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Motivations

The Bismut-type formulae, initiated in Bismut (1984), are powerful tools

to derive regularity estimates for the underlying diffusion semigroups. The

formulae have been developed and applied in various setting:

In Da Prato & Zabczyk (1996) for SPDEs driven by cylindrical Wiener

processes and Dong & Xie (2010) for semi-linear SPDEs with Lévy

noise, using a martingale approach proposed by Elworthy & Li (1994);

In Wang (2011) for linear SDEs driven by (purely jump) Lévy processes

in terms of lower bound conditions of Lévy measures;

In Bao, Wang and Yuan (2011) and Guillin & Wang (2011) for degen-

erate SDEs with additive noise, using a coupling technique;
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In Fuhrman (1996), Priola (2006), Wang & Zhang (2011) and Zhang

(2010) for degenerate SDEs, utilizing Malliavin Calculus.

However, there are few analogues for functional SPDEs (even for finite-

dimensional functional SDEs) with multiplicative noise. For functional SPDEs

Martingale method used in Elworthy and Li (1994) does not work due

to the lack of backward Kolmogrov equation for the segment process;

The coupling method developed in, e.g., Arnaudon, Thalmaier and

Wang (2006), Bao, Wang and Yuan (2011), Guillin & Wang (2011)

and Wang & Xu (2010) seems not easy to apply provided that the

noise is multiplicative.

In this talk we shall give explicit Bismut-type formulae for a class of func-

tional SPDEs with additive and multiplicative noise, using Malliavin calculus.
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Main Results

We first introduce the following notation:

(H, 〈·, ·〉H , ‖ · ‖H), real separable Hilbert space;

W (t), an H-valued cylindrical Wiener process with respect to a com-

plete probability space (Ω,F , {Ft}t≥0, P);

(L(H), ‖·‖), space of linear bounded operators on H, and (LHS(H), ‖·

‖HS), space of Hilbert-Schmidt operators from H to H;

For τ > 0, C := C([−τ, 0] → H), space of all H-valued continuous

functions f defined on [−τ, 0], with a uniform norm;

For a map h : [−τ,∞) → H and t ≥ 0, let ht ∈ C be the segment of

h(t), i.e., ht(θ) = h(t + θ), θ ∈ [−τ, 0].
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Main Results

Consider the following semi-linear functional SPDEdX(t) = {AX(t) + F (Xt)}dt + σ(X(t))dW (t),

X0 = ξ ∈ C ,
(1)

where

(A1) (A,D(A)) is a linear operator on H generating a contractive C0-

semigroup (etA)t≥0.

(A2) F : C → H is Fréchet differentiable such that ∇F ∈ Cb(C ×C → H).

(A3) σ : H → L(H) is Fréchet differentiable such that ∇σ ∈ Cb(H ×H →

L(H)).

(A4) For any T > 0,
∫ T
0 ‖esAσ(0)‖2

HSds < ∞.
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Main Results

By (A1) − (A4), equation (1) has a unique mild solution, denoted by

(Xξ(t))t≥0, starting from the initial data ξ ∈ C . Note that

Due to the time-delay the solution (Xξ(t))t≥0 is not Markovian;

The segment process (Xξ
t )t≥0 admits strong Markov property.

Let

Ptf(ξ) := Ef(Xξ
t ), t ≥ 0, ξ ∈ C , f ∈ Bb(C ),

where Bb(C ) is the class of all bounded measurable functions on C .

The following two theorems are the main results of this talk, which provide

derivative formulae for Pt with additive and multiplicative noise respectively.
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Main Results

Theorem

(Additive Noise) Assume that (A1)− (A4) hold with constant σ ∈ L(H)

such that etA(H) ⊂ σ(H) for t > 0, F (H) ⊂ σ(H) and

‖σ−1‖ ≤ K for some constant K. (2)

Then for any T > τ , u ∈ C1([0, T−τ ]) such that u(0) = 1 and u(T−τ) =

0, ξ, η ∈ C and f ∈ C1
b (C ),

∇ηPT f(ξ) = E
(

f(Xξ
T )

∫ T−τ

0
〈σ−1(∇ΥtF (Xξ

t )− u̇(t)etAη(0)),dW (t)〉H
)

holds, where Υ(t) := u(t)etAη(0)1[0,T−τ ](t), t ≥ 0, and Υ(t) := η(t), t ∈
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Main Results

