Functional inequalities for subelliptic diffusion operators via curvature bounds

Fabrice Baudoin

Purdue University Workshop on Markov processes and related topics Beijing Normal University, 2012

July 18

◆□▶ ◆□▶ ★□▶ ★□▶ □ の 0 0

In Riemannian geometry the Ricci tensor plays a fundamental role. Its connection with the Laplace-Beltrami operator is given by the celebrated Bochner's identity:

ション ふゆ アメリア メリア しょうくしゃ

$$\Delta(\|\nabla f\|^2) = 2\|\nabla^2 f\|^2 + 2\langle \nabla f, \nabla \Delta f \rangle + 2\mathsf{Ric}(\nabla f, \nabla f).$$

うして ふゆう ふほう ふほう ふしつ

$$\Delta(\|\nabla f\|^2) = 2\|\nabla^2 f\|^2 + 2\langle \nabla f, \nabla \Delta f \rangle + 2\mathsf{Ric}(\nabla f, \nabla f).$$

うして ふゆう ふほう ふほう ふしつ

Thanks to this equality, a Ricci lower bound translates into the so-called curvature dimension inequality.

$$\Delta(\|\nabla f\|^2) = 2\|\nabla^2 f\|^2 + 2\langle \nabla f, \nabla \Delta f \rangle + 2\operatorname{Ric}(\nabla f, \nabla f).$$

Thanks to this equality, a Ricci lower bound translates into the so-called curvature dimension inequality. Indeed, consider the bilinear differential forms

$$\Gamma(f,g) = rac{1}{2} \left(\Delta(fg) - f \Delta g - g \Delta f
ight) = \langle
abla f,
abla g
angle$$

うして ふゆう ふほう ふほう ふしつ

$$\Delta(\|\nabla f\|^2) = 2\|\nabla^2 f\|^2 + 2\langle \nabla f, \nabla \Delta f \rangle + 2\operatorname{Ric}(\nabla f, \nabla f).$$

Thanks to this equality, a Ricci lower bound translates into the so-called curvature dimension inequality. Indeed, consider the bilinear differential forms

$$\Gamma(f,g) = \frac{1}{2} \left(\Delta(fg) - f \Delta g - g \Delta f \right) = \langle \nabla f, \nabla g \rangle$$

and

$$\Gamma_2(f,g) = rac{1}{2} \left(\Delta \Gamma(f,g) - \Gamma(f,\Delta g) - \Gamma(\Delta f,g)
ight).$$

うして ふゆう ふほう ふほう ふしつ

The curvature dimension inequality on Riemannian manifolds

The Bochner's identity then simply writes

$$\Gamma_2(f) = \|
abla^2 f\|^2 + \operatorname{Ric}(
abla f,
abla f),$$

・ロト・日本・日本・日本・日本・今日や

$$\Gamma_2(f) = \|
abla^2 f\|^2 + \operatorname{Ric}(
abla f,
abla f),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

and it is easy to see that:

$$\Gamma_2(f) = \|
abla^2 f\|^2 + \operatorname{Ric}(
abla f,
abla f),$$

and it is easy to see that:

Theorem

We have $\operatorname{Ric} \ge \rho$ and $\operatorname{dim} \mathbb{M} \le n$ if and only if for every smooth f,

$$\Gamma_2(f) \geq \frac{1}{n} (\Delta f)^2 + \rho \Gamma(f).$$

うして ふゆう ふほう ふほう ふしつ

$$\Gamma_2(f) = \|
abla^2 f\|^2 + \operatorname{Ric}(
abla f,
abla f),$$

and it is easy to see that:

Theorem

We have $\operatorname{Ric} \ge \rho$ and $\operatorname{dim} \mathbb{M} \le n$ if and only if for every smooth f,

$$\Gamma_2(f) \geq \frac{1}{n} (\Delta f)^2 + \rho \Gamma(f).$$

This leads to the notion of intrinsic curvature-dimension bounds for diffusion operators.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ りゅつ

$$\Gamma_2(f) = \|
abla^2 f\|^2 + \operatorname{Ric}(
abla f,
abla f),$$

and it is easy to see that:

Theorem

We have $\operatorname{Ric} \ge \rho$ and $\operatorname{dim} \mathbb{M} \le n$ if and only if for every smooth f,

$$\Gamma_2(f) \geq \frac{1}{n} (\Delta f)^2 + \rho \Gamma(f).$$

This leads to the notion of intrinsic curvature-dimension bounds for diffusion operators. To be satisfied, the curvature-dimension inequality requires some form of ellipticity.

