# Functional inequalities for subelliptic diffusion operators via curvature bounds 

## Fabrice Baudoin

Purdue University
Workshop on Markov processes and related topics
Beijing Normal University, 2012

July 18

## The curvature dimension inequality on Riemannian manifolds

In Riemannian geometry the Ricci tensor plays a fundamental role. Its connection with the Laplace-Beltrami operator is given by the celebrated Bochner's identity:

## The curvature dimension inequality on Riemannian manifolds

In Riemannian geometry the Ricci tensor plays a fundamental role. Its connection with the Laplace-Beltrami operator is given by the celebrated Bochner's identity: If $\mathbb{M}$ is a Riemannian manifold with Laplacian $\Delta$, then for every smooth $f$ :

$$
\Delta\left(\|\nabla f\|^{2}\right)=2\left\|\nabla^{2} f\right\|^{2}+2\langle\nabla f, \nabla \Delta f\rangle+2 \operatorname{Ric}(\nabla f, \nabla f) .
$$

## The curvature dimension inequality on Riemannian manifolds

In Riemannian geometry the Ricci tensor plays a fundamental role. Its connection with the Laplace-Beltrami operator is given by the celebrated Bochner's identity: If $\mathbb{M}$ is a Riemannian manifold with Laplacian $\Delta$, then for every smooth $f$ :

$$
\Delta\left(\|\nabla f\|^{2}\right)=2\left\|\nabla^{2} f\right\|^{2}+2\langle\nabla f, \nabla \Delta f\rangle+2 \operatorname{Ric}(\nabla f, \nabla f) .
$$

Thanks to this equality, a Ricci lower bound translates into the so-called curvature dimension inequality.

## The curvature dimension inequality on Riemannian manifolds

In Riemannian geometry the Ricci tensor plays a fundamental role. Its connection with the Laplace-Beltrami operator is given by the celebrated Bochner's identity: If $\mathbb{M}$ is a Riemannian manifold with Laplacian $\Delta$, then for every smooth $f$ :

$$
\Delta\left(\|\nabla f\|^{2}\right)=2\left\|\nabla^{2} f\right\|^{2}+2\langle\nabla f, \nabla \Delta f\rangle+2 \operatorname{Ric}(\nabla f, \nabla f) .
$$

Thanks to this equality, a Ricci lower bound translates into the so-called curvature dimension inequality. Indeed, consider the bilinear differential forms

$$
\Gamma(f, g)=\frac{1}{2}(\Delta(f g)-f \Delta g-g \Delta f)=\langle\nabla f, \nabla g\rangle
$$

## The curvature dimension inequality on Riemannian manifolds

In Riemannian geometry the Ricci tensor plays a fundamental role. Its connection with the Laplace-Beltrami operator is given by the celebrated Bochner's identity: If $\mathbb{M}$ is a Riemannian manifold with Laplacian $\Delta$, then for every smooth $f$ :

$$
\Delta\left(\|\nabla f\|^{2}\right)=2\left\|\nabla^{2} f\right\|^{2}+2\langle\nabla f, \nabla \Delta f\rangle+2 \operatorname{Ric}(\nabla f, \nabla f)
$$

Thanks to this equality, a Ricci lower bound translates into the so-called curvature dimension inequality. Indeed, consider the bilinear differential forms

$$
\Gamma(f, g)=\frac{1}{2}(\Delta(f g)-f \Delta g-g \Delta f)=\langle\nabla f, \nabla g\rangle
$$

and

$$
\Gamma_{2}(f, g)=\frac{1}{2}(\Delta \Gamma(f, g)-\Gamma(f, \Delta g)-\Gamma(\Delta f, g)) .
$$

## The curvature dimension inequality on Riemannian manifolds

The Bochner's identity then simply writes

$$
\Gamma_{2}(f)=\left\|\nabla^{2} f\right\|^{2}+\operatorname{Ric}(\nabla f, \nabla f),
$$

## The curvature dimension inequality on Riemannian manifolds

The Bochner's identity then simply writes

$$
\Gamma_{2}(f)=\left\|\nabla^{2} f\right\|^{2}+\operatorname{Ric}(\nabla f, \nabla f),
$$

and it is easy to see that:

## The curvature dimension inequality on Riemannian manifolds

The Bochner's identity then simply writes

$$
\Gamma_{2}(f)=\left\|\nabla^{2} f\right\|^{2}+\operatorname{Ric}(\nabla f, \nabla f),
$$

and it is easy to see that:

## Theorem

We have Ric $\geq \rho$ and $\operatorname{dim} \mathbb{M} \leq n$ if and only if for every smooth $f$,

$$
\Gamma_{2}(f) \geq \frac{1}{n}(\Delta f)^{2}+\rho \Gamma(f) .
$$

## The curvature dimension inequality on Riemannian manifolds

The Bochner's identity then simply writes

$$
\Gamma_{2}(f)=\left\|\nabla^{2} f\right\|^{2}+\operatorname{Ric}(\nabla f, \nabla f),
$$

and it is easy to see that:

## Theorem

We have $\operatorname{Ric} \geq \rho$ and $\operatorname{dim} \mathbb{M} \leq n$ if and only if for every smooth $f$,

$$
\Gamma_{2}(f) \geq \frac{1}{n}(\Delta f)^{2}+\rho \Gamma(f) .
$$

This leads to the notion of intrinsic curvature-dimension bounds for diffusion operators.