Theorem

(Multiplicative Noise Case) Assume that (A1)−(A4) hold and that σ(x)

is invertible for x ∈ H. Let T > τ and u ∈ C1([0, T − τ ]) be such that

u(t) > 0 for t ∈ [0, T−τ), u(T−τ) = 0 and θ1 := inft∈[0,T−τ ](2+u′(t)) >

0. Then for any ξ, η ∈ C

(1) The equation
dZ(t) =

{
AZ(t) +∇ZtF (Xξ

t )− Z(t)
u(t) 1[0,T−τ)(t)

−∇ZtF (Xξ
t )1[T−τ,T ](t)

}
dt + (∇Z(t)σ(Xξ(t)))dW (t),

Z0 = η,

(3)
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Main Results

has a unique solution and, in particular, Z(t) = 0 a.s. for t ≥ T − τ .

(2) If θ2 := supx∈H ‖σ−1(x)‖ < ∞, then

∇ηPT f(ξ) = E
(

f(Xξ
T )

∫ T

0

〈
σ−1(Xξ(t))

{Z(t)
u(t)

1[0,T−τ)(t)

+∇ZtF (Xξ
t )1[T−τ,T ](t)

}
,dW (t)

〉
H

) (4)

holds for f ∈ C1
b (C ).

Remark: For the additive case, we can choose u(t) = (T − τ − t)+/(T − τ)

and for the multiplicative case we can take u(t) = (T − τ − t)+.
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Applications: Gradient Estimate and Harnack Inequality

Theorem 1 (Additive Noise) Assume that (A1)-(A4) hold with constant

σ ∈ L(H). Then there exists a constant C > 0 such that

(1) For any T > τ, ξ, η ∈ C and f ∈ Bb(C ),

|∇ηPT f(ξ)|2 ≤ C

(T − τ) ∧ 1
PT f2(ξ).

(2) For any T > τ, ξ, η ∈ C and positive f ∈ Bb(C ),

|∇ηPT f(ξ)| ≤ δ(PT (f log f)−(PT f) log PT f)(ξ)+
‖η‖2

∞
δ{(T − τ) ∧ 1}

PT f(ξ), δ > 0.

(5)
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Applications: Gradient Estimate and Harnack Inequality

Applying the Young inequality (Proposition 4.1, Guillin and Wang 2011),

we have the following Harnack inequality

Corollary

Assume that (A1)-(A4) hold with constant σ ∈ L(H). Then there exists a

constant C > 0 such that

|PT f |α ≤ exp
[ αC‖η‖2

∞
(α− 1){(T − τ) ∧ 1}

]
PT |f |α(ξ + η), f ∈ Bb(C ), T > τ,

ξ, η ∈ C holds for any α > 1.
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Applications: Gradient Estimate and Harnack Inequality

Theorem 2 (Multiplicative Case) Let (A1)-(A4) hold and assume that.

‖σ−1‖∞ := supx∈H ‖σ−1(x)‖ < ∞. Then for any p > 1 there exists a

constant C > 0 such that

|∇ηPT f(ξ)| ≤ C‖η‖∞
1 ∧

√
T − τ

(PT |f |p)1/p(ξ), f ∈ Bb(C ), T > τ, ξ, η ∈ C .

In particular, Pt is strong Feller for t > T − τ .
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Some Remarks

From the previous Corollary and (Proposition 4.1, Guillin and Wang

2011), we know that entropy estimation (5) plays a key role in estab-

lishing the Harnack inequality;

The entropy estimation seems to be difficult to obtain for the multi-

plicative noise case. Hence we cannot adopt the same method as in

the additive noise case to derive the Harnack inequality;

In order to establish the Harnack inequality for the multiplicative noise

case, we may follow the coupling method as in Wang (2011), and Wang

and Yuan (2011).
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Ideas of Proof of the Main Results

Let H1
a be the class of all adapted process h = (h(t))t≥0 on H such that

h(0) = 0,

ḣ(t) :=
d
dt

h(t)

exists P× dt-a.e. and

E
∫ T

0
‖ḣ(t)‖2

Hdt < ∞, T > 0.

For ε > 0 and h ∈ H1
a , let Xξ,εh(t) solve (1) with W (t) replaced by

W (t) + εh(t), i.e.,
dXξ,εh(t) = {AXξ,εh(t) + F (Xξ,εh

t ) + εσ(Xξ,εh(t))ḣ(t)}dt

+σ(Xξ,εh(t))dW (t),

Xξ,εh
0 = ξ ∈ C .