The sub-Riemannian geometry of CR manifolds

A Cauchy-Riemann manifold (\mathbb{M}, θ) is a smooth manifold of real dimension 2n + 1 endowed with the following data:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A *n*-dimensional complex sub-bundle C of the complexified bundle CTM that satisfies [C, C] ⊂ C and C ∩ C̄ = 0;

うして ふぼう ふほう ふほう しょう

A n-dimensional complex sub-bundle C of the complexified bundle CTM that satisfies [C, C] ⊂ C and C ∩ C̄ = 0;

うして ふぼう ふほう ふほう しょう

• A contact form θ such that $\text{Ker}(\theta) = \text{Re}(\mathcal{C} \oplus \overline{\mathcal{C}})$.

- A n-dimensional complex sub-bundle C of the complexified bundle CTM that satisfies [C, C] ⊂ C and C ∩ C̄ = 0;
- A contact form θ such that $\text{Ker}(\theta) = \text{Re}(\mathcal{C} \oplus \overline{\mathcal{C}}).$

CR manifolds, in particular, naturally appear as boundaries of domains in \mathbb{C}^{n+1} that are biholomorphically equivalent to the unit ball.

うして ふぼう ふほう ふほう しょう

- A n-dimensional complex sub-bundle C of the complexified bundle CTM that satisfies [C, C] ⊂ C and C ∩ C̄ = 0;
- A contact form θ such that $\text{Ker}(\theta) = \text{Re}(\mathcal{C} \oplus \overline{\mathcal{C}}).$

CR manifolds, in particular, naturally appear as boundaries of domains in \mathbb{C}^{n+1} that are biholomorphically equivalent to the unit ball.

The CR manifold is said to be strictly pseudo-convex if the bilinear form

$$g_{\theta}(X,Y) = d\theta(X,JY)$$

is positive definite on $\text{Ker}(\theta)$.

The sub-Riemannian geometry of CR manifolds

The real sub-bundle $\mathcal{H} = \mathbf{Re}(\mathcal{C} \oplus \overline{\mathcal{C}})$ is the set of horizontal directions.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = の��?

The real sub-bundle $\mathcal{H} = \operatorname{Re}(\mathcal{C} \oplus \overline{\mathcal{C}})$ is the set of horizontal directions. There is a unique globally defined nowhere zero vector field T on \mathbb{M} such that $\theta(T) = 1$, $\iota_T d\theta = 0$.

ション ふゆ アメリア メリア しょうくしゃ

The real sub-bundle $\mathcal{H} = \operatorname{Re}(\mathcal{C} \oplus \overline{\mathcal{C}})$ is the set of horizontal directions. There is a unique globally defined nowhere zero vector field \mathcal{T} on \mathbb{M} such that $\theta(\mathcal{T}) = 1$, $\iota_{\mathcal{T}} d\theta = 0$. It is called the Reeb vector field.

ション ふゆ アメリア メリア しょうくしゃ

The real sub-bundle $\mathcal{H} = \mathbf{Re}(\mathcal{C} \oplus \overline{\mathcal{C}})$ is the set of horizontal directions. There is a unique globally defined nowhere zero vector field T on \mathbb{M} such that $\theta(T) = 1$, $\iota_T d\theta = 0$. It is called the Reeb vector field. It is transverse to \mathcal{H} and defines the vertical direction.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

The real sub-bundle $\mathcal{H} = \mathbf{Re}(\mathcal{C} \oplus \overline{\mathcal{C}})$ is the set of horizontal directions. There is a unique globally defined nowhere zero vector field T on \mathbb{M} such that $\theta(T) = 1$, $\iota_T d\theta = 0$. It is called the Reeb vector field. It is transverse to \mathcal{H} and defines the vertical direction.

