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Abstract

This work is concerned with white noise driven SPDEs with
reflection. The existence and uniqueness of the solution is
obtained. Various properties of the solution are studied. We will
discuss the strong Feller property, Harnack inequalities, Varadhan
type small time asymptotics and also the large deviations. This
talk is based on the following preprints:
1. T. Zhang, White noise driven SPDEs with reflection: strong
Feller properties and Harnack inequalities. To appear in POTA
2. T. Xu and T. Zhang, White noise driven SPDEs with reflection:
existence, uniqueness and large deviation principles. To appear in
SPA.
3. J. Yang and T. Zhang, Invariant measures of stochastic partial
differential equations with reflection. Preprint 2010, Manchester.

Let me first introduce the equation.

Tusheng Zhang Stochastic partial differential equations with reflection



The equation

Consider the following SPDEs with reflection:
{

∂u(t,x)
∂t = ∂2u(t,x)

∂x2 + b(u(t, x)) + σ(u(t, x))Ẇ (t, x) + η(t, x)
u(0, ·) = f ≥ 0, u(t, 0) = u(t, 1) = 0,

(1)
where b(·), σ(·) : R → R are measurable functions, η(t, x) is a
random measure which is a part of the solution pair (u, η), Ẇ (t, x)
is the space-time white noise on a complete probability space
(Ω,F ,Ft , P), where Ft = σ(W (s, x), 0 ≤ s ≤ t, x ∈ [0, 1]). This
equation was first studied by Nualart and Pardoux when σ(·) = 1,
and by Donati-Martin and Pardoux for general diffusion coefficient
σ. It is an extension of the deterministic parabolic obstacle
problem. SPDEs with reflection can also be used to model the
evolution of random interfaces near a hard wall. It was proved by
T. Funaki and S. Olla that the fluctuations of a ∇φ interface
model near a hard wall converge in law to the stationary solution
of a SPDE with reflection.
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The solution

A pair (u, η) is said to be a solution of equation (1) if
(i). u is a continuous processes on R+ × [0, 1]; u(t, x) is Ft

measurable and u(t, x) ≥ 0 a.s.
(ii). η is a random measure on R+ × (0, 1) such that
a) η({t} × (0, 1)) = 0, for t ≥ 0;

b)
∫ t
0

∫ 1
0 x(1− x)η(ds, dx) < ∞, t ≥ 0;

c) η is adapted in the sense that for any measurable ψ,∫ t
0

∫ 1
0 ψ(s, x)η(ds, dx) is Ft measurable.

(iii) For any t ∈ R+, φ ∈ C 2([0, 1]) with φ(0) = φ(1) = 0,

(u(t), φ)−
∫ t

0
(u(s), φ

′′
)ds −

∫ t

0
(b(u(s)), φ)ds = (u(0), φ)

+

∫ t

0

∫ 1

0
φ(x)σ(u(s, x))W (ds, dx) +

∫ t

0

∫ 1

0
φ(x)η(ds, dx) a.s.,

(2)
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The solution

where (·, ·) denotes the scalar product in H = L2([0, 1]).

(iv)
∫∞
0

∫ 1
0 u(s, x)η(ds, dx) = 0.

Denote by Bb(H) the space of all bounded measurable functions on
H. The semigroup Pt associated with the solution u is defined by

TtG (f ) = E [G (u(t, f ))] for G ∈ Bb(H),

where u(t, f ) is the solution of (1) with u(0, f ) = f ≥ 0.

Among other things we studied the strong Feller property, Harnack
inequalities and the Varadhan type small time asymptotics of the
semigroup Tt , t ≥ 0. The strong Feller property of stochastic
evolution equations and stochastic partial differential equations
(SPDEs) was studied by many authors.
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Particularly we mention the work of Peszat and Zabaczyk in Ann.
Prob. in 1995. The dimension free Harnack inequality studied here
was introduced by Fengyu Wang . The Varadhan type small time
asymptotics for infinite dimensional diffusions has been
investigated by several people. We mention the work of Hino and
Ramirez in Ann. Prob. 2003, Aida and Z. in Potential Analysis in
2002. and Z. in Ann. Prob. in 2001.

