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Abstract: We introduce a new partial order on the class of stochastically monotone Markov kernels having a given
stationary distribution π on a given finite partially ordered state space X . When K ≼ L in this partial order we
say that K and L satisfy a comparison inequality. We establish that if K1, . . . ,Kt and L1, . . . , Lt are reversible and
Ks ≼ Ls for s = 1, . . . , t, then K1 · · ·Kt ≼ L1 · · ·Lt. In particular, in the time-homogeneous case we have Kt ≼ Lt for
every t if K and L are reversible and K ≼ L, and using this we show that (for suitable common initial distributions)
the Markov chain Y with kernel K mixes faster than the chain Z with kernel L, in the strong sense that at every
time t the discrepancy—measured by total variation distance or separation or L2-distance—between the law of Yt

and π is smaller than that between the law of Zt and π.
Using comparison inequalities together with specialized arguments to remove the stochastic monotonicity restric-

tion, we answer a question of Persi Diaconis by showing that, among all symmetric birth-and-death kernels on the
path X = {0, . . . , n}, the one (we call it the uniform chain) that produces fastest convergence from initial state 0 to
the uniform distribution has transition probability 1/2 in each direction along each edge of the path, with holding
probability 1/2 at each endpoint.

We also use comparison inequalities

(i) to identify, when π is a given log-concave distribution on the path, the fastest-mixing stochastically monotone
birth-and-death chain started at 0, and

(ii) to recover and extend a Peres–Winkler result that extra updates do not delay mixing for monotone spin systems.

Among the fastest-mixing chains in (i), we show that the chain for uniform π is slowest in the sense of maximizing
separation at every time.
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