The sub-Laplacian Δ on \mathbb{M} is the diffusion operator on \mathbb{M} which is symmetric with respect to the volume form $\theta \wedge (d\theta)^n$ and such that

$$\Gamma(f) = \|\nabla^{\mathcal{H}} f\|^2.$$

(日) (伊) (日) (日) (日) (0) (0)

where $\nabla^{\mathcal{H}} f$ is the horizontal gradient of f.

The real sub-bundle $\mathcal{H} = \mathbf{Re}(\mathcal{C} \oplus \overline{\mathcal{C}})$ is the set of horizontal directions. There is a unique globally defined nowhere zero vector field T on \mathbb{M} such that $\theta(T) = 1$, $\iota_T d\theta = 0$. It is called the Reeb vector field. It is transverse to \mathcal{H} and defines the vertical direction.

The sub-Laplacian Δ on \mathbb{M} is the diffusion operator on \mathbb{M} which is symmetric with respect to the volume form $\theta \wedge (d\theta)^n$ and such that

$$\Gamma(f) = \|\nabla^{\mathcal{H}} f\|^2.$$

where $\nabla^{\mathcal{H}} f$ is the horizontal gradient of f. Δ fails to be elliptic but is subelliptic of order 1/2.

Is there a notion of curvature dimension bounds for Δ ?

うして ふぼう ふほう ふほう しょう

Consider on \mathbb{R}^3 , the vector fields

$$X = \partial_x - \frac{y}{2}\partial_z$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Consider on \mathbb{R}^3 , the vector fields

$$X = \partial_x - \frac{y}{2}\partial_z$$

$$Y = \partial_y + \frac{x}{2}\partial_z$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Consider on \mathbb{R}^3 , the vector fields

$$X = \partial_x - \frac{y}{2}\partial_z$$

$$Y = \partial_y + \frac{x}{2}\partial_z$$

 $\quad \text{and} \quad$

$$Z = \partial_z$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = の��?

Consider on \mathbb{R}^3 , the vector fields

$$X = \partial_x - \frac{y}{2}\partial_z$$

$$Y = \partial_y + \frac{x}{2}\partial_z$$

and

$$Z = \partial_z$$

We have

$$[X, Y] = Z, [Z, X] = 0, [Y, Z] = 0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへぐ

Consider on \mathbb{R}^3 , the vector fields

$$X = \partial_x - \frac{y}{2}\partial_z$$

$$Y = \partial_y + \frac{x}{2}\partial_z$$

and

$$Z = \partial_z$$

We have

$$[X, Y] = Z, [Z, X] = 0, [Y, Z] = 0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We have a CR Lie group with horizontal space span(X, Y) and Reeb vector field Z.

The sub-Laplacian is $L = X^2 + Y^2$.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

The sub-Laplacian is $L = X^2 + Y^2$. Elementary computations yield

$$\Gamma(f) = (Xf)^2 + (Yf)^2.$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

The sub-Laplacian is $L = X^2 + Y^2$. Elementary computations yield

$$\Gamma(f) = (Xf)^2 + (Yf)^2.$$

and

$$\Gamma_2(f) = (X^2 f)^2 + (Y^2 f)^2 + \frac{1}{2} ((XY + YX)f)^2 + \frac{1}{2} (Zf)^2 - 2(Xf)(YZf) + 2(Yf)(XZf).$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

The sub-Laplacian is $L = X^2 + Y^2$. Elementary computations yield

$$\Gamma(f) = (Xf)^2 + (Yf)^2.$$

and

$$\Gamma_2(f) = (X^2 f)^2 + (Y^2 f)^2 + \frac{1}{2} ((XY + YX)f)^2 + \frac{1}{2} (Zf)^2 - 2(Xf)(YZf) + 2(Yf)(XZf).$$

The mixt term -2(Xf)(YZf) + 2(Yf)(XZf) prevents to find any lower bound on this quantity involving $\Gamma(f)$ only !

ション ふゆ アメリア メリア しょうくしゃ

The idea is to use a second Bochner's formula involving the missing vertical direction Z.