For our equation (1) the main problem is to handle the reflection
which introduces the extra random measure term η. This term
makes it difficult to work with the equation (1) directly. To
overcome this difficulty, our idea is to establish a kind of uniform
strong Feller property and uniform Harnack inequality for the
approximating solutions uε and then to pass to the limit. For the
large deviations, we will use the weak convergence approach.
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Existence and uniqueness

Here is the theorem for existence and uniqueness of the solution.

Theorem (XZ, 2008)

Suppose the functions b : R → R and σ : R → R are Lipschitz
continuous. Then the equation (1) admits a unique solution.

Remark: Donati-Martin and Pardoux proved the existence of a
minimal solution to equation (1) in 1993 (PTRF). The uniqueness
was left open. We obtained the uniqueness recently and our
approach also gave a much shorter proof of the existence. Next I
will explain the ideas of the proof.
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Deterministic obstacle problem

Consider the following deterministic parabolic obstacle problem:



∂z(x ,t)
∂t − ∂2z(x ,t)

∂x2 = η(dx , dt);
z(x , t) ≥ −v(x , t);∫ 1
0

∫ T
0 (z(x , t) + v(x , t))η(dx , dt) = 0,

(3)

where v ∈ C ([0, 1]× [0,T ]) with v(x , 0) = u0(x). If a pair (z , η)
satisfies
(1). z is a continuous function on [0, 1]× [0, T ] and

z(x , 0) = 0, z(0, t) = z(1, t) = 0, z ≥ −v .

(2). η is a measure on (0, 1)× R+ such that for all ε > 0,T > 0

η
(
(ε, (1− ε)× [0, T ])

)
< ∞.

(3). For all t ≥ 0, φ ∈ C 2
0 (0, 1),

(z(t), φ)−
∫ t

0
(z(s), φ′′)ds =

∫ t

0

∫ 1

0
φ(x)η(dx , ds).
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Deterministic obstacle problem

(4).
∫ t
0

∫ 1
0 (z(x , s) + v(x , s))η(dx , ds) = 0,

then (z , η) is called a solution to problem (3). The following result
was proved in [NP]

Theorem (NP)

If v(x , 0) = u0(x), v(0, t) = v(1, t) = 0 for all t ≥ 0, Eq. (3)
admits a unique solution. Moreover, |z |T∞ ≤ |v |T∞, where
|v |T∞ = sup0≤x≤1,0≤t≤T |v(x , t)| and |z |T∞ is defined similarly.
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Ideas of the proof for existence and uniqueness

We will use successive iteration. Let

v1(x , t) =

∫ 1

0
Gt(x , y)u0(y)dy −

∫ t

0

∫ 1

0
Gt−s(x , y)f (y , s; u0)dyds

+

∫ t

0

∫ 1

0
Gt−s(x , y)σ(y , s; u0)W (dy , ds),

where G is the Green’s function associated to the operator ∂2

∂x2

with Dirichlet boundary conditions. It can be shown that v1(x , t)
satisfies the following SPDE:





∂v1(x ,t)
∂t − ∂2v1(x ,t)

∂x2 = f (x , s; u0) + σ(x , s; u0)Ẇ (x , t);
v1(x , 0) = u0(x);
v1(0, t) = v1(1, t) = 0,

and v1(·, ·) ∈ C ([0, 1]× [0,T ]).
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Ideas of the proof for existence and uniqueness

Denote by (z1, η1) the unique random solution of (3) with v = v1.
Set u1 = z1 + v1, then we can verify that (u1, η1) is the unique
solution of the following reflected SPDE:





∂u1(x ,t)
∂t − ∂2u1(x ,t)

∂x2 + f (x , s; u0) = σ(x , s; u0)Ẇ (x , t) + η1;
u1(·, 0) = u0;
u1(0, t) = u1(1, t) = 0.