## The curvature dimension inequality on Riemannian manifolds

The Bochner's identity then simply writes

$$
\Gamma_{2}(f)=\left\|\nabla^{2} f\right\|^{2}+\operatorname{Ric}(\nabla f, \nabla f),
$$

and it is easy to see that:

## Theorem

We have $\operatorname{Ric} \geq \rho$ and $\operatorname{dim} \mathbb{M} \leq n$ if and only if for every smooth $f$,

$$
\Gamma_{2}(f) \geq \frac{1}{n}(\Delta f)^{2}+\rho \Gamma(f)
$$

This leads to the notion of intrinsic curvature-dimension bounds for diffusion operators. To be satisfied, the curvature-dimension inequality requires some form of ellipticity.

## The sub-Riemannian geometry of CR manifolds

A Cauchy-Riemann manifold $(\mathbb{M}, \theta)$ is a smooth manifold of real dimension $2 n+1$ endowed with the following data:

## The sub-Riemannian geometry of CR manifolds

A Cauchy-Riemann manifold $(\mathbb{M}, \theta)$ is a smooth manifold of real dimension $2 n+1$ endowed with the following data:

- A $n$-dimensional complex sub-bundle $\mathcal{C}$ of the complexified bundle $\mathbb{C} T \mathbb{M}$ that satisfies $[\mathcal{C}, \mathcal{C}] \subset \mathcal{C}$ and $\mathcal{C} \cap \overline{\mathcal{C}}=0$;


## The sub-Riemannian geometry of CR manifolds

A Cauchy-Riemann manifold $(\mathbb{M}, \theta)$ is a smooth manifold of real dimension $2 n+1$ endowed with the following data:

- A n-dimensional complex sub-bundle $\mathcal{C}$ of the complexified bundle $\mathbb{C} T \mathbb{M}$ that satisfies $[\mathcal{C}, \mathcal{C}] \subset \mathcal{C}$ and $\mathcal{C} \cap \overline{\mathcal{C}}=0$;
- A contact form $\theta$ such that $\operatorname{Ker}(\theta)=\operatorname{Re}(\mathcal{C} \oplus \overline{\mathcal{C}})$.


## The sub-Riemannian geometry of CR manifolds

A Cauchy-Riemann manifold $(\mathbb{M}, \theta)$ is a smooth manifold of real dimension $2 n+1$ endowed with the following data:

- A n-dimensional complex sub-bundle $\mathcal{C}$ of the complexified bundle $\mathbb{C} T \mathbb{M}$ that satisfies $[\mathcal{C}, \mathcal{C}] \subset \mathcal{C}$ and $\mathcal{C} \cap \overline{\mathcal{C}}=0$;
- A contact form $\theta$ such that $\operatorname{Ker}(\theta)=\operatorname{Re}(\mathcal{C} \oplus \overline{\mathcal{C}})$.

CR manifolds, in particular, naturally appear as boundaries of domains in $\mathbb{C}^{n+1}$ that are biholomorphically equivalent to the unit ball.

## The sub-Riemannian geometry of CR manifolds

A Cauchy-Riemann manifold $(\mathbb{M}, \theta)$ is a smooth manifold of real dimension $2 n+1$ endowed with the following data:

- A n-dimensional complex sub-bundle $\mathcal{C}$ of the complexified bundle $\mathbb{C} T \mathbb{M}$ that satisfies $[\mathcal{C}, \mathcal{C}] \subset \mathcal{C}$ and $\mathcal{C} \cap \overline{\mathcal{C}}=0$;
- A contact form $\theta$ such that $\operatorname{Ker}(\theta)=\operatorname{Re}(\mathcal{C} \oplus \overline{\mathcal{C}})$.

CR manifolds, in particular, naturally appear as boundaries of domains in $\mathbb{C}^{n+1}$ that are biholomorphically equivalent to the unit ball.
The CR manifold is said to be strictly pseudo-convex if the bilinear form

$$
g_{\theta}(X, Y)=d \theta(X, J Y)
$$

is positive definite on $\operatorname{Ker}(\theta)$.

## The sub-Riemannian geometry of CR manifolds

The real sub-bundle $\mathcal{H}=\operatorname{Re}(\mathcal{C} \oplus \overline{\mathcal{C}})$ is the set of horizontal directions.

## The sub-Riemannian geometry of CR manifolds

The real sub-bundle $\mathcal{H}=\operatorname{Re}(\mathcal{C} \oplus \overline{\mathcal{C}})$ is the set of horizontal directions. There is a unique globally defined nowhere zero vector field $T$ on $\mathbb{M}$ such that $\theta(T)=1, \iota_{T} d \theta=0$.

## The sub-Riemannian geometry of CR manifolds

The real sub-bundle $\mathcal{H}=\operatorname{Re}(\mathcal{C} \oplus \overline{\mathcal{C}})$ is the set of horizontal directions. There is a unique globally defined nowhere zero vector field $T$ on $\mathbb{M}$ such that $\theta(T)=1, \iota_{T} d \theta=0$. It is called the Reeb vector field.

