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The curvature dimension inequality on Riemannian manifolds

In Riemannian geometry the Ricci tensor plays a fundamental role.
Its connection with the Laplace-Beltrami operator is given by the
celebrated Bochner’s identity:

If M is a Riemannian manifold with
Laplacian ∆, then for every smooth f :

∆(‖∇f ‖2) = 2‖∇2f ‖2 + 2〈∇f ,∇∆f 〉+ 2Ric(∇f ,∇f ).

Thanks to this equality, a Ricci lower bound translates into the
so-called curvature dimension inequality. Indeed, consider the
bilinear differential forms

Γ(f , g) =
1
2

(∆(fg)− f ∆g − g∆f ) = 〈∇f ,∇g〉

and
Γ2(f , g) =

1
2

(∆Γ(f , g)− Γ(f ,∆g)− Γ(∆f , g)) .
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The curvature dimension inequality on Riemannian manifolds

The Bochner’s identity then simply writes

Γ2(f ) = ‖∇2f ‖2 + Ric(∇f ,∇f ),

and it is easy to see that:

Theorem
We have Ric ≥ ρ and dimM ≤ n if and only if for every smooth f ,

Γ2(f ) ≥ 1
n

(∆f )2 + ρΓ(f ).

This leads to the notion of intrinsic curvature-dimension bounds for
diffusion operators. To be satisfied, the curvature-dimension
inequality requires some form of ellipticity.
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The sub-Riemannian geometry of CR manifolds

A Cauchy-Riemann manifold (M, θ) is a smooth manifold of real
dimension 2n + 1 endowed with the following data:

I A n-dimensional complex sub-bundle C of the complexified
bundle CTM that satisfies [C, C] ⊂ C and C ∩ C̄ = 0;

I A contact form θ such that Ker(θ) = Re(C ⊕ C̄).
CR manifolds, in particular, naturally appear as boundaries of
domains in Cn+1 that are biholomorphically equivalent to the unit
ball.
The CR manifold is said to be strictly pseudo-convex if the bilinear
form

gθ(X ,Y ) = dθ(X , JY )

is positive definite on Ker(θ).
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The sub-Riemannian geometry of CR manifolds

The real sub-bundle H = Re(C ⊕ C̄) is the set of horizontal
directions.

There is a unique globally defined nowhere zero vector
field T on M such that θ(T ) = 1, ιTdθ = 0. It is called the Reeb
vector field. It is transverse to H and defines the vertical direction.

The sub-Laplacian ∆ on M is the diffusion operator on M which is
symmetric with respect to the volume form θ ∧ (dθ)n and such that

Γ(f ) = ‖∇Hf ‖2.

where ∇Hf is the horizontal gradient of f . ∆ fails to be elliptic but
is subelliptic of order 1/2.
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The sub-Riemannian geometry of CR manifolds

Is there a notion of curvature
dimension bounds for ∆ ?



The Heisenberg group

Consider on R3, the vector fields

X = ∂x −
y
2
∂z

Y = ∂y +
x
2
∂z

and
Z = ∂z

We have
[X ,Y ] = Z , [Z ,X ] = 0, [Y ,Z ] = 0.

We have a CR Lie group with horizontal space span(X ,Y ) and
Reeb vector field Z .
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The sub-Laplacian is L = X 2 + Y 2.

Elementary computations yield

Γ(f ) = (Xf )2 + (Yf )2.

and

Γ2(f ) =(X 2f )2 + (Y 2f )2 +
1
2

((XY + YX )f )2 +
1
2

(Zf )2

− 2(Xf )(YZf ) + 2(Yf )(XZf ).

The mixt term −2(Xf )(YZf ) + 2(Yf )(XZf ) prevents to find any
lower bound on this quantity involving Γ(f ) only !
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The Heisenberg group

The idea is to use a second Bochner’s formula involving the missing
vertical direction Z .

Consider

ΓZ (f ) = (Zf )2

and
ΓZ

2 (f ) =
1
2

(
LΓZ (f )− 2ΓZ (f , Lf )

)
.

It is easily checked that ΓZ
2 (f ) = (XZf )2 + (YZf )2.

Cauchy-Schwarz inequality leads then to

Theorem
For every ν > 0,

Γ2(f ) + νΓZ
2 (f ) ≥ 1

2
(Lf )2 − 1

ν
Γ(f ) +

1
2

ΓZ (f ).
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The Tanaka-Webster connection on a CR manifold

There is a canonical connection on CR manifolds: The
Tanaka-Webster connection.