(4)
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Ideas of the proof for existence and uniqueness

Iterating the above procedure, suppose un−1 has been defined. Let

vn(x , t) =

∫ 1

0
Gt(x , y)u0(y)dy −

∫ t

0

∫ 1

0
Gt−s(x , y)f (y , s; un−1)dyds

+

∫ t

0

∫ 1

0
Gt−s(x , y)σ(y , s; un−1)W (dy , ds), (5)

and (zn, ηn) be the unique random solution of equation (3) with
v(x , t) = vn(x , t). Set un = zn + vn, then (un, ηn) is the unique
solution of the following reflected SPDE:





∂un(x ,t)
∂t − ∂2un(x ,t)

∂x2 + f (x , t; un−1) = σ(x , t; un−1)Ẇ (x , t) + ηn;
un(·, 0) = u0;
un(0, t) = un(1, t) = 0.

(6)
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Ideas of the proof for existence and uniqueness

From Theorem [NP], we have

|zn − zn−1|T∞ ≤ |vn − vn−1|T∞,

hence,

|un − un−1|T∞ ≤ 2|vn − vn−1|T∞. (7)

From here we can show that

E (|un − un−1|T∞)p ≤ 2pE (|vn − vn−1|T∞)p

≤ c(p,K ,T )E

∫ T

0
(|un−1 − un−2|t∞)pdt

≤ · · · ≤ cn−1E (|u1 − u0|T∞)p
T n−1

(n − 1)!
, (8)
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Ideas of the proof for existence and uniqueness

It follows easily now that there exists a random field
u(x , t) ∈ C ([0, 1]× [0,T ]) such that

E (|u|T∞)p < ∞, (9)

and
lim

n→∞E (|un − u|T∞)p = 0.

We can show that u is a solution of equation (1).

Tusheng Zhang Stochastic partial differential equations with reflection



Ideas of the proof for existence and uniqueness

Uniqueness. Let (u1, η1) and (u2, η2) be two solutions of equation
(1). Set

vi (x , t) =

∫ 1

0
Gt(x , y)u0(y)dy −

∫ t

0

∫ 1

0
Gt−s(x , y)f (y , s; ui )dyds

+

∫ t

0

∫ 1

0
Gt−s(x , y)σ(y , s; ui )W (dy , ds). (10)

Then (zi = ui − vi , ηi ) is the unique solution of equation (3) with
v = vi , i = 1, 2. Similar to (7), we have

|u1 − u2|T∞ ≤ 2|v1 − v2|T∞.
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Ideas of the proof for existence and uniqueness

Using a similar argument as above, we obtain

E (|u1 − u2|T∞)p ≤ 2pE (|v1 − v2|T∞)p ≤ cE

∫ T

0
(|u1 − u2|t∞)pdt.

This implies that E |u1 − u2|T∞ = 0 proving the uniqueness.
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Invariant measures

Consider the following SPDE with two reflecting walls:

∂u

∂t
=

∂2u

∂x2
+ b(u) + σ(u)Ẇ + η − ξ, (11)

under conditions





u(0, t) = 0, u(1, t) = 0, for t ≥ 0;
u(x , 0) = u0(x) ∈ C ([0, 1]);
h1(x) ≤ u(x , t) ≤ h2(x) for x ∈ [0, 1];∫ T
0

∫ 1
0

(
u(x , t)− h1(x)

)
η(dx , dt) = 0;∫ T

0

∫ 1
0

(
h2(x)− u(x , t)

)
ξ(dx , dt) = 0.

We assume that the reflecting walls h1(x), h2(x) are continuous
functions satisfying h1(0) ≤ 0, h1(1) ≤ 0, h2(0) ≥ 0, and
h2(1) ≥ 0, and
(H1) h1(x) < h2(x) for x ∈ (0, 1);

(H2) ∂2hi

∂x2 ∈ L2([0, 1]), ∂2

∂x2 are interpreted in a distributions sense.
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Invariant measures

Using the similar method as above, we can establish the existence
and uniqueness of the solutions of SPDEs with two reflecting walls.
Our main interest of this section is on the invariant measures for
the SPDEs with two reflecting walls. When σ = 1, it is a kind of
gradient system. This case was studied by Otobe. Here are our
results.

