \sim \sigma n \rho_{c}^{n-1} \quad(n \rightarrow+\infty)
$$

or saying another way, the extinction probability of the
IBCP, $\left\{a_{n}\right\}$, possesses the asymptotic behavior

$$
a_{n} \sim k n^{-\alpha} \rho_{c}^{n} \quad(\text { as } n \rightarrow+\infty)
$$

where k is a constant and $\alpha=\frac{2 B\left(\rho_{c}\right)}{C^{\prime}\left(\rho_{c}\right)}=-1$.
Note: For this case $\alpha=-1$.

3. Main Results: New

Theorem 3.4 If $\rho_{c}<\rho_{b} \leq 1$ and $C^{\prime}\left(\rho_{c}\right)+2 B\left(\rho_{c}\right)<0$. Then the extinction probability $\left\{a_{n}\right\}$ possesses the asymptotic behavior

3. Main Results: New

Theorem 3.4 If $\rho_{c}<\rho_{b} \leq 1$ and $C^{\prime}\left(\rho_{c}\right)+2 B\left(\rho_{c}\right)<0$. Then the extinction probability $\left\{a_{n}\right\}$ possesses the asymptotic behavior

$$
a_{n} \sim k n^{-\alpha} \rho_{c}^{n} \quad(\text { as } n \rightarrow+\infty)
$$

where k is a constant and $-1<\alpha=\frac{2 B\left(\rho_{c}\right)}{C^{\prime}\left(\rho_{c}\right)}<0$.

3. Main Results: New

Theorem 3.4 If $\rho_{c}<\rho_{b} \leq 1$ and $C^{\prime}\left(\rho_{c}\right)+2 B\left(\rho_{c}\right)<0$. Then the extinction probability $\left\{a_{n}\right\}$ possesses the asymptotic behavior

$$
a_{n} \sim k n^{-\alpha} \rho_{c}^{n} \quad(\text { as } n \rightarrow+\infty)
$$

where k is a constant and $-1<\alpha=\frac{2 B\left(\rho_{c}\right)}{C^{\prime}\left(\rho_{c}\right)}<0$.
Note: For this case $-1<\alpha<0$.

3. Main Results: New

Theorem 3.5 Suppose $\rho_{c}<\rho_{b} \leq 1$ and $C^{\prime}\left(\rho_{c}\right)+2 B\left(\rho_{c}\right)>0$ and that if there exists a positive integer $m>1$ such that $m C^{\prime}\left(\rho_{c}\right)+2 B\left(\rho_{c}\right)=0$, then the extinction probability $\left\{a_{n}\right\}$ possesses the asymptotic behavior

3. Main Results: New

Theorem 3.5 Suppose $\rho_{c}<\rho_{b} \leq 1$ and $C^{\prime}\left(\rho_{c}\right)+2 B\left(\rho_{c}\right)>0$ and that if there exists a positive integer $m>1$ such that $m C^{\prime}\left(\rho_{c}\right)+2 B\left(\rho_{c}\right)=0$, then the extinction probability $\left\{a_{n}\right\}$ possesses the asymptotic behavior

$$
a_{n} \sim k n^{m} \rho_{c}^{n} \quad(n \rightarrow \infty)
$$

3. Main Results: New

Theorem 3.5 Suppose $\rho_{c}<\rho_{b} \leq 1$ and $C^{\prime}\left(\rho_{c}\right)+2 B\left(\rho_{c}\right)>0$ and that if there exists a positive integer $m>1$ such that $m C^{\prime}\left(\rho_{c}\right)+2 B\left(\rho_{c}\right)=0$, then the extinction probability $\left\{a_{n}\right\}$ possesses the asymptotic behavior

$$
a_{n} \sim k n^{m} \rho_{c}^{n} \quad(n \rightarrow \infty)
$$

or saying another way

$$
a_{n} \sim k n^{-\alpha} \rho_{c}^{n} \quad(\text { as } n \rightarrow+\infty)
$$

where k is a constant and $\alpha=\frac{2 B\left(\rho_{c}\right)}{C^{\prime}\left(\rho_{c}\right)}=-m$.