It satisfies in particular ∇gθ = 0 and
∇T = 0 but it is not torsion free. The CR structure is said to be
Sasakian if T(X ,Y ) is vertical when X and Y are horizontal. The
Heisenberg group is a Sasakian manifold.

Theorem
Let M be a CR Sasakian manifold. We have dim(H) ≤ d and
Ric∇ ≥ ρ1 if and only if for every ν > 0,

Γ2(f ) + νΓT
2 (f ) ≥ 1

d
(∆f )2 +

(
ρ1 −

1
ν

)
Γ(f ) +

d
4

(Tf )2,

where
2ΓT

2 (f ) = ∆(Tf )2 − 2TfT∆f
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Generalized curvature dimension inequality

Let L be a diffusion operator defined on a manifold M.

We assume
that L is symmetric with respect to a smooth measure µ and
(locally) subelliptic. For instance, diffusion operators that can be
written as

L = −
m∑

i=1

X ∗i Xi ,

where the Xi ’s are smooth vector fields that satisfy Hörmander’s
condition, are subelliptic. As we previous saw, sub-Laplacian of CR
manifolds also are subelliptic. Assume, additionally, that M is
endowed with a first-order differential bilinear form ΓZ (f , g) that
satisfies

Γ(f , ΓZ (f )) = ΓZ (f , Γ(f )).

In the context of CR manifolds this commutation is equivalent to
the fact that the torsion is vertical (Sasakian assumption).
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the fact that the torsion is vertical (Sasakian assumption).
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Generalized curvature dimension inequality

Definition
We say that L satisfies the generalized-curvature inequality
CD(ρ1, ρ2, κ, d) if for every ν > 0,

Γ2(f ) + νΓZ
2 (f ) ≥ 1

d
(Lf )2 +

(
ρ1 −

κ

ν

)
Γ(f ) + ρ2ΓZ (f ).

CD(ρ1, ρ2, κ, d) is the linearization of

Γ2(f ) + 2
√
κΓ(f )ΓZ

2 (f ) ≥ 1
d

(Lf )2 + ρ1Γ(f ) + ρ2ΓZ (f ).
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Examples

We have the following general class of examples:
I Let M be a n-dimensional complete Riemannian manifold

wiose Ricci curvature is bounded from below by ρ. The
Laplacian of M satisfies the curvature dimension inequality
CD(ρ, 0, 0, d) with ΓZ = 0.

I CR Sasakian manifolds.
I Two-step nilpotent Lie groups.
I Orthonormal bundles over Riemannian manifolds.
I Fibrations
I Infinite dimensional examples (Baudoin-Gordina-Melcher,
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Li-Yau inequality

Theorem (Baudoin-Garofalo, 2011)

Assume that L satisfies the generalized curvature inequality
CD(ρ1, ρ2, κ, d) with ρ1 ≥ 0, ρ2 > 0 , κ ≥ 0 and 0 < d <∞, then

Γ(ln pt) +
2ρ2

3
tΓZ (ln pt) ≤ (1 +

3κ
2ρ2

)
Lpt

pt
+

d
(
1 + 3κ

2ρ2

)2

2t
.



The parabolic Harnack inequality

Integrating the Li-Yau inequality along geodesics leads to a
parabolic Harnack inequality

Theorem (Baudoin-Garofalo, 2011)

Assume that L satisfies the generalized curvature inequality
CD(ρ1, ρ2, κ, d) with ρ1 ≥ 0, ρ2 > 0 , κ ≥ 0 and 0 < d <∞. For
every x , y , z ∈M and every 0 < s < t <∞ one has

p(x , y , s) ≤ p(x , z , t)
( t
s

)D
2
exp
(
D
d
d(y , z)2

4(t − s)

)
,

where

D = d
(
1 +

3κ
2ρ2

)
.



The parabolic Harnack inequality

Integrating the Li-Yau inequality along geodesics leads to a
parabolic Harnack inequality

Theorem (Baudoin-Garofalo, 2011)

Assume that L satisfies the generalized curvature inequality
CD(ρ1, ρ2, κ, d) with ρ1 ≥ 0, ρ2 > 0 , κ ≥ 0 and 0 < d <∞. For
every x , y , z ∈M and every 0 < s < t <∞ one has

p(x , y , s) ≤ p(x , z , t)
( t
s

)D
2
exp
(
D
d
d(y , z)2

4(t − s)

)
,

where

D = d
(
1 +

3κ
2ρ2

)
.