## The sub-Riemannian geometry of CR manifolds

The real sub-bundle $\mathcal{H}=\operatorname{Re}(\mathcal{C} \oplus \overline{\mathcal{C}})$ is the set of horizontal directions. There is a unique globally defined nowhere zero vector field $T$ on $\mathbb{M}$ such that $\theta(T)=1, \iota_{T} d \theta=0$. It is called the Reeb vector field. It is transverse to $\mathcal{H}$ and defines the vertical direction.

## The sub-Riemannian geometry of CR manifolds

The real sub-bundle $\mathcal{H}=\operatorname{Re}(\mathcal{C} \oplus \overline{\mathcal{C}})$ is the set of horizontal directions. There is a unique globally defined nowhere zero vector field $T$ on $\mathbb{M}$ such that $\theta(T)=1, \iota_{T} d \theta=0$. It is called the Reeb vector field. It is transverse to $\mathcal{H}$ and defines the vertical direction.

The sub-Laplacian $\Delta$ on $\mathbb{M}$ is the diffusion operator on $\mathbb{M}$ which is symmetric with respect to the volume form $\theta \wedge(d \theta)^{n}$ and such that

$$
\Gamma(f)=\left\|\nabla^{\mathcal{H}} f\right\|^{2}
$$

where $\nabla^{\mathcal{H}} f$ is the horizontal gradient of $f$.

## The sub-Riemannian geometry of CR manifolds

The real sub-bundle $\mathcal{H}=\operatorname{Re}(\mathcal{C} \oplus \overline{\mathcal{C}})$ is the set of horizontal directions. There is a unique globally defined nowhere zero vector field $T$ on $\mathbb{M}$ such that $\theta(T)=1, \iota_{T} d \theta=0$. It is called the Reeb vector field. It is transverse to $\mathcal{H}$ and defines the vertical direction.

The sub-Laplacian $\Delta$ on $\mathbb{M}$ is the diffusion operator on $\mathbb{M}$ which is symmetric with respect to the volume form $\theta \wedge(d \theta)^{n}$ and such that

$$
\Gamma(f)=\left\|\nabla^{\mathcal{H}} f\right\|^{2} .
$$

where $\nabla^{\mathcal{H}} f$ is the horizontal gradient of $f . \Delta$ fails to be elliptic but is subelliptic of order $1 / 2$.

## The sub-Riemannian geometry of CR manifolds

Is there a notion of curvature dimension bounds for $\Delta$ ?

## The Heisenberg group

Consider on $\mathbb{R}^{3}$, the vector fields

$$
X=\partial_{x}-\frac{y}{2} \partial_{z}
$$

## The Heisenberg group

Consider on $\mathbb{R}^{3}$, the vector fields

$$
\begin{aligned}
& X=\partial_{x}-\frac{y}{2} \partial_{z} \\
& Y=\partial_{y}+\frac{x}{2} \partial_{z}
\end{aligned}
$$

## The Heisenberg group

Consider on $\mathbb{R}^{3}$, the vector fields

$$
\begin{aligned}
& X=\partial_{x}-\frac{y}{2} \partial_{z} \\
& Y=\partial_{y}+\frac{x}{2} \partial_{z}
\end{aligned}
$$

and

$$
Z=\partial_{z}
$$

## The Heisenberg group

Consider on $\mathbb{R}^{3}$, the vector fields

$$
\begin{aligned}
& X=\partial_{x}-\frac{y}{2} \partial_{z} \\
& Y=\partial_{y}+\frac{x}{2} \partial_{z}
\end{aligned}
$$

and

$$
Z=\partial_{z}
$$

We have

$$
[X, Y]=Z,[Z, X]=0,[Y, Z]=0
$$

## The Heisenberg group

Consider on $\mathbb{R}^{3}$, the vector fields

$$
\begin{aligned}
X & =\partial_{x}-\frac{y}{2} \partial_{z} \\
Y & =\partial_{y}+\frac{x}{2} \partial_{z}
\end{aligned}
$$

and

$$
Z=\partial_{z}
$$

We have

$$
[X, Y]=Z,[Z, X]=0,[Y, Z]=0
$$

We have a CR Lie group with horizontal space $\operatorname{span}(X, Y)$ and Reeb vector field $Z$.

The sub-Laplacian is $L=X^{2}+Y^{2}$.

The sub-Laplacian is $L=X^{2}+Y^{2}$. Elementary computations yield

$$
\Gamma(f)=(X f)^{2}+(Y f)^{2}
$$

The sub-Laplacian is $L=X^{2}+Y^{2}$. Elementary computations yield

$$
\Gamma(f)=(X f)^{2}+(Y f)^{2}
$$

and

$$
\begin{aligned}
\Gamma_{2}(f)= & \left(X^{2} f\right)^{2}+\left(Y^{2} f\right)^{2}+\frac{1}{2}((X Y+Y X) f)^{2}+\frac{1}{2}(Z f)^{2} \\
& -2(X f)(Y Z f)+2(Y f)(X Z f)
\end{aligned}
$$

The sub-Laplacian is $L=X^{2}+Y^{2}$. Elementary computations yield

$$
\Gamma(f)=(X f)^{2}+(Y f)^{2}
$$

and

$$
\begin{aligned}
\Gamma_{2}(f)= & \left(X^{2} f\right)^{2}+\left(Y^{2} f\right)^{2}+\frac{1}{2}((X Y+Y X) f)^{2}+\frac{1}{2}(Z f)^{2} \\
& -2(X f)(Y Z f)+2(Y f)(X Z f)
\end{aligned}
$$

The mixt term $-2(X f)(Y Z f)+2(Y f)(X Z f)$ prevents to find any lower bound on this quantity involving $\Gamma(f)$ only!