3. Main Results: New

Theorem 3.5 Suppose $\rho_{c}<\rho_{b} \leq 1$ and $C^{\prime}\left(\rho_{c}\right)+2 B\left(\rho_{c}\right)>0$ and that if there exists a positive integer $m>1$ such that $m C^{\prime}\left(\rho_{c}\right)+2 B\left(\rho_{c}\right)=0$, then the extinction probability $\left\{a_{n}\right\}$ possesses the asymptotic behavior

$$
a_{n} \sim k n^{m} \rho_{c}^{n} \quad(n \rightarrow \infty)
$$

or saying another way

$$
a_{n} \sim k n^{-\alpha} \rho_{c}^{n} \quad(\text { as } n \rightarrow+\infty)
$$

where k is a constant and $\alpha=\frac{2 B\left(\rho_{c}\right)}{C^{\prime}\left(\rho_{c}\right)}=-m$.
Note: For this case $\alpha=-m$ where $m>1$.

3. Main Results: New

Theorem 3.6 Suppose $\rho_{c}<\rho_{b} \leq 1$ and $C^{\prime}\left(\rho_{c}\right)+2 B\left(\rho_{c}\right)>0$ and that $-\frac{2 B\left(\rho_{c}\right)}{C^{\prime}\left(\rho_{c}\right)}$ is not an integer.

3. Main Results: New

Theorem 3.6 Suppose $\rho_{c}<\rho_{b} \leq 1$ and $C^{\prime}\left(\rho_{c}\right)+2 B\left(\rho_{c}\right)>0$ and that $-\frac{2 B\left(\rho_{c}\right)}{C^{\prime}\left(\rho_{c}\right)}$ is not an integer.
Let $m=\min \left\{k \geq 1, k C^{\prime}\left(\rho_{c}\right)+2 B\left(\rho_{c}\right)<0\right\}$.

3. Main Results: New

Theorem 3.6 Suppose $\rho_{c}<\rho_{b} \leq 1$ and $C^{\prime}\left(\rho_{c}\right)+2 B\left(\rho_{c}\right)>0$ and that $-\frac{2 B\left(\rho_{c}\right)}{C^{\prime}\left(\rho_{c}\right)}$ is not an integer.
Let $m=\min \left\{k \geq 1, k C^{\prime}\left(\rho_{c}\right)+2 B\left(\rho_{c}\right)<0\right\}$. Then the extinction probability $\left\{a_{n}\right\}$ possesses the asymptotic behavior as

3. Main Results: New

Theorem 3.6 Suppose $\rho_{c}<\rho_{b} \leq 1$ and $C^{\prime}\left(\rho_{c}\right)+2 B\left(\rho_{c}\right)>0$ and that $-\frac{2 B\left(\rho_{c}\right)}{C^{\prime \prime}\left(\rho_{c}\right)}$ is not an integer.
Let $m=\min \left\{k \geq 1, k C^{\prime}\left(\rho_{c}\right)+2 B\left(\rho_{c}\right)<0\right\}$. Then the extinction probability $\left\{a_{n}\right\}$ possesses the asymptotic behavior as

$$
a_{n} \sim k n^{-\alpha} \rho_{c}^{n} \quad(\text { as } n \rightarrow+\infty)
$$

where k is a constant and $-(m+1)<\alpha=\frac{2 B\left(\rho_{c}\right)}{C^{\prime}\left(\rho_{c}\right)}<-m$.