Theorem (YZ, 2010)

Assume the coefficients b(·) and σ(·) are Lipschitz. Then there
exists an invariant measure to the equation (11) on C ([0, 1]).

Theorem (YZ, 2010)

Suppose b(·), σ(·) are Lipschitz and there exits a constant L0 > 0
such that σ(·) ≥ L0. There is a unique invariant measure µ for the
equation (11).
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Invariant measures

We want to say several words about the proofs. For the existence
of an invariant measure, according to Krylov–Bogoliubov theorem,
if the family Pt(u0, ·), t > 1 is uniformly tight, then there exists an
invariant measure for (11), where Pt(u0, ·) denotes the transition
function of the solution u(t). So we need to show that for every
ε > 0 there is a compact set K ⊂ C ([0, 1]) such that
P(u(t) ∈ K ) ≥ 1− ε for all t > 1. By the Markov property

P(u(t) ∈ K ) = E
(
P1(u(t − 1), K )

)
. (12)

Note that u(t − 1) is bounded between h1(·) and h2(·). It is
enough to prove P

(
u(1, g) ∈ K

) ≥ 1− ε, for any g satisfying
h1(x) ≤ g(x) ≤ h2(x).
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Invariant measures

Write u(x , t, g) for the solution of the SPDE with reflection such
that u(x , 0, g) = g(x). Put

v(x , t, g) =

∫ 1

0
Gt(x , y)g(y)dy +

∫ t

0

∫ 1

0
Gt−s(x , y)f (u(y , s, g))dyds

+

∫ t

0

∫ 1

0
Gt−s(x , y)σ(u(y , s, g))W (dy , ds) (13)

From the relationship between u and v proved in [YZ], we have the
following inequality:

‖u(1, g1)− u(1, g2)‖∞ ≤ 2 sup
0≤t≤1,0≤x≤1

|v(x , t, g1)− v(x , t, g2)|

This means that u(·, 1, g) is a continuous functional of v , denoted
by u = Φ(v). Thus, if K1 ⊂ C ([0, 1]× [0, 1]) is a compact set,
then K = Φ(K1) is compact in C ([0, 1]). Now for every ε > 0, it is
possible to prove that there is a compact K1 such that

P(v(·, ·, g) ∈ K1) ≥ 1− ε

for every g satisfying h1(x) ≤ g(x) ≤ h2(x).Tusheng Zhang Stochastic partial differential equations with reflection



Invariant measures

For the uniqueness of the invariant measures, it seems hard to use
the well known method of proving the irreducibility of the SPDEs
with reflection. However, we are able to adopt a coupling method
used for SPDEs by Carl Muller to the SPDEs with reflection.
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The approximating solutions

For each ε > 0, let uε(t, x) be the solution of the penalized SPDE:





∂uε(t,x)
∂t = ∂2uε(t,x)

∂x2 + b(uε(t, x))

+σ(uε(t, x))Ẇ (t, x) + 1
ε (uε(t, x))−

uε(0, ·) = f , uε(t, 0) = uε(t, 1) = 0

(14)

Let H = L2([0, 1]). The following Theorem was proved by
Donati-Martin and Pardoux.

Theorem (1)

For every non-negative f ∈ L2([0, 1]), uε(t, ·) converges a.s. to the
solution u(t, ·) of equation (1) in H as ε → 0. Moreover, for any
p ≥ 1,

sup
ε

sup
t∈[0,T ]

E

[
|uε(t, ·)|pH

]
< ∞. (15)
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Strong Feller properties

Let en(x) =
√

2sinπnx , n ≥ 1 be the eigenvectors of the operator

A = ∂2

∂x2 constituting an orthonormal system of H. Put

βn(t) =

∫ t

0

∫ 1

0
en(x)W (ds, dx).