## The Heisenberg group

The idea is to use a second Bochner's formula involving the missing vertical direction $Z$.

## The Heisenberg group

The idea is to use a second Bochner's formula involving the missing vertical direction $Z$. Consider

$$
\Gamma^{Z}(f)=(Z f)^{2}
$$

and

$$
\Gamma_{2}^{Z}(f)=\frac{1}{2}\left(L \Gamma^{Z}(f)-2 \Gamma^{Z}(f, L f)\right)
$$

## The Heisenberg group

The idea is to use a second Bochner's formula involving the missing vertical direction $Z$. Consider

$$
\Gamma^{Z}(f)=(Z f)^{2}
$$

and

$$
\Gamma_{2}^{Z}(f)=\frac{1}{2}\left(L \Gamma^{Z}(f)-2 \Gamma^{Z}(f, L f)\right) .
$$

It is easily checked that $\Gamma_{2}^{Z}(f)=(X Z f)^{2}+(Y Z f)^{2}$.

## The Heisenberg group

The idea is to use a second Bochner's formula involving the missing vertical direction $Z$. Consider

$$
\Gamma^{Z}(f)=(Z f)^{2}
$$

and

$$
\Gamma_{2}^{Z}(f)=\frac{1}{2}\left(L \Gamma^{Z}(f)-2 \Gamma^{Z}(f, L f)\right) .
$$

It is easily checked that $\Gamma_{2}^{Z}(f)=(X Z f)^{2}+(Y Z f)^{2}$.
Cauchy-Schwarz inequality leads then to

## The Heisenberg group

The idea is to use a second Bochner's formula involving the missing vertical direction $Z$. Consider

$$
\Gamma^{Z}(f)=(Z f)^{2}
$$

and

$$
\Gamma_{2}^{Z}(f)=\frac{1}{2}\left(L \Gamma^{Z}(f)-2 \Gamma^{Z}(f, L f)\right)
$$

It is easily checked that $\Gamma_{2}^{Z}(f)=(X Z f)^{2}+(Y Z f)^{2}$. Cauchy-Schwarz inequality leads then to

## Theorem

For every $\nu>0$,

$$
\Gamma_{2}(f)+\nu \Gamma_{2}^{Z}(f) \geq \frac{1}{2}(L f)^{2}-\frac{1}{\nu} \Gamma(f)+\frac{1}{2} \Gamma^{Z}(f) .
$$

## The Tanaka-Webster connection on a CR manifold

There is a canonical connection on CR manifolds: The Tanaka-Webster connection.

## The Tanaka-Webster connection on a CR manifold

There is a canonical connection on CR manifolds: The Tanaka-Webster connection. It satisfies in particular $\nabla g_{\theta}=0$ and $\nabla T=0$

## The Tanaka-Webster connection on a CR manifold

There is a canonical connection on CR manifolds: The Tanaka-Webster connection. It satisfies in particular $\nabla g_{\theta}=0$ and $\nabla T=0$ but it is not torsion free.

## The Tanaka-Webster connection on a CR manifold

There is a canonical connection on CR manifolds: The Tanaka-Webster connection. It satisfies in particular $\nabla g_{\theta}=0$ and $\nabla T=0$ but it is not torsion free. The CR structure is said to be Sasakian if $\mathrm{T}(X, Y)$ is vertical when $X$ and $Y$ are horizontal. The Heisenberg group is a Sasakian manifold.

## The Tanaka-Webster connection on a CR manifold

There is a canonical connection on CR manifolds: The Tanaka-Webster connection. It satisfies in particular $\nabla g_{\theta}=0$ and $\nabla T=0$ but it is not torsion free. The CR structure is said to be Sasakian if $\mathrm{T}(X, Y)$ is vertical when $X$ and $Y$ are horizontal. The Heisenberg group is a Sasakian manifold.

## Theorem

Let $\mathbb{M}$ be a CR Sasakian manifold.

## The Tanaka-Webster connection on a CR manifold

There is a canonical connection on CR manifolds: The Tanaka-Webster connection. It satisfies in particular $\nabla g_{\theta}=0$ and $\nabla T=0$ but it is not torsion free. The CR structure is said to be Sasakian if $\mathrm{T}(X, Y)$ is vertical when $X$ and $Y$ are horizontal. The Heisenberg group is a Sasakian manifold.