3. Main Results: New

SUMMARY If Q is not regular, i.e. if $\rho_{c}<1$, then the extinction probability $\left\{a_{n}\right\}$ possesses the asymptotic behavior

3. Main Results: New

SUMMARY If Q is not regular, i.e. if $\rho_{c}<1$, then the extinction probability $\left\{a_{n}\right\}$ possesses the asymptotic behavior
$a_{n} \sim k n^{-\alpha} \rho_{c}^{n} \quad($ as $n \rightarrow+\infty)$ where $\alpha=\frac{2 B\left(\rho_{c}\right)}{C^{\prime}\left(\rho_{c}\right)}$ and k is a constant

3. Main Results: New

SUMMARY If Q is not regular, i.e. if $\rho_{c}<1$, then the extinction probability $\left\{a_{n}\right\}$ possesses the asymptotic behavior
$a_{n} \sim k n^{-\alpha} \rho_{c}^{n} \quad($ as $n \rightarrow+\infty)$ where $\alpha=\frac{2 B\left(\rho_{c}\right)}{C^{\prime}\left(\rho_{c}\right)}$ and k is a constant
Th. 3.2: $\alpha>0$

3. Main Results: New

SUMMARY If Q is not regular, i.e. if $\rho_{c}<1$, then the extinction probability $\left\{a_{n}\right\}$ possesses the asymptotic behavior
$a_{n} \sim k n^{-\alpha} \rho_{c}^{n} \quad($ as $n \rightarrow+\infty)$ where $\alpha=\frac{2 B\left(\rho_{c}\right)}{C^{\prime}\left(\rho_{c}\right)}$ and k is a constant
Th. 3.2: $\alpha>0$
Th. 3.4: $-1<\alpha<0$

3. Main Results: New

SUMMARY If Q is not regular, i.e. if $\rho_{c}<1$, then the extinction probability $\left\{a_{n}\right\}$ possesses the asymptotic behavior
$a_{n} \sim k n^{-\alpha} \rho_{c}^{n} \quad($ as $n \rightarrow+\infty)$ where $\alpha=\frac{2 B\left(\rho_{c}\right)}{C^{\prime}\left(\rho_{c}\right)}$ and k is a constant
Th. 3.2: $\alpha>0$
Th. 3.4: $-1<\alpha<0$
Th. 3.3: $\alpha=-1$

3. Main Results: New

SUMMARY If Q is not regular, i.e. if $\rho_{c}<1$, then the extinction probability $\left\{a_{n}\right\}$ possesses the asymptotic behavior
$a_{n} \sim k n^{-\alpha} \rho_{c}^{n} \quad($ as $n \rightarrow+\infty)$ where $\alpha=\frac{2 B\left(\rho_{c}\right)}{C^{\prime}\left(\rho_{c}\right)}$ and k is a constant
Th. 3.2: $\alpha>0$
Th. 3.4: $-1<\alpha<0$
Th. 3.3: $\alpha=-1$
Th. 3.5: $\alpha=-m$ where m is a positive integer and $m>1$.

3. Main Results: New

SUMMARY If Q is not regular, i.e. if $\rho_{c}<1$, then the extinction probability $\left\{a_{n}\right\}$ possesses the asymptotic behavior
$a_{n} \sim k n^{-\alpha} \rho_{c}^{n} \quad($ as $n \rightarrow+\infty)$ where $\alpha=\frac{2 B\left(\rho_{c}\right)}{C^{\prime}\left(\rho_{c}\right)}$ and k is a constant
Th. 3.2: $\alpha>0$
Th. 3.4: $-1<\alpha<0$
Th. 3.3: $\alpha=-1$
Th. 3.5: $\alpha=-m$ where m is a positive integer and $m>1$.
Th. 3.6: $-(m+1)<\alpha<-m$ where $m>1$: an integer.

3. Main Results: New

SUMMARY If Q is not regular, i.e. if $\rho_{c}<1$, then the extinction probability $\left\{a_{n}\right\}$ possesses the asymptotic behavior
$a_{n} \sim k n^{-\alpha} \rho_{c}^{n} \quad($ as $n \rightarrow+\infty)$ where $\alpha=\frac{2 B\left(\rho_{c}\right)}{C^{\prime}\left(\rho_{c}\right)}$ and k is a constant
Th. 3.2: $\alpha>0$
Th. 3.4: $-1<\alpha<0$
Th. 3.3: $\alpha=-1$
Th. 3.5: $\alpha=-m$ where m is a positive integer and $m>1$.
Th. 3.6: $-(m+1)<\alpha<-m$ where $m>1$: an integer.
Question: $\alpha=0$?