βn(t), n ≥ 1 is a sequence of independent Brownian motions.
Define a mapping Σ(·) : H → L(H) by

Σ(f )h = σ(f (x))h(x) f , h ∈ H,

and a H-cylindrical Brownian motion W (t) by

W (t) =
∞∑

n=1

βn(t)en.

Then
σ(u(t, x))Ẇ (t, x) = Σ(u(t))dW (t)

is the stochastic Itô integral against the cylindrical Browninan
motion.
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Strong Feller properties

Theorem (2)

Assume b(ξ), σ(ξ) are Lipschitz continuous and there exist
positive constants k1, k2 such that k1 ≤ |σ(ξ)| ≤ k2. Then for any
T > 0 there exists a constant CT such that for all G ∈ Bb(H) and
t ∈ (0, T ]

|TtG (f1)− TtG (f2)| ≤ CT√
t
||G ||∞|f1 − f2|H , (16)

for f1, f2 ∈ H with f1 ≥ 0, f2 ≥ 0, where ||G ||∞ = supf |G (f )|. In
particular, Tt , t ≥ 0 is strong Feller.
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The proof

In view of Theorem 1, to prove (16) it is enough to show that
there exists a constant CT , independent of ε, such that

|T ε
t G (f1)− T ε

t G (f2)| ≤ CT√
t
||G ||∞|f1 − f2|H , f1, f2 ∈ H. (17)

Take a non-negative function φ ∈ C∞0 (R) with
∫
R φ(x)dx = 1. Put

bn(ξ) = n

∫

R
φ(n(ξ − y))b(y)dy ,

σn(ξ) = n

∫

R
φ(n(ξ − y))σ(y)dy ,

hn(ξ) = n

∫

R
φ(n(ξ − y))y−dy .

Let uε
n(t, x) be the solution of the following SPDE:
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The proof





∂uε
n (t,x)
∂t = ∂2uε

n (t,x)
∂x2 + bn(u

ε
n(t, x))

+σn(u
ε
n(t, x))Ẇ (t, x) + 1

εhn(u
ε
n(t, x)),

uε
n(0, ·) = f , uε

n(t, 0) = uε
n(t, 1) = 0.

(18)

One can verify that for any fixed ε > 0 and p ≥ 1,

lim
n→∞ sup

t∈[0,T ]
E [|uε

n(t, ·)− uε(t, ·)|pH ] = 0. (19)

For G ∈ C 2
b (H), define T n,ε

t G (f ) = E [G (uε
n(t, f ))]. Because of

(19), the statement (17) will follow if we can show that there
exists a constant CT , independent of ε and n, such that

|T n,ε
t G (f1)− T n,ε

t G (f2)| ≤ CT√
t
||G ||∞|f1 − f2|H , f1, f2 ∈ H. (20)
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The proof

Denote by Duε
n(t, f , x)(g) the directional derivative of uε

n(t, f , ·) at
f in the direction g , then it satisfies the following mild form of the
linear SPDE:

Duε
n(t, f , x)(g)

= Ptg(x) +

∫ t

0

∫ 1

0
Pt−s(x , y)b′n(u

ε
n(s, f , y))Duε

n(s, f , y)(g)dsdy

+
1

ε

∫ t

0
Pt−s(x , y)h′n(u

ε
n(s, f , y))Duε

n(s, f , y)(g)dsdy

+

∫ t

0
Pt−s(x , y)σ′n(u

ε
n(s, f , y))Duε

n(s, f , y)(g)W (ds, dy). (21)

Assume first g(x) ≥ 0, a.e. Since h′n(ξ) ≤ 0, by the comparison
theorem of SPDEs we deduce that

0 ≤ Duε
n(t, f , x)(g) ≤ Y ε

n (t, f , g , x), (22)
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The proof

where Y ε
n (t, f , g , x), t ≥ 0 is the solution of the following linear

SPDE:

Y ε
n (t, f , g , x)

= Ptg(x) +

∫ t

0

∫ 1

0
Pt−s(x , y)b′n(u

ε
n(s, f , y))Y ε

n (s, f , g , y)dsdy

+

∫ t

0
Pt−s(x , y)σ′n(u

ε
n(s, f , y))Y ε

n (s, f , g , y)W (ds, dy). (23)

By virtue of Burkhölder inequality and Grownwall type inequality
one can show that

sup
ε>0,t∈[0,T ]

E [|Y ε
n (t, f , g , ·)|2H ]

= sup
ε>0,t∈[0,T ]

E

[ ∫ 1

0
(Y ε

n (t, f , g , y))2dy

]
≤ C1|g |2H .

(22) implies that the same is true for Duε
n(t, f , x)(g), i.e.,

Tusheng Zhang Stochastic partial differential equations with reflection



The proof

sup
ε>0,t∈[0,T ]

E

[ ∫ 1

0
(Duε

n(t, f , y)(g))2dy

]
≤ C1|g |2H . (24)
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The proof

For a general g ∈ H, writing g(x) = g+(x)− g−(x) we have

Duε
n(t, f , x)(g) = Duε

n(t, f , x)(g+)− Duε
n(t, f , x)(g−).

It follows from (24) that

sup
ε>0,t∈[0,T ]

E

[ ∫ 1

0
(Duε

n(t, f , y)(g))2dy

]
≤ 2C1|g |2H . g ∈ H.

Let G ∈ C 2
b (H). By the Elworthy formula ( Lemma 7.1.3 in [DZ]),

we have〈
DT n,ε

t G (f ), g

〉

=
1

t
E

{
G (uε

n(t, f ))

∫ t

0

〈
(Σn)

−1(uε
n(s, f ))Duε

n(s, f )(g), W (ds)
〉}

(25)

The theorem follows.
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Harnack inequalities

Consider the SPDE with reflection driven by additive noise:{
∂u(t,x)

∂t = ∂2u(t,x)
∂x2 + b(u(t, x)) + Ẇ (t, x) + η(t, x)

u(0, ·) = f ≥ 0, u(t, 0) = u(t, 1) = 0.
(26)

As before, Tt , t ≥ 0 denotes the semigroup generated by the
solution. Here is the Harnack inequality:

Theorem (3)

Assume that there exists a constant c such that

(ξ1 − ξ2)(b(ξ1)− b(ξ2)) ≤ c|ξ1 − ξ2|2 (27)

for any ξ1, ξ2 ∈ R. Then for any t > 0, any non-negative bounded
measurable function G on H, any α > 1 and any f1 ∈ H, f2 ∈ H
with f ≥ 0, f2 ≥ 0,

(TtG )α(f1) ≤ Tt(G
α)(f2)exp

(
α

α− 1
(c2t +

1

t
)|f1 − f2|2H

)
. (28)
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Sketch of the Proof

We will adopt the coupling method. Recall the following penalized
SPDE: 




∂uε(t,f ,x)
∂t = ∂2uε(t,f ,x)

∂x2 + b(uε(t, f , x))

+Ẇ (t, x) + 1
ε (uε(t, f , x))−

uε(0, f , ·) = f , uε(t, f , 0) = uε(t, f , 1) = 0.

(29)

It is sufficient to show

(T ε
t G )α(f1) ≤ T ε

t (Gα)(f2)exp

(
α

α− 1
(c2t +

1

t
)|f1 − f2|2H

)
,

(30)
where T ε

t , t ≥ 0 denotes the semigroup associated with uε.