The idea is to use a second Bochner's formula involving the missing vertical direction Z. Consider

$$\Gamma^Z(f) = (Zf)^2$$

and

$$\Gamma_2^{Z}(f) = \frac{1}{2} \left(L \Gamma^{Z}(f) - 2 \Gamma^{Z}(f, Lf) \right).$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

The idea is to use a second Bochner's formula involving the missing vertical direction Z. Consider

$$\Gamma^Z(f) = (Zf)^2$$

and

$$\Gamma_2^{Z}(f) = \frac{1}{2} \left(L \Gamma^{Z}(f) - 2 \Gamma^{Z}(f, Lf) \right).$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ の 0 0

It is easily checked that $\Gamma_2^Z(f) = (XZf)^2 + (YZf)^2$.

The idea is to use a second Bochner's formula involving the missing vertical direction Z. Consider

$$\Gamma^Z(f) = (Zf)^2$$

and

$$\Gamma_2^{Z}(f) = \frac{1}{2} \left(L \Gamma^{Z}(f) - 2 \Gamma^{Z}(f, Lf) \right).$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ りゅつ

It is easily checked that $\Gamma_2^Z(f) = (XZf)^2 + (YZf)^2$. Cauchy-Schwarz inequality leads then to
The Heisenberg group

The idea is to use a second Bochner's formula involving the missing vertical direction Z. Consider

$$\Gamma^Z(f) = (Zf)^2$$

and

$$\Gamma_2^{Z}(f) = \frac{1}{2} \left(L \Gamma^{Z}(f) - 2 \Gamma^{Z}(f, Lf) \right).$$

It is easily checked that $\Gamma_2^Z(f) = (XZf)^2 + (YZf)^2$. Cauchy-Schwarz inequality leads then to

Theorem

For every $\nu > 0$,

$$\Gamma_2(f) + \nu \Gamma_2^Z(f) \ge \frac{1}{2} (Lf)^2 - \frac{1}{\nu} \Gamma(f) + \frac{1}{2} \Gamma^Z(f).$$

The Tanaka-Webster connection on a CR manifold

There is a canonical connection on CR manifolds: The Tanaka-Webster connection.

The Tanaka-Webster connection on a CR manifold

There is a canonical connection on CR manifolds: The Tanaka-Webster connection. It satisfies in particular $\nabla g_\theta=0$ and $\nabla \mathcal{T}=0$

There is a canonical connection on CR manifolds: The Tanaka-Webster connection. It satisfies in particular $\nabla g_{\theta} = 0$ and $\nabla T = 0$ but it is not torsion free.

There is a canonical connection on CR manifolds: The Tanaka-Webster connection. It satisfies in particular $\nabla g_{\theta} = 0$ and $\nabla T = 0$ but it is not torsion free. The CR structure is said to be Sasakian if $\mathbf{T}(X, Y)$ is vertical when X and Y are horizontal. The Heisenberg group is a Sasakian manifold.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つへぐ

There is a canonical connection on CR manifolds: The Tanaka-Webster connection. It satisfies in particular $\nabla g_{\theta} = 0$ and $\nabla T = 0$ but it is not torsion free. The CR structure is said to be Sasakian if $\mathbf{T}(X, Y)$ is vertical when X and Y are horizontal. The Heisenberg group is a Sasakian manifold.

うして ふゆう ふほう ふほう ふしつ

Theorem

Let \mathbb{M} be a CR Sasakian manifold.

There is a canonical connection on CR manifolds: The Tanaka-Webster connection. It satisfies in particular $\nabla g_{\theta} = 0$ and $\nabla T = 0$ but it is not torsion free. The CR structure is said to be Sasakian if $\mathbf{T}(X, Y)$ is vertical when X and Y are horizontal. The Heisenberg group is a Sasakian manifold.

Theorem

Let \mathbb{M} be a CR Sasakian manifold. We have $\dim(H) \leq d$ and $\operatorname{Ric}_{\nabla} \geq \rho_1$ if and only if for every $\nu > 0$,

$$\Gamma_2(f) + \nu \Gamma_2^{\mathcal{T}}(f) \geq rac{1}{d} (\Delta f)^2 + \left(
ho_1 - rac{1}{
u}
ight) \Gamma(f) + rac{d}{4} (\mathcal{T}f)^2,$$

where

$$2\Gamma_2^T(f) = \Delta (Tf)^2 - 2TfT\Delta f$$

Generalized curvature dimension inequality

Let *L* be a diffusion operator defined on a manifold \mathbb{M} .