3. Main Results: New

SUMMARY If Q is not regular, i.e. if $\rho_{c}<1$, then the extinction probability $\left\{a_{n}\right\}$ possesses the asymptotic behavior
$a_{n} \sim k n^{-\alpha} \rho_{c}^{n} \quad($ as $n \rightarrow+\infty)$ where $\alpha=\frac{2 B\left(\rho_{c}\right)}{C^{\prime}\left(\rho_{c}\right)}$ and k is a constant
Th. 3.2: $\alpha>0$
Th. 3.4: $-1<\alpha<0$
Th. 3.3: $\alpha=-1$
Th. 3.5: $\alpha=-m$ where m is a positive integer and $m>1$.
Th. 3.6: $-(m+1)<\alpha<-m$ where $m>1$: an integer.
Question: $\alpha=0$?
Answer: $\rho_{c}=\rho_{b}$. Recall Th $2.8\left(a_{n}=\rho_{c}^{n} \equiv n^{0} \rho_{c}^{n}\right)$

4. Ideas of Proofs

Main steps in Proving Th.3.2 Step 1: Show that if $\rho_{c}<1$, then \exists some constant k such that

$$
A(y)=\exp \left\{\int_{0}^{y} \frac{2 B(x)}{C(x)} \mathrm{d} x\right\} \sim k\left(\rho_{c}-y\right)^{\alpha} \quad \text { as } y \rightarrow \rho_{c}^{-}
$$

4. Ideas of Proofs

Main steps in Proving Th.3.2 Step 1: Show that if $\rho_{c}<1$, then \exists some constant k such that

$$
A(y)=\exp \left\{\int_{0}^{y} \frac{2 B(x)}{C(x)} \mathrm{d} x\right\} \sim k\left(\rho_{c}-y\right)^{\alpha} \quad \text { as } y \rightarrow \rho_{c}^{-}
$$

Indeed, let

$$
g(x)=\frac{2 B(x)\left(\rho_{c}-x\right)}{C(x)}
$$

then $g(x)$ is "qualified" to be expanded in the interval $\left[0, \rho_{c}\right]$ as a power series $g(x)=\sum_{k=0}^{\infty} g_{k} x^{k}$

4. Ideas of Proofs

Now for $0<y<\rho_{c}$ we have

$$
\begin{aligned}
& \int_{0}^{y} \frac{2 B(x)}{C(x)} \mathrm{d} x=\int_{0}^{y} \frac{g(x)}{\rho_{c}-x} \mathrm{~d} x=\sum_{k=0}^{\infty} g_{k} \int_{0}^{y} \frac{x^{k}}{\rho_{c}-x} \mathrm{~d} x \\
= & g_{0} \int_{0}^{y} \frac{\mathrm{~d} x}{\rho_{c}-x}+\sum_{k=1}^{\infty} g_{k} \int_{0}^{y} \frac{\rho_{c}^{k}+\sum_{m=1}^{k}(-1)^{m}\binom{k}{m}\left(\rho_{c}-x\right)^{m} \rho_{c}^{k-}}{\rho_{c}-x} \\
= & \left(\sum_{k=0}^{\infty} g_{k} \rho_{c}^{k}\right) \int_{0}^{y} \frac{\mathrm{~d} x}{\rho_{c}-x}+\sum_{k=1}^{\infty} g_{k} \sum_{m=1}^{k}(-1)^{m}\binom{k}{m} \rho_{c}^{k-m} \int_{0}^{y}\left(\rho_{c}\right. \\
= & J_{1}+J_{2}
\end{aligned}
$$

where the meaning of J_{1} and J_{2} are self-explained.