## Theorem

Let $\mathbb{M}$ be a $C R$ Sasakian manifold. We have $\operatorname{dim}(H) \leq d$ and $\operatorname{Ric}_{\nabla} \geq \rho_{1}$ if and only if for every $\nu>0$,

$$
\Gamma_{2}(f)+\nu \Gamma_{2}^{T}(f) \geq \frac{1}{d}(\Delta f)^{2}+\left(\rho_{1}-\frac{1}{\nu}\right) \Gamma(f)+\frac{d}{4}(T f)^{2},
$$

where

$$
2 \Gamma_{2}^{T}(f)=\Delta(T f)^{2}-2 T f T \Delta f
$$

## Generalized curvature dimension inequality

Let $L$ be a diffusion operator defined on a manifold $\mathbb{M}$.

## Generalized curvature dimension inequality

Let $L$ be a diffusion operator defined on a manifold $\mathbb{M}$. We assume that $L$ is symmetric with respect to a smooth measure $\mu$ and (locally) subelliptic.

## Generalized curvature dimension inequality

Let $L$ be a diffusion operator defined on a manifold $\mathbb{M}$. We assume that $L$ is symmetric with respect to a smooth measure $\mu$ and (locally) subelliptic. For instance, diffusion operators that can be written as

$$
L=-\sum_{i=1}^{m} X_{i}^{*} X_{i}
$$

where the $X_{i}$ 's are smooth vector fields that satisfy Hörmander's condition, are subelliptic.

## Generalized curvature dimension inequality

Let $L$ be a diffusion operator defined on a manifold $\mathbb{M}$. We assume that $L$ is symmetric with respect to a smooth measure $\mu$ and (locally) subelliptic. For instance, diffusion operators that can be written as

$$
L=-\sum_{i=1}^{m} X_{i}^{*} X_{i}
$$

where the $X_{i}$ 's are smooth vector fields that satisfy Hörmander's condition, are subelliptic. As we previous saw, sub-Laplacian of CR manifolds also are subelliptic.

## Generalized curvature dimension inequality

Let $L$ be a diffusion operator defined on a manifold $\mathbb{M}$. We assume that $L$ is symmetric with respect to a smooth measure $\mu$ and (locally) subelliptic. For instance, diffusion operators that can be written as

$$
L=-\sum_{i=1}^{m} X_{i}^{*} X_{i}
$$

where the $X_{i}$ 's are smooth vector fields that satisfy Hörmander's condition, are subelliptic. As we previous saw, sub-Laplacian of CR manifolds also are subelliptic. Assume, additionally, that $\mathbb{M}$ is endowed with a first-order differential bilinear form $\Gamma^{Z}(f, g)$ that satisfies

$$
\Gamma\left(f, \Gamma^{Z}(f)\right)=\Gamma^{Z}(f, \Gamma(f))
$$

## Generalized curvature dimension inequality

Let $L$ be a diffusion operator defined on a manifold $\mathbb{M}$. We assume that $L$ is symmetric with respect to a smooth measure $\mu$ and (locally) subelliptic. For instance, diffusion operators that can be written as

$$
L=-\sum_{i=1}^{m} X_{i}^{*} X_{i}
$$

where the $X_{i}$ 's are smooth vector fields that satisfy Hörmander's condition, are subelliptic. As we previous saw, sub-Laplacian of CR manifolds also are subelliptic. Assume, additionally, that $\mathbb{M}$ is endowed with a first-order differential bilinear form $\Gamma^{Z}(f, g)$ that satisfies

$$
\Gamma\left(f, \Gamma^{Z}(f)\right)=\Gamma^{Z}(f, \Gamma(f))
$$

In the context of $C R$ manifolds this commutation is equivalent to the fact that the torsion is vertical (Sasakian assumption).

## Generalized curvature dimension inequality

## Definition

We say that $L$ satisfies the generalized-curvature inequality $C D\left(\rho_{1}, \rho_{2}, \kappa, d\right)$ if for every $\nu>0$,

$$
\Gamma_{2}(f)+\nu \Gamma_{2}^{Z}(f) \geq \frac{1}{d}(L f)^{2}+\left(\rho_{1}-\frac{\kappa}{\nu}\right) \Gamma(f)+\rho_{2} \Gamma^{Z}(f) .
$$

## Generalized curvature dimension inequality

## Definition

We say that $L$ satisfies the generalized-curvature inequality $C D\left(\rho_{1}, \rho_{2}, \kappa, d\right)$ if for every $\nu>0$,

$$
\Gamma_{2}(f)+\nu \Gamma_{2}^{Z}(f) \geq \frac{1}{d}(L f)^{2}+\left(\rho_{1}-\frac{\kappa}{\nu}\right) \Gamma(f)+\rho_{2} \Gamma^{Z}(f) .
$$

$C D\left(\rho_{1}, \rho_{2}, \kappa, d\right)$ is the linearization of

$$
\Gamma_{2}(f)+2 \sqrt{\kappa \Gamma(f) \Gamma_{2}^{Z}(f)} \geq \frac{1}{d}(L f)^{2}+\rho_{1} \Gamma(f)+\rho_{2} \Gamma^{Z}(f) .
$$

## Examples

We have the following general class of examples:

- Let $\mathbb{M}$ be a $n$-dimensional complete Riemannian manifold wiose Ricci curvature is bounded from below by $\rho$. The Laplacian of $\mathbb{M}$ satisfies the curvature dimension inequality $\mathrm{CD}(\rho, 0,0, d)$ with $\Gamma^{Z}=0$.