Suppose f1 ∈ H, f2 ∈ H with f1 6= f2. With A = ∂2

∂x2 we have

uε(r , f1) = f1 +

∫ r

0
Auε(s, f1)ds +

∫ r

0
b(uε(s, f1))ds

+

∫ r

0

1

ε
(uε(s, f1))

−ds + W (r). (31)
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Sketch of the proof

Let v ε be the solution of the following equation:

v ε(r , f2)

= f2 +

∫ r

0
Av ε(s, f2)ds +

∫ r

0
b(v ε(s, f2))ds

+

∫ r

0

1

ε
(v ε(s, f2))

−ds + W (r) +

∫ r

0
(c(uε(s, f1)− v ε(s, f2))I{s<τ}ds

+

∫ r

0

(
uε(s, f1)− v ε(s, f2)

|uε(s, f1)− v ε(s, f2)|H
|f1 − f2|H

t

)
I{s<τ}ds, (32)

where τ := inf{s ≥ 0 : uε(s, f1) = v ε(s, f2)}. By the chain rule and
the fact that the function y− is decreasing and the operator A is
negative, we can show that

|uε(r ∧ τ, f1)− v ε(r ∧ τ, f2)|H ≤ |f1 − f2|H − r ∧ τ

t
|f1 − f2|H . (33)
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Sketch of the proof

This implies that τ ≤ t and uε(t, f1) = v ε(t, f2). Otherwise, if
t < τ , we deduce from (33) that uε(t, f1) = v ε(t, f2) which
contradicts the definition of the stopping time τ . Put

ξs =

(
c(uε(s, f1)− v ε(s, f2)) +

uε(s, f1)− v ε(s, f2)

|uε(s, f1)− v ε(s, f2)|H
|f1 − f2|H

t

)
I{s<τ}.

Then, ∫ t

0
|ξs |2Hds ≤ 2(c2t +

1

t
)|f1 − f2|2H . (34)
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Sketch of the proof

Set

Zt = exp{−
∫ t

0
< ξs , dWs > −1

2

∫ t

0
|ξs |2Hds},

and define a new probability measure Q as

dQ

dP
|Ft = Zt .

By the Girsanov Theorem, W̃ (u) = W (u) +
∫ u
0 ξsds, u ≥ 0 is a

H-cylindrical Brownian motion under Q. Since

v ε(r , f2) = f2 +

∫ r

0
Av ε(s, f2)ds +

∫ r

0
b(v ε(s, f2))ds

+

∫ r

0

1

ε
(v ε(s, f2))

−ds + W̃ (r), (35)

we see that the law of v ε(r , f2) under Q is the same as that of
uε(r , f2) under P .
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Sketch of the proof

For α > 1, we have

T ε
t G (f1) = E [G (uε(t, f1))] = E [G (v ε(t, f2))]

= E [G (v ε(t, f2))Z
1
α
t Z

− 1
α

t ]

≤ (E [Gα(v ε(t, f2))Zt ])
1
α (E [Z

− 1
α−1

t ])
α−1

α

= (E [Gα(uε(t, f2))])
1
α (E [Z

− 1
α−1

t ])
α−1

α

= (T ε
t (Gα)(f2))

1
α (E [Z

− 1
α−1

t ])
α−1

α . (36)

The exponential martingale can be bounded as follows:

(E [Z
− 1

α−1
t ])

α−1
α

≤ exp

(
1

α− 1
(c2t +

1

t
)|f1 − f2|2H

)
, (37)

Combining (37) with (36) yields

(T ε
t G (f1))

α ≤ T ε
t (Gα)(f2)exp

(
α

α− 1
(c2t +

1

t
)|f1 − f2|2H

)
.
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Harnack inequalities

Corollary (4)

The semigroup Tt , t ≥ 0 is strong Feller, i.e., TtG (f ) is a
continuous function on H for every G ∈ Bb(H).