4. Ideas of Proofs

Easy to see

$$
J_{1}=\left(\sum_{k=1}^{\infty} g_{k} \rho_{c}^{k}\right) \int_{0}^{y} \frac{\mathrm{~d} x}{\rho_{c}-x}=g\left(\rho_{c}\right) \int_{0}^{y} \frac{\mathrm{~d} x}{\rho_{c}-x}
$$

where $g\left(\rho_{c}\right)=\lim _{x \rightarrow \rho_{c}^{+}} \frac{2 B(x)\left(\rho_{c}-x\right)}{C(x)}=-\frac{2 B\left(\rho_{c}\right)}{C^{\prime}\left(\rho_{c}\right)}$ which is finite.

4. Ideas of Proofs

Easy to see

$$
J_{1}=\left(\sum_{k=1}^{\infty} g_{k} \rho_{c}^{k}\right) \int_{0}^{y} \frac{\mathrm{~d} x}{\rho_{c}-x}=g\left(\rho_{c}\right) \int_{0}^{y} \frac{\mathrm{~d} x}{\rho_{c}-x}
$$

where $g\left(\rho_{c}\right)=\lim _{x \rightarrow \rho_{c}^{+}} \frac{2 B(x)\left(\rho_{c}-x\right)}{C(x)}=-\frac{2 B\left(\rho_{c}\right)}{C^{\prime}\left(\rho_{c}\right)}$ which is finite.
By some algebra and applying the integral mean-valued theorem we are able to show that J_{2} can be written as as a constant which is independent of y. This finishes the proof of Step 1.

4. Ideas of Proofs

Main steps in Proving Th.3.2 Step 2: Show that there

 exists a constant k such that$$
I_{1}^{(n)}=\int_{0}^{\rho_{c}} \frac{y^{n} A(y)}{C(y)} \mathrm{d} y=k \cdot \int_{0}^{\rho_{c}} y^{n}\left(\rho_{c}-y\right)^{\alpha-1} \mathrm{~d} y
$$

where $\alpha=\frac{2 B\left(\rho_{c}\right)}{C^{\prime}\left(\rho_{c}\right)}>0$ since both $B\left(\rho_{c}\right)$ and $C^{\prime}\left(\rho_{c}\right)$ are negative under the conditions of this Theorem.

4. Ideas of Proofs

Main steps in Proving Th.3.2 Step 2: Show that there

 exists a constant k such that$$
I_{1}^{(n)}=\int_{0}^{\rho_{c}} \frac{y^{n} A(y)}{C(y)} \mathrm{d} y=k \cdot \int_{0}^{\rho_{c}} y^{n}\left(\rho_{c}-y\right)^{\alpha-1} \mathrm{~d} y
$$

where $\alpha=\frac{2 B\left(\rho_{c}\right)}{C^{\prime}\left(\rho_{c}\right)}>0$ since both $B\left(\rho_{c}\right)$ and $C^{\prime}\left(\rho_{c}\right)$ are negative under the conditions of this Theorem.

This step could be easily proved by applying the results obtained in the first step together with some algebras.

4. Ideas of Proofs

Main steps in Proving Th.3.2 Step 3: Show that
 $$
I_{1}^{(n)} \sim k n^{-\alpha} \rho_{c}^{n} .
$$

where $\alpha=\frac{2 B\left(\rho_{c}\right)}{C^{\prime}\left(\rho_{c}\right)}>0$.