Gaussian bounds

Theorem (Baudoin-Bonnefont-Garofalo, 2011)

Assume that L satisfies the generalized curvature inequality
CD(ρ1, ρ2, κ, d) with ρ1 ≥ 0, ρ2 > 0 , κ ≥ 0 and 0 < d <∞. For
any 0 < ε < 1, there exists a constant C = C (d , κ, ρ2, ε) > 0,
which tends to ∞ as ε→ 0+, such that for every x , y ∈M and
t > 0 one has

exp
(
−d(x ,y)2

(4−ε)t

)
Cµ(B(x ,

√
t))
≤ p(x , y , t) ≤ C

exp
(
−d(x ,y)2

(4+ε)t

)
µ(B(x ,

√
t))

.



Subelliptic Myers theorem

If the parameter ρ1 is positive, then it is possible to prove sharper
Gaussian upper bounds for the heat kernel that lead to sharp
Sobolev-type inequalities.

By a general approach due to D. Bakry,
these entropy energy inequalities imply

Theorem (Baudoin-Garofalo, 2011)

If the inequality CD(ρ1, ρ2, κ, d) holds for some constants
ρ1 > 0, ρ2 > 0, κ > 0, then the metric space (M, d) is compact in
the metric topology and we have

diam M ≤ 2
√
3π

√
κ+ ρ2

ρ1ρ2

(
1 +

3κ
2ρ2

)
d ;
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Riesz transform

Theorem (Baudoin-Garofalo, IMRN 2012)

Assume that L satisfies the generalized curvature inequality
CD(ρ1, ρ2, κ, d) with ρ1 ≥ 0, ρ2 > 0 , κ ≥ 0 and 0 < d <∞. Let
1 < p <∞. There exist constants Ap,Bp > 0 such that

Ap‖(−L)1/2f ‖p ≤ ‖
√

Γ(f )‖p ≤ Bp‖(−L)1/2f ‖p, f ∈ C∞0 (M),



Spectral gap inequality

Theorem (Baudoin-Bonnefont, JFA 2012)

Assume that L satisfies the generalized curvature inequality
CD(ρ1, ρ2, κ,∞) with ρ1 > 0, ρ2 > 0 and κ ≥ 0. The measure µ is
finite and the following Poincaré inequality holds:∫

M
f 2dµ−

(∫
M
fdµ
)2

≤ κ+ ρ2

ρ1ρ2

∫
M

Γ(f )dµ
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Modified log-Sobolev inequality

Theorem (Baudoin-Bonnefont, JFA 2012)

Assume that L satisfies the generalized curvature inequality
CD(ρ1, ρ2, κ,∞) with ρ1 > 0, ρ2 > 0 and κ ≥ 0. If µ is a
probability measure, then∫

M
f 2 ln f 2dµ−

∫
M
f 2dµ ln

∫
M
f 2dµ

≤ 2(κ+ ρ2)

ρ1ρ2

(∫
M

Γ(f )dµ+
κ+ ρ2

ρ1

∫
M

ΓZ (f )dµ
)
.

Observe the annoying additional term
∫
M ΓZ (f )dµ.
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Log-Sobolev inequality



Log-Sobolev inequality

Theorem (Baudoin-Bonnefont, JFA 2012)

Assume that the measure µ is a probability measure and that L
satisfies the generalized curvature dimension inequality
CD(ρ1, ρ2, κ,∞) for some ρ1 ∈ R, ρ2 > 0, κ ≥ 0. Assume
moreover that ∫

M
eλd2(x0,x)dµ(x) < +∞,

for some x0 ∈M and λ > ρ−1
2 , then there is a constant ρ0 > 0 such

that for every function f ∈ C∞0 (M),∫
M
f 2 ln f 2dµ−

∫
M
f 2dµ ln

∫
M
f 2dµ ≤ 2

ρ0

∫
M

Γ(f )dµ.
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Gaussian isoperimetry

Theorem (Baudoin-Bonnefont, JFA 2012)

Assume that the measure µ is a probability measure, that L
satisfies the generalized curvature dimension inequality
CD(ρ1, ρ2, κ,∞) for some ρ1 ∈ R, ρ2 > 0, κ ≥ 0 and that µ
satisfies the log-Sobolev inequality:∫

M
f 2 ln f 2dµ−

∫
M
f 2dµ ln

∫
M
f 2dµ ≤ 2

ρ0

∫
M

Γ(f )dµ,

(1)

Let A be a set of the manifold M which has a finite perimeter P(A)
and such that 0 ≤ µ(A) ≤ 1

2 , then

P(A) ≥ ln 2

4
(
3 + 2κ

ρ2

) min

√ρ0,
ρ0√
ρ−1

µ(A)

(
ln

1
µ(A)

) 1
2

.
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