Large Deviation Behavior for The Longest Head Run in IID Bernoulli Sequence

Xian-Yuan WU Capital Normal University, $P R C$, E-mail: wuxy@mail.cnu.edu.cn
Yong-Hua Mao Beijing Normal University, PRC
Feng Wang Capital Normal University, PRC
KEY WORDS: head-run, large deviation, hitting time, skip-free Markov chain
Mathematical Subject Classification: Primary 62F 10; secondary 60J 10

Abstract

This paper discusses large deviation behavior of the longest perfect head run in i.i.d. Bernoulli sequence. Let Z_{1}, Z_{2}, \ldots be an i.i.d. sequence with $P\left(Z_{i}=1\right)=1-P\left(Z_{i}=0\right)=p=1-q$ and S_{N} be the length of the longest consecutive run of 1's within the first N tosses. The famous Erdös-Rényi law tells that $S_{N} / \ln N \rightarrow \xi(p):=[-\ln p]^{-1}$ almost surely as $N \rightarrow \infty$. It is proved in this paper that, while $P\left[S_{N} / \ln N \geq \xi(p)+x\right]$ decays like $N^{-x / \xi(p)}$ for each $x>0, P\left[S_{N} / \ln N \leq \xi(p)-x\right]$ decays like $\exp \left\{-O\left(N^{x / \xi(p)}\right)\right\}$ for $0<x<\xi(p)$.

References

[1] R. Arratia, L. Goldstein and L. Gordon (1989) Two Moments Suffice for Poisson Approximations: The ChenStein Method, Ann. Proba. 17(1), 9-25
[2] M. Brown and Y. S. Shao (1987) Identifying Coefficients in The Spectral Representation for First Passage Time Distribition, Probab. Eng. Inform. Sci. 1(1), 69-74
[3] P. Erdös, A. Rényi (1970) On A New Law of Large Numbers, J. Analyse Math. 22(1), 103-111
[4] P. Erdös, P. Révész (1975) On The Length of The Longest Head-run, Topics in Imformation Theory, Colloquia Math. Soc. J. Bolyai 16 Keszthely (Hungary), 219-228
[5] W. Feller (1968) An Introduction to Probability Theory and Its Applications, 3rd ed. New York: Wiley
[6] J. A. Fill (2009) On Hitting Times and Fastest Strong Stationary Times for Skip-free and More General Chains, Journal of Theoretical Probability, 22(3), 587-600
[7] J. C. Fu, L.-Q. Wang and W. Y. Wendy Lou (2003) On exact and lardge deviati8on approximation for the distribution of the longest run in a sequence of two-state Markov dependent trials. J. Appl. Prob. 40, 346-360
[8] V. L. Goncharov (1944) On the field of combinatory analysis, Izv. Akd. Nauk. SSSR Ser. Mat. 8, 3-48 (in Russian). English translation: Amer. Math. Soc. Transl. 19 (1962), 1-46
[9] L. Gordon, M. F. Schilling and M. S. Waterman (1986) An Extreme Value Theory for Long Head Runs, Probab. Th. Rel. Fields 72, 279-287
[10] J. Komlós, G. Tusnády (1975) On Sequences of "Pure Heads", Ann. Prob. Vol 3, 608-617
[11] P. Révész (1980) Strong Theorems on Coin Tossing, Proc. 1978 int’l. Congress of Mathematicians, Helsinki 1980, 749-754