Let L be a diffusion operator defined on a manifold \mathbb{M} . We assume that L is symmetric with respect to a smooth measure μ and (locally) subelliptic.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つへぐ

$$L = -\sum_{i=1}^m X_i^* X_i,$$

うして ふゆう ふほう ふほう ふしつ

where the X_i 's are smooth vector fields that satisfy Hörmander's condition, are subelliptic.

$$L=-\sum_{i=1}^m X_i^*X_i,$$

where the X_i 's are smooth vector fields that satisfy Hörmander's condition, are subelliptic. As we previous saw, sub-Laplacian of CR manifolds also are subelliptic.

$$L=-\sum_{i=1}^m X_i^*X_i,$$

where the X_i 's are smooth vector fields that satisfy Hörmander's condition, are subelliptic. As we previous saw, sub-Laplacian of CR manifolds also are subelliptic. Assume, additionally, that \mathbb{M} is endowed with a first-order differential bilinear form $\Gamma^Z(f,g)$ that satisfies

$$\Gamma(f,\Gamma^{Z}(f))=\Gamma^{Z}(f,\Gamma(f)).$$

(日) (伊) (日) (日) (日) (0) (0)

$$L=-\sum_{i=1}^m X_i^*X_i,$$

where the X_i 's are smooth vector fields that satisfy Hörmander's condition, are subelliptic. As we previous saw, sub-Laplacian of CR manifolds also are subelliptic. Assume, additionally, that \mathbb{M} is endowed with a first-order differential bilinear form $\Gamma^Z(f,g)$ that satisfies

$$\Gamma(f,\Gamma^{Z}(f))=\Gamma^{Z}(f,\Gamma(f)).$$

In the context of CR manifolds this commutation is equivalent to the fact that the torsion is vertical (Sasakian assumption).

Definition

We say that L satisfies the generalized-curvature inequality $CD(\rho_1, \rho_2, \kappa, d)$ if for every $\nu > 0$,

$$\Gamma_2(f) + \nu \Gamma_2^Z(f) \geq \frac{1}{d} (Lf)^2 + \left(\rho_1 - \frac{\kappa}{\nu}\right) \Gamma(f) + \rho_2 \Gamma^Z(f).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Definition

We say that L satisfies the generalized-curvature inequality $CD(\rho_1, \rho_2, \kappa, d)$ if for every $\nu > 0$,

$$\Gamma_2(f) + \nu \Gamma_2^Z(f) \geq \frac{1}{d} (Lf)^2 + \left(\rho_1 - \frac{\kappa}{\nu}\right) \Gamma(f) + \rho_2 \Gamma^Z(f).$$

 $CD(
ho_1,
ho_2,\kappa,d)$ is the linearization of

$$\Gamma_2(f) + 2\sqrt{\kappa\Gamma(f)\Gamma_2^Z(f)} \geq \frac{1}{d}(Lf)^2 + \rho_1\Gamma(f) + \rho_2\Gamma^Z(f).$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つへぐ

Let M be a *n*-dimensional complete Riemannian manifold wiose Ricci curvature is bounded from below by ρ. The Laplacian of M satisfies the curvature dimension inequality CD(ρ, 0, 0, d) with Γ^Z = 0.

イロト 不得 トイヨ トイヨ うらくの

Let M be a *n*-dimensional complete Riemannian manifold wiose Ricci curvature is bounded from below by ρ. The Laplacian of M satisfies the curvature dimension inequality CD(ρ, 0, 0, d) with Γ^Z = 0.

うして ふゆう ふほう ふほう ふしつ

CR Sasakian manifolds.

Let M be a *n*-dimensional complete Riemannian manifold wiose Ricci curvature is bounded from below by ρ. The Laplacian of M satisfies the curvature dimension inequality CD(ρ, 0, 0, d) with Γ^Z = 0.

- CR Sasakian manifolds.
- Two-step nilpotent Lie groups.