## Examples

We have the following general class of examples:

- Let $\mathbb{M}$ be a $n$-dimensional complete Riemannian manifold wiose Ricci curvature is bounded from below by $\rho$. The Laplacian of $\mathbb{M}$ satisfies the curvature dimension inequality $\mathrm{CD}(\rho, 0,0, d)$ with $\Gamma^{Z}=0$.
- CR Sasakian manifolds.


## Examples

We have the following general class of examples:

- Let $\mathbb{M}$ be a $n$-dimensional complete Riemannian manifold wiose Ricci curvature is bounded from below by $\rho$. The Laplacian of $\mathbb{M}$ satisfies the curvature dimension inequality $\mathrm{CD}(\rho, 0,0, d)$ with $\Gamma^{Z}=0$.
- CR Sasakian manifolds.
- Two-step nilpotent Lie groups.


## Examples

We have the following general class of examples:

- Let $\mathbb{M}$ be a $n$-dimensional complete Riemannian manifold wiose Ricci curvature is bounded from below by $\rho$. The Laplacian of $\mathbb{M}$ satisfies the curvature dimension inequality $\mathrm{CD}(\rho, 0,0, d)$ with $\Gamma^{Z}=0$.
- CR Sasakian manifolds.
- Two-step nilpotent Lie groups.
- Orthonormal bundles over Riemannian manifolds.


## Examples

We have the following general class of examples:

- Let $\mathbb{M}$ be a $n$-dimensional complete Riemannian manifold wiose Ricci curvature is bounded from below by $\rho$. The Laplacian of $\mathbb{M}$ satisfies the curvature dimension inequality $\mathrm{CD}(\rho, 0,0, d)$ with $\Gamma^{Z}=0$.
- CR Sasakian manifolds.
- Two-step nilpotent Lie groups.
- Orthonormal bundles over Riemannian manifolds.
- Fibrations


## Examples

We have the following general class of examples:

- Let $\mathbb{M}$ be a $n$-dimensional complete Riemannian manifold wiose Ricci curvature is bounded from below by $\rho$. The Laplacian of $\mathbb{M}$ satisfies the curvature dimension inequality $\mathrm{CD}(\rho, 0,0, d)$ with $\Gamma^{Z}=0$.
- CR Sasakian manifolds.
- Two-step nilpotent Lie groups.
- Orthonormal bundles over Riemannian manifolds.
- Fibrations
- Infinite dimensional examples (Baudoin-Gordina-Melcher, Trans. AMS 2012)


## Li-Yau inequality

## Theorem (Baudoin-Garofalo, 2011)

Assume that $L$ satisfies the generalized curvature inequality $C D\left(\rho_{1}, \rho_{2}, \kappa, d\right)$ with $\rho_{1} \geq 0, \rho_{2}>0, \kappa \geq 0$ and $0<d<\infty$, then

$$
\Gamma\left(\ln p_{t}\right)+\frac{2 \rho_{2}}{3} t \Gamma^{Z}\left(\ln p_{t}\right) \leq\left(1+\frac{3 \kappa}{2 \rho_{2}}\right) \frac{L p_{t}}{p_{t}}+\frac{d\left(1+\frac{3 \kappa}{2 \rho_{2}}\right)^{2}}{2 t}
$$

## The parabolic Harnack inequality

Integrating the Li-Yau inequality along geodesics leads to a parabolic Harnack inequality

## The parabolic Harnack inequality

Integrating the Li-Yau inequality along geodesics leads to a parabolic Harnack inequality

## Theorem (Baudoin-Garofalo, 2011)

Assume that $L$ satisfies the generalized curvature inequality $C D\left(\rho_{1}, \rho_{2}, \kappa, d\right)$ with $\rho_{1} \geq 0, \rho_{2}>0, \kappa \geq 0$ and $0<d<\infty$. For every $x, y, z \in \mathbb{M}$ and every $0<s<t<\infty$ one has

$$
p(x, y, s) \leq p(x, z, t)\left(\frac{t}{s}\right)^{\frac{D}{2}} \exp \left(\frac{D}{d} \frac{d(y, z)^{2}}{4(t-s)}\right)
$$

where

$$
D=d\left(1+\frac{3 \kappa}{2 \rho_{2}}\right)
$$

## Gaussian bounds

## Theorem (Baudoin-Bonnefont-Garofalo, 2011)

Assume that $L$ satisfies the generalized curvature inequality $C D\left(\rho_{1}, \rho_{2}, \kappa, d\right)$ with $\rho_{1} \geq 0, \rho_{2}>0, \kappa \geq 0$ and $0<d<\infty$. For any $0<\epsilon<1$, there exists a constant $C=C\left(d, \kappa, \rho_{2}, \epsilon\right)>0$, which tends to $\infty$ as $\epsilon \rightarrow 0^{+}$, such that for every $x, y \in \mathbb{M}$ and $t>0$ one has

$$
\frac{\exp \left(-\frac{d(x, y)^{2}}{(4-\epsilon t}\right)}{C \mu(B(x, \sqrt{t}))} \leq p(x, y, t) \leq C \frac{\exp \left(-\frac{d(x, y)^{2}}{(4+\epsilon t}\right)}{\mu(B(x, \sqrt{t}))}
$$

## Subelliptic Myers theorem

If the parameter $\rho_{1}$ is positive, then it is possible to prove sharper Gaussian upper bounds for the heat kernel that lead to sharp Sobolev-type inequalities.