(6)
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Ideas of Proof of the Main Results

If for h ∈ H1
a

DhXξ
t :=

d
dε

Xξ,εh
t

∣∣∣
ε=0

exists in L2(Ω → H; P), we call it the Malliavin derivative of Xξ
t along

direction h. Next let

∇ηX
ξ
t :=

d
dε

Xξ+εη
t

∣∣∣
ε=0

be the derivative process of Xξ
t along direction η ∈ C . If

DhXξ
T = ∇ηX

ξ
T , a.s., (7)

then for any f ∈ C1
b (C )

∇ηPT f(ξ) = E∇ηf(Xξ
T ) = E∇∇ηXξ

T
f(Xξ

T )

= E∇
DhXξ

T
f(Xξ

T ) = EDhf(Xξ
T ).
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Ideas of Proof of the Main Results

Combining this with the integration by parts formula for Dh, we obtain

∇ηPT f(ξ) = E
(
f(Xξ

T )
∫ T

0
〈ḣ(t),dW (t)〉H

)
.

It is easy to see that the key point of the proof is, for given T > τ , ξ, η ∈ C

and f ∈ C1
b (C ), how to construct an h ∈ H1

a such that (7) holds.
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Proof of Theorem 1

Let h(0) = 0 and

ḣ(t) := σ−1{∇ΥtF (Xξ
t )− u̇(t)etAη(0)}), t ≥ 0,

Υ(t) solves the equationdΥ(t) = {AΥ(t) +∇ΥtF (Xξ
t )− σḣ(t)}dt, t ≥ 0,

Υ0 = η.
(8)

∇ηX
ξ(t)−DhXξ(t) also solves (8).

By the uniqueness, we have ∇ηX
ξ(t)−DhXξ(t) = Υ(t), t ≥ 0.

∇ηX
ξ
T = DhXξ

T as ΥT = 0 according to the choice of u.

Jianhai Bao Joint work with Feng-Yu Wang and Chenggui Yuan (Swansea University)Bismut Formulae and Applications for Functional SPDEs July 20th, 2012 18 / 23



Proof of Theorem 2

By the Itô formula, we have

lim
t↑T−τ

Z(t) = 0.

Let

h(t) =
∫ t

0
σ−1(Xξ(s))

{Z(s)
u(s)

1[0,T−τ)(s) +∇ZsF (Xξ
s )1[T−τ,T ](s)

}
ds, t ≥ 0.

Γ(t) := ∇ηX
ξ(t)−DhXξ(t) solves the equation

dΓ(t) =
{

AΓ(t) +∇ΓtF (Xξ
t )− Z(t)

u(t) 1[0,T−τ)(t)−∇ZtF (Xξ
t )1[T−τ,T ](t)

+
}

dt +∇Γ(t)σ(Xξ(t))dW (t),

Γ0 = η.
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Proof of Theorem 2

Then for t ∈ [0, T ]
d(Γ(t)− Z(t)) =

{
A(Γ(t)− Z(t)) +∇Γt−ZtF (Xξ

t )
}

dt

+∇Γ(t)−Z(t)σ(Xξ(t))dW (t),

Γ0 − Z0 = 0.

By the Itô formula, (A1)-(A3) and the Burkhold-davis-Gundy inequal-

ity, we obtain

E sup
s∈[0,t]

‖Γ(s)− Z(s)‖2
H ≤ C

∫ t

0
E sup

s∈[0,r]
‖Γ(s)− Z(s)‖2

Hdr, t ≥ 0

for some constant C > 0.

Γ(t) = Z(t) for all t ∈ [0, T ]. In particular, ΓT = ZT . Since ZT = 0,

one has ∇ηX
ξ
T −DhXξ

T .
Jianhai Bao Joint work with Feng-Yu Wang and Chenggui Yuan (Swansea University)Bismut Formulae and Applications for Functional SPDEs July 20th, 2012 20 / 23



References

Bao, J., Wang, F.-Y. and Yuan, C., Derivative Formula and Harnack

Inequality for Degenerate Functional SDEs, arXiv:1109.3907v1.

Bao, J., Wang, F.-Y. and Yuan, C., Bismut Formulae and Applications

for Functional SPDEs, arXiv:1110.5150v1.

Dong, Z. and Xie, Y., Ergodicity of Linear SPDE Driven by Lévy Noise,
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Thanks A Lot !
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