Let M be a *n*-dimensional complete Riemannian manifold wiose Ricci curvature is bounded from below by ρ. The Laplacian of M satisfies the curvature dimension inequality CD(ρ, 0, 0, d) with Γ^Z = 0.

- CR Sasakian manifolds.
- Two-step nilpotent Lie groups.
- Orthonormal bundles over Riemannian manifolds.

Let M be a *n*-dimensional complete Riemannian manifold wiose Ricci curvature is bounded from below by ρ. The Laplacian of M satisfies the curvature dimension inequality CD(ρ, 0, 0, d) with Γ^Z = 0.

- CR Sasakian manifolds.
- Two-step nilpotent Lie groups.
- Orthonormal bundles over Riemannian manifolds.
- Fibrations

- Let M be a *n*-dimensional complete Riemannian manifold wiose Ricci curvature is bounded from below by *ρ*. The Laplacian of M satisfies the curvature dimension inequality CD(*ρ*, 0, 0, *d*) with Γ^Z = 0.
- CR Sasakian manifolds.
- Two-step nilpotent Lie groups.
- Orthonormal bundles over Riemannian manifolds.
- Fibrations
- Infinite dimensional examples (Baudoin-Gordina-Melcher, Trans. AMS 2012)

Theorem (Baudoin-Garofalo, 2011)

Assume that L satisfies the generalized curvature inequality $CD(\rho_1, \rho_2, \kappa, d)$ with $\rho_1 \ge 0$, $\rho_2 > 0$, $\kappa \ge 0$ and $0 < d < \infty$, then

$$\Gamma(\ln p_t) + \frac{2\rho_2}{3}t\Gamma^Z(\ln p_t) \leq (1 + \frac{3\kappa}{2\rho_2})\frac{Lp_t}{p_t} + \frac{d\left(1 + \frac{3\kappa}{2\rho_2}\right)^2}{2t}.$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ りゅつ

Integrating the Li-Yau inequality along geodesics leads to a parabolic Harnack inequality

Integrating the Li-Yau inequality along geodesics leads to a parabolic Harnack inequality

Theorem (Baudoin-Garofalo, 2011)

Assume that L satisfies the generalized curvature inequality $CD(\rho_1, \rho_2, \kappa, d)$ with $\rho_1 \ge 0$, $\rho_2 > 0$, $\kappa \ge 0$ and $0 < d < \infty$. For every $x, y, z \in \mathbb{M}$ and every $0 < s < t < \infty$ one has

$$p(x, y, s) \leq p(x, z, t) \left(\frac{t}{s}\right)^{\frac{D}{2}} \exp\left(\frac{D}{d}\frac{d(y, z)^2}{4(t-s)}\right),$$

where

$$D=d\left(1+rac{3\kappa}{2
ho_2}
ight).$$

Theorem (Baudoin-Bonnefont-Garofalo, 2011)

Assume that L satisfies the generalized curvature inequality $CD(\rho_1, \rho_2, \kappa, d)$ with $\rho_1 \ge 0$, $\rho_2 > 0$, $\kappa \ge 0$ and $0 < d < \infty$. For any $0 < \epsilon < 1$, there exists a constant $C = C(d, \kappa, \rho_2, \epsilon) > 0$, which tends to ∞ as $\epsilon \to 0^+$, such that for every $x, y \in \mathbb{M}$ and t > 0 one has

$$\frac{\exp\left(-\frac{d(x,y)^2}{(4-\epsilon)t}\right)}{C\mu(B(x,\sqrt{t}))} \le p(x,y,t) \le C\frac{\exp\left(-\frac{d(x,y)^2}{(4+\epsilon)t}\right)}{\mu(B(x,\sqrt{t}))}$$

うして ふゆう ふほう ふほう しょうく

If the parameter ρ_1 is positive, then it is possible to prove sharper Gaussian upper bounds for the heat kernel that lead to sharp Sobolev-type inequalities.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

If the parameter ρ_1 is positive, then it is possible to prove sharper Gaussian upper bounds for the heat kernel that lead to sharp Sobolev-type inequalities. By a general approach due to D. Bakry, these entropy energy inequalities imply