From now on, we assume b = 0 in (26). Namely, consider
{

∂u(t,x)
∂t = ∂2u(t,x)

∂x2 + Ẇ (t, x) + η(t, x)
u(0, ·) = f ≥ 0, u(t, 0) = u(t, 1) = 0

(38)

It was proved by Zambotti that the solution u(t), t ≥ 0 to
equation (38) is symmetric with respect to the law ν(dz) of the
3− D Bessel bridge and the associated Dirichlet form is given by

{ E(F , G ) =
∫
K0

< ∇F ,∇G >H (z)ν(dz),

D(E) ⊃ {Lipschitz continuous functions}, (39)

where K0 = {h ∈ H; h ≥ 0}, ∇F ,∇G denote the gradient of F
and G in H.
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Harnack inequalities

Now we can state the second corollary:

Corollary (5)

The semigroup Tt , t ≥ 0 admits the hyperbound property, that is,
Tt is a bounded linear operator from L2(ν) into L4(ν) for
sufficiently large t > 0.
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Small time asymptotics

For B ⊂ K0, C ⊂ K0 with ν(B) > 0, ν(C ) > 0, define

d(B,C )

= sup{essinff ∈Bessinfg∈C (|f − g |H), essinfg∈Cessinff ∈B(|f − g |H)},
(40)

where esinf is taken with respect to the symmetrizing measure
ν(dz). Let Pν be the law of the process u(t), t ≥ 0 with the initial
distribution equal to ν. As an another application of the Harnack
inequality, we have the following Varadhan type small type
asymptotics:

Theorem (6)

Suppose B ⊂ K0, C ⊂ K0 with ν(B) > 0, ν(C ) > 0. Then

lim
t→0

tlogPν(u(t) ∈ B, u(0) ∈ C ) = −d2(B, C ). (41)
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Sketch of the proof

Upper bound. Take λ < d(B, C ). Then one of the terms on the
right of (40) will be bigger than λ, say

essinff ∈Bessinfg∈C (|f − g |H) > λ.

This implies that there exists B1 ⊂ B with ν(B \B1) = 0 such that

essinfg∈C (|f − g |H) > λ for f ∈ B1. (42)

Set
F (f ) := essinfg∈C (|f − g |H).

We can show that

|F (f1)− F (f2) ≤ |f1 − f2|H .
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Small time asymptotics

As a consequence, F ∈ D(E) and |∇F |H ≤ 1. Let C̃ denote the
support of the measure IC (z)ν(dz). It is easy to see that F (f ) = 0
on C̃ . This together with (42) yields

Pν(u(t) ∈ B, u(0) ∈ C ) = Pν(u(t) ∈ B1, u(0) ∈ C̃ )

≤ Pν(F (u(t)) > λ, ,F (u(0)) = 0)

≤ Pν(F (u(t))− F (u(0)) > λ)

From here, using Lyons-Zheng decomposition we obtain that

lim
t→0

tlogPν(u(t) ∈ B, u(0) ∈ C ) ≤ −λ2. (43)

Letting λ → d(B, C ) we get the upper bound.
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Small time asymptotics

Lower bound. For the lower bound, we may assume
d(B, C ) < ∞. Take any η > d(B, C ). We can find B1 ⊂ B with
ν(B1) > 0 such that

essinfg∈C (|f − g |H) < η, for f ∈ B1.

This implies that for every f ∈ B1, there is further a subset
Cf ⊂ C with ν(Cf ) > 0 such that

|f − g |H < η, for g ∈ Cf . (44)

Since ν(B1) > 0 and Tt(IB1) → IB1 in L2(ν) as t → 0, we can find
f0 ∈ B1 such that Tt(IB1)(f0) → IB1(f0) = 1 as t → 0 (taking a
subsequence if necessary).
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Small time asymptotics

Now by the Harnack inequalities, for any α > 1, we have

Pν(u(t) ∈ B, u(0) ∈ C ) =

∫

K0

Tt IB(z)IC (z)ν(dz)

≥
∫

K0

Tt IB1(z)IC (z)ν(dz) =

∫

K0

Tt I
α
B1

(z)IC (z)ν(dz)

≥
∫

K0

(Tt IB1(f0))
αexp(− α

α− 1

1

t
|f0 − z |2H)IC (z)ν(dz)

≥
∫

K0

(Tt IB1(f0))
αexp(− α

α− 1

1

t
|f0 − z |2H)ICf0

(z)ν(dz)

≥ (Tