Perturbation by Non-Local Operators

Jieming WANG School of Mathematics, Beijing Institute of Technology, PRC. E-mail: wangjm@bit.edu.cn

KEY WORDS: symmetric stable process, fractional Laplacian, perturbation, non-local operator, integral kernel, positivity, Lévy system, Feller semigroup, martingale problem

MATHEMATICAL SUBJECT CLASSIFICATION: Primary 60J35, 47G20, 60J75; Secondary 47D07

Abstract: Suppose that $d \ge 1$ and $0 < \beta < \alpha < 2$. We establish the existence and uniqueness of the fundamental solution $q^b(t, x, y)$ to non-local operators $\mathcal{L}^b = \Delta^{\alpha/2} + \mathcal{S}^b$, where

$$\mathcal{S}^{b}f(x) := \mathcal{A}(d, -\beta) \int_{\mathbb{R}^{d}} \left(f(x+z) - f(x) - \langle \nabla f(x), z \mathbb{1}_{\{|z| \le 1\}} \rangle \right) \frac{b(x, z)}{|z|^{d+\beta}} dz$$

and b(x, z) is a bounded measurable function on $\mathbb{R}^d \times \mathbb{R}^d$ with b(x, z) = b(x, -z) for $x, z \in \mathbb{R}^d$. Here $\mathcal{A}(d, -\beta)$ is a normalizing constant. We show that if $b \geq 0$, then $q^b(t, x, y)$ is a strictly positive continuous function and it uniquely determines a conservative Feller process X^b that has strong Feller property. The Feller process X^b is the unique solution to the martingale problem of $(\mathcal{L}^b, \mathcal{S}(\mathbb{R}^d))$, where $\mathcal{S}(\mathbb{R}^d)$ is the space of tempered functions on \mathbb{R}^d . Furthermore, sharp two-sided estimates on $q^b(t, x, y)$ is derived.

This is a joint work with Professor Z.-Q. Chen.

References

- K. Bogdan and T. Jakubowski, (2007). Estimates of heat kernel of fractional Laplacian perturbed by gradient operators. *Comm. Math. Phys.* 271, 179-198.
- [2] Z.-Q. Chen and T. Kumagai, (2003). Heat kernel estimates for stable-like processes on d-sets. Stoch. Process Appl., 108, 27-62.
- [3] Z.-Q. Chen and T. Kumagai, (2008). Heat kernel estimates for jump processes of mixed types on metric measure spaces. *Probab. Theory Relat. Fields*, 140, 270-317.
- [4] T. Komatsu, (1984). On the martingale problem for generators of stable processes with perturbations. Osaka J. Math. 21, 113-132.