If the parameter ρ_1 is positive, then it is possible to prove sharper Gaussian upper bounds for the heat kernel that lead to sharp Sobolev-type inequalities. By a general approach due to D. Bakry, these entropy energy inequalities imply

Theorem (Baudoin-Garofalo, 2011)

If the inequality $CD(\rho_1, \rho_2, \kappa, d)$ holds for some constants $\rho_1 > 0, \rho_2 > 0, \kappa > 0$, then the metric space (\mathbb{M}, d) is compact in the metric topology and we have

diam
$$\mathbb{M} \leq 2\sqrt{3}\pi \sqrt{\frac{\kappa + \rho_2}{\rho_1 \rho_2} \left(1 + \frac{3\kappa}{2\rho_2}\right) d};$$

If the parameter ρ_1 is positive, then it is possible to prove sharper Gaussian upper bounds for the heat kernel that lead to sharp Sobolev-type inequalities. By a general approach due to D. Bakry, these entropy energy inequalities imply

Theorem (Baudoin-Garofalo, 2011)

If the inequality $CD(\rho_1, \rho_2, \kappa, d)$ holds for some constants $\rho_1 > 0, \rho_2 > 0, \kappa > 0$, then the metric space (\mathbb{M}, d) is compact in the metric topology and we have

diam
$$\mathbb{M} \leq 2\sqrt{3}\pi \sqrt{\frac{\kappa + \rho_2}{\rho_1 \rho_2} \left(1 + \frac{3\kappa}{2\rho_2}\right) d};$$

Theorem (Baudoin-Garofalo, IMRN 2012)

Assume that L satisfies the generalized curvature inequality $CD(\rho_1, \rho_2, \kappa, d)$ with $\rho_1 \ge 0$, $\rho_2 > 0$, $\kappa \ge 0$ and $0 < d < \infty$. Let $1 . There exist constants <math>A_p, B_p > 0$ such that

$$A_{\rho}\|(-L)^{1/2}f\|_{\rho} \leq \|\sqrt{\Gamma(f)}\|_{\rho} \leq B_{\rho}\|(-L)^{1/2}f\|_{\rho}, \qquad f \in C_{0}^{\infty}(\mathbb{M}),$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つへぐ

Assume that L satisfies the generalized curvature inequality $CD(\rho_1, \rho_2, \kappa, \infty)$ with $\rho_1 > 0$, $\rho_2 > 0$ and $\kappa \ge 0$. The measure μ is finite and the following Poincaré inequality holds:

$$\int_{\mathbb{M}} f^2 d\mu - \left(\int_{\mathbb{M}} f d\mu
ight)^2 \leq rac{\kappa +
ho_2}{
ho_1
ho_2} \int_{\mathbb{M}} \Gamma(f) d\mu$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへの

Assume that L satisfies the generalized curvature inequality $CD(\rho_1, \rho_2, \kappa, \infty)$ with $\rho_1 > 0$, $\rho_2 > 0$ and $\kappa \ge 0$. The measure μ is finite and the following Poincaré inequality holds:

$$\int_{\mathbb{M}} f^2 d\mu - \left(\int_{\mathbb{M}} f d\mu
ight)^2 \leq rac{\kappa +
ho_2}{
ho_1
ho_2} \int_{\mathbb{M}} \Gamma(f) d\mu$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへの

Assume that L satisfies the generalized curvature inequality $CD(\rho_1, \rho_2, \kappa, \infty)$ with $\rho_1 > 0$, $\rho_2 > 0$ and $\kappa \ge 0$. If μ is a probability measure, then

$$\int_{\mathbb{M}} f^2 \ln f^2 d\mu - \int_{\mathbb{M}} f^2 d\mu \ln \int_{\mathbb{M}} f^2 d\mu$$
$$\leq \frac{2(\kappa + \rho_2)}{\rho_1 \rho_2} \left(\int_{\mathbb{M}} \Gamma(f) d\mu + \frac{\kappa + \rho_2}{\rho_1} \int_{\mathbb{M}} \Gamma^{Z}(f) d\mu \right).$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ りゅつ