## Subelliptic Myers theorem

If the parameter $\rho_{1}$ is positive, then it is possible to prove sharper Gaussian upper bounds for the heat kernel that lead to sharp Sobolev-type inequalities. By a general approach due to D. Bakry, these entropy energy inequalities imply

## Subelliptic Myers theorem

If the parameter $\rho_{1}$ is positive, then it is possible to prove sharper Gaussian upper bounds for the heat kernel that lead to sharp Sobolev-type inequalities. By a general approach due to D. Bakry, these entropy energy inequalities imply

## Theorem (Baudoin-Garofalo, 2011)

If the inequality $C D\left(\rho_{1}, \rho_{2}, \kappa, d\right)$ holds for some constants $\rho_{1}>0, \rho_{2}>0, \kappa>0$, then the metric space $(\mathbb{M}, d)$ is compact in the metric topology and we have

$$
\operatorname{diam} \mathbb{M} \leq 2 \sqrt{3} \pi \sqrt{\frac{\kappa+\rho_{2}}{\rho_{1} \rho_{2}}\left(1+\frac{3 \kappa}{2 \rho_{2}}\right)} d ;
$$

## Subelliptic Myers theorem

If the parameter $\rho_{1}$ is positive, then it is possible to prove sharper Gaussian upper bounds for the heat kernel that lead to sharp Sobolev-type inequalities. By a general approach due to D. Bakry, these entropy energy inequalities imply

## Theorem (Baudoin-Garofalo, 2011)

If the inequality $C D\left(\rho_{1}, \rho_{2}, \kappa, d\right)$ holds for some constants $\rho_{1}>0, \rho_{2}>0, \kappa>0$, then the metric space $(\mathbb{M}, d)$ is compact in the metric topology and we have

$$
\operatorname{diam} \mathbb{M} \leq 2 \sqrt{3} \pi \sqrt{\frac{\kappa+\rho_{2}}{\rho_{1} \rho_{2}}\left(1+\frac{3 \kappa}{2 \rho_{2}}\right)} d ;
$$

## Riesz transform

## Theorem (Baudoin-Garofalo, IMRN 2012)

Assume that $L$ satisfies the generalized curvature inequality $C D\left(\rho_{1}, \rho_{2}, \kappa, d\right)$ with $\rho_{1} \geq 0, \rho_{2}>0, \kappa \geq 0$ and $0<d<\infty$. Let $1<p<\infty$. There exist constants $A_{p}, B_{p}>0$ such that

$$
A_{p}\left\|(-L)^{1 / 2} f\right\|_{p} \leq\|\sqrt{\Gamma(f)}\|_{p} \leq B_{p}\left\|(-L)^{1 / 2} f\right\|_{p}, \quad f \in C_{0}^{\infty}(\mathbb{M})
$$

## Spectral gap inequality

## Theorem (Baudoin-Bonnefont, JFA 2012)

Assume that $L$ satisfies the generalized curvature inequality $C D\left(\rho_{1}, \rho_{2}, \kappa, \infty\right)$ with $\rho_{1}>0, \rho_{2}>0$ and $\kappa \geq 0$. The measure $\mu$ is finite and the following Poincaré inequality holds:

$$
\int_{\mathbb{M}} f^{2} d \mu-\left(\int_{\mathbb{M}} f d \mu\right)^{2} \leq \frac{\kappa+\rho_{2}}{\rho_{1} \rho_{2}} \int_{\mathbb{M}} \Gamma(f) d \mu
$$

## Spectral gap inequality

## Theorem (Baudoin-Bonnefont, JFA 2012)

Assume that $L$ satisfies the generalized curvature inequality $C D\left(\rho_{1}, \rho_{2}, \kappa, \infty\right)$ with $\rho_{1}>0, \rho_{2}>0$ and $\kappa \geq 0$. The measure $\mu$ is finite and the following Poincaré inequality holds:

$$
\int_{\mathbb{M}} f^{2} d \mu-\left(\int_{\mathbb{M}} f d \mu\right)^{2} \leq \frac{\kappa+\rho_{2}}{\rho_{1} \rho_{2}} \int_{\mathbb{M}} \Gamma(f) d \mu
$$

## Modified log-Sobolev inequality

## Theorem (Baudoin-Bonnefont, JFA 2012)

Assume that $L$ satisfies the generalized curvature inequality $C D\left(\rho_{1}, \rho_{2}, \kappa, \infty\right)$ with $\rho_{1}>0, \rho_{2}>0$ and $\kappa \geq 0$. If $\mu$ is a probability measure, then

$$
\begin{gathered}
\int_{\mathbb{M}} f^{2} \ln f^{2} d \mu-\int_{\mathbb{M}} f^{2} d \mu \ln \int_{\mathbb{M}} f^{2} d \mu \\
\leq \frac{2\left(\kappa+\rho_{2}\right)}{\rho_{1} \rho_{2}}\left(\int_{\mathbb{M}} \Gamma(f) d \mu+\frac{\kappa+\rho_{2}}{\rho_{1}} \int_{\mathbb{M}} \Gamma^{Z}(f) d \mu\right) .
\end{gathered}
$$