4. Ideas of Proofs

Main steps in Proving Th.3.2 Step 3: Show that

$$
I_{1}^{(n)} \sim k n^{-\alpha} \rho_{c}^{n} .
$$

where $\alpha=\frac{2 B\left(\rho_{c}\right)}{C^{\prime}\left(\rho_{c}\right)}>0$.
Just note that

$$
\int_{0}^{\rho_{c}} y^{n}\left(\rho_{c}-y\right)^{\alpha-1} \mathrm{~d} y=\rho_{c}^{n+\alpha} \cdot \int_{0}^{1} x^{n}(1-x)^{\alpha-1} \mathrm{~d} x
$$

which is just

$$
\rho_{c}^{n+\alpha} \frac{\Gamma(n+1) \Gamma(\alpha)}{\Gamma(n+\alpha+1)}
$$

4. Ideas of Proofs

Main steps in Proving Th.3.2 Step 3: Show that

$$
I_{1}^{(n)} \sim k n^{-\alpha} \rho_{c}^{n} .
$$

where $\alpha=\frac{2 B\left(\rho_{c}\right)}{C^{\prime}\left(\rho_{c}\right)}>0$.
Just note that

$$
\int_{0}^{\rho_{c}} y^{n}\left(\rho_{c}-y\right)^{\alpha-1} \mathrm{~d} y=\rho_{c}^{n+\alpha} \cdot \int_{0}^{1} x^{n}(1-x)^{\alpha-1} \mathrm{~d} x
$$

which is just

$$
\rho_{c}^{n+\alpha} \frac{\Gamma(n+1) \Gamma(\alpha)}{\Gamma(n+\alpha+1)}
$$

4. Ideas of Proofs

Now applying the well-known results that

$$
\lim _{z \rightarrow+\infty} \frac{\Gamma(z+a)}{\Gamma(z)} z^{-\alpha}=1
$$

(provided that $\Re(a)>0$.)

4. Ideas of Proofs

Now applying the well-known results that

$$
\lim _{z \rightarrow+\infty} \frac{\Gamma(z+a)}{\Gamma(z)} z^{-\alpha}=1
$$

(provided that $\Re(a)>0$.)
We could finishes the proof of Step 3 by noting that our $\alpha>0$.

4. Ideas of Proofs

Main steps in Proving Th.3.2 Final Step 4: Show that

$$
I_{1}^{(n)} \sim a_{n}
$$

and thus finishes the proof.

4. Ideas of Proofs

Main steps in Proving Th.3.2 Final Step 4: Show that

$$
I_{1}^{(n)} \sim a_{n}
$$

and thus finishes the proof.
Just note that $a_{n} \sim I_{1}^{(n)}+I_{2}^{(n)}$ where $I_{2}^{(n)}=\int_{\xi_{c}}^{0} \frac{y^{n} A(y)}{C(y)} \mathrm{d} y$.

4. Ideas of Proofs

Main steps in Proving Th.3.2 Final Step 4: Show that

$$
I_{1}^{(n)} \sim a_{n}
$$

and thus finishes the proof.
Just note that $a_{n} \sim I_{1}^{(n)}+I_{2}^{(n)}$ where $I_{2}^{(n)}=\int_{\xi_{c}}^{0} \frac{y^{n} A(y)}{C(y)} \mathrm{d} y$.
$I_{2}^{(n)}$ could be similarly analyzed as $I_{1}^{(n)}$ as above. Then use the fact that $\left|\xi_{c}\right|<\rho_{c}$ to prove the conclusion. The details for this last step omitted.

4. Ideas of Proofs

Main ideas in proving other theorems. Similarly, but details different and omitted.

4. Ideas of Proofs

Main ideas in proving other theorems. Similarly, but details different and omitted.

A key point in proving the last theorem, in particular, is that (by recalling the definitions of $A_{n}(s)$ and $B_{n}(s)$) we have

$$
\frac{B_{m}(s)}{A_{m}(s)}=\frac{B_{m-1}(s)}{A_{m-1}(s)}+\frac{A_{m-1}^{\prime}(s)}{A_{m-1}(s)}-\frac{B_{m-1}^{\prime}(s)}{B_{m-1}(s)} .
$$

By integrating the above from 0 to y and then raising to the exponential, we could decrease m to $m-1$. By repeating this procedure, we could reduce the problem into a question similar to Theorem 3.2.