Assume that L satisfies the generalized curvature inequality $CD(\rho_1, \rho_2, \kappa, \infty)$ with $\rho_1 > 0$, $\rho_2 > 0$ and $\kappa \ge 0$. If μ is a probability measure, then

$$\int_{\mathbb{M}} f^2 \ln f^2 d\mu - \int_{\mathbb{M}} f^2 d\mu \ln \int_{\mathbb{M}} f^2 d\mu$$
$$\leq \frac{2(\kappa + \rho_2)}{\rho_1 \rho_2} \left(\int_{\mathbb{M}} \Gamma(f) d\mu + \frac{\kappa + \rho_2}{\rho_1} \int_{\mathbb{M}} \Gamma^Z(f) d\mu \right).$$

Observe the annoying additional term $\int_{\mathbb{M}} \Gamma^{Z}(f) d\mu$.

・ロト ・ 通 ト ・ 注 ト ・ 注 ・ うへぐ

Log-Sobolev inequality

Assume that the measure μ is a probability measure and that L satisfies the generalized curvature dimension inequality $CD(\rho_1, \rho_2, \kappa, \infty)$ for some $\rho_1 \in \mathbb{R}$, $\rho_2 > 0$, $\kappa \ge 0$. Assume moreover that

$$\int_{\mathbb{M}}e^{\lambda d^2(x_0,x)}d\mu(x)<+\infty,$$
Theorem (Baudoin-Bonnefont, JFA 2012)

Assume that the measure μ is a probability measure and that L satisfies the generalized curvature dimension inequality $CD(\rho_1, \rho_2, \kappa, \infty)$ for some $\rho_1 \in \mathbb{R}$, $\rho_2 > 0$, $\kappa \ge 0$. Assume moreover that

$$\int_{\mathbb{M}} e^{\lambda d^2(x_0,x)} d\mu(x) < +\infty,$$

for some $x_0 \in \mathbb{M}$ and $\lambda > \frac{\rho_1}{2}$, then there is a constant $\rho_0 > 0$ such that for every function $f \in C_0^{\infty}(\mathbb{M})$,

$$\int_{\mathbb{M}} f^2 \ln f^2 d\mu - \int_{\mathbb{M}} f^2 d\mu \ln \int_{\mathbb{M}} f^2 d\mu \leq \frac{2}{\rho_0} \int_{\mathbb{M}} \Gamma(f) d\mu.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへの

Theorem (Baudoin-Bonnefont, JFA 2012)

Assume that the measure μ is a probability measure, that L satisfies the generalized curvature dimension inequality $CD(\rho_1, \rho_2, \kappa, \infty)$ for some $\rho_1 \in \mathbb{R}$, $\rho_2 > 0$, $\kappa \ge 0$ and that μ satisfies the log-Sobolev inequality:

$$\int_{\mathbb{M}} f^2 \ln f^2 d\mu - \int_{\mathbb{M}} f^2 d\mu \ln \int_{\mathbb{M}} f^2 d\mu \leq \frac{2}{\rho_0} \int_{\mathbb{M}} \Gamma(f) d\mu,$$

イロト 不得 トイヨト イヨト 三日

Theorem (Baudoin-Bonnefont, JFA 2012)

Assume that the measure μ is a probability measure, that L satisfies the generalized curvature dimension inequality $CD(\rho_1, \rho_2, \kappa, \infty)$ for some $\rho_1 \in \mathbb{R}$, $\rho_2 > 0$, $\kappa \ge 0$ and that μ satisfies the log-Sobolev inequality:

$$\int_{\mathbb{M}} f^2 \ln f^2 d\mu - \int_{\mathbb{M}} f^2 d\mu \ln \int_{\mathbb{M}} f^2 d\mu \leq \frac{2}{\rho_0} \int_{\mathbb{M}} \Gamma(f) d\mu, \quad (1)$$

Let A be a set of the manifold \mathbb{M} which has a finite perimeter P(A) and such that $0 \le \mu(A) \le \frac{1}{2}$, then

$$P(A) \geq \frac{\ln 2}{4\left(3 + \frac{2\kappa}{\rho_2}\right)} \min\left(\sqrt{\rho_0}, \frac{\rho_0}{\sqrt{\rho_1^-}}\right) \mu(A) \left(\ln \frac{1}{\mu(A)}\right)^{\frac{1}{2}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへ⊙