## Modified log-Sobolev inequality

## Theorem (Baudoin-Bonnefont, JFA 2012)

Assume that $L$ satisfies the generalized curvature inequality $C D\left(\rho_{1}, \rho_{2}, \kappa, \infty\right)$ with $\rho_{1}>0, \rho_{2}>0$ and $\kappa \geq 0$. If $\mu$ is a probability measure, then

$$
\begin{gathered}
\int_{\mathbb{M}} f^{2} \ln f^{2} d \mu-\int_{\mathbb{M}} f^{2} d \mu \ln \int_{\mathbb{M}} f^{2} d \mu \\
\leq \frac{2\left(\kappa+\rho_{2}\right)}{\rho_{1} \rho_{2}}\left(\int_{\mathbb{M}} \Gamma(f) d \mu+\frac{\kappa+\rho_{2}}{\rho_{1}} \int_{\mathbb{M}} \Gamma^{Z}(f) d \mu\right) .
\end{gathered}
$$

Observe the annoying additional term $\int_{\mathbb{M}} \Gamma^{Z}(f) d \mu$.

## Log-Sobolev inequality

## Log-Sobolev inequality

## Theorem (Baudoin-Bonnefont, JFA 2012)

Assume that the measure $\mu$ is a probability measure and that $L$ satisfies the generalized curvature dimension inequality $C D\left(\rho_{1}, \rho_{2}, \kappa, \infty\right)$ for some $\rho_{1} \in \mathbb{R}, \rho_{2}>0, \kappa \geq 0$. Assume moreover that

$$
\int_{\mathbb{M}} e^{\lambda d^{2}\left(x_{0}, x\right)} d \mu(x)<+\infty
$$

## Log-Sobolev inequality

## Theorem (Baudoin-Bonnefont, JFA 2012)

Assume that the measure $\mu$ is a probability measure and that $L$ satisfies the generalized curvature dimension inequality $C D\left(\rho_{1}, \rho_{2}, \kappa, \infty\right)$ for some $\rho_{1} \in \mathbb{R}, \rho_{2}>0, \kappa \geq 0$. Assume moreover that

$$
\int_{\mathbb{M}} e^{\lambda d^{2}\left(x_{0}, x\right)} d \mu(x)<+\infty
$$

for some $x_{0} \in \mathbb{M}$ and $\lambda>\frac{\rho_{1}^{-}}{2}$, then there is a constant $\rho_{0}>0$ such that for every function $f \in C_{0}^{\infty}(\mathbb{M})$,

$$
\int_{\mathbb{M}} f^{2} \ln f^{2} d \mu-\int_{\mathbb{M}} f^{2} d \mu \ln \int_{\mathbb{M}} f^{2} d \mu \leq \frac{2}{\rho_{0}} \int_{\mathbb{M}} \Gamma(f) d \mu
$$

## Gaussian isoperimetry

## Theorem (Baudoin-Bonnefont, JFA 2012)

Assume that the measure $\mu$ is a probability measure, that $L$ satisfies the generalized curvature dimension inequality $C D\left(\rho_{1}, \rho_{2}, \kappa, \infty\right)$ for some $\rho_{1} \in \mathbb{R}, \rho_{2}>0, \kappa \geq 0$ and that $\mu$ satisfies the log-Sobolev inequality:

$$
\int_{\mathbb{M}} f^{2} \ln f^{2} d \mu-\int_{\mathbb{M}} f^{2} d \mu \ln \int_{\mathbb{M}} f^{2} d \mu \leq \frac{2}{\rho_{0}} \int_{\mathbb{M}} \Gamma(f) d \mu
$$

## Gaussian isoperimetry

## Theorem (Baudoin-Bonnefont, JFA 2012)

Assume that the measure $\mu$ is a probability measure, that $L$ satisfies the generalized curvature dimension inequality $C D\left(\rho_{1}, \rho_{2}, \kappa, \infty\right)$ for some $\rho_{1} \in \mathbb{R}, \rho_{2}>0, \kappa \geq 0$ and that $\mu$ satisfies the log-Sobolev inequality:

$$
\begin{equation*}
\int_{\mathbb{M}} f^{2} \ln f^{2} d \mu-\int_{\mathbb{M}} f^{2} d \mu \ln \int_{\mathbb{M}} f^{2} d \mu \leq \frac{2}{\rho_{0}} \int_{\mathbb{M}} \Gamma(f) d \mu \tag{1}
\end{equation*}
$$

Let $A$ be a set of the manifold $\mathbb{M}$ which has a finite perimeter $P(A)$ and such that $0 \leq \mu(A) \leq \frac{1}{2}$, then

$$
P(A) \geq \frac{\ln 2}{4\left(3+\frac{2 \kappa}{\rho_{2}}\right)} \min \left(\sqrt{\rho_{0}}, \frac{\rho_{0}}{\sqrt{\rho_{1}^{-}}}\right) \mu(A)\left(\ln \frac{1}{\mu(A)}\right)^{\frac{1}{2}}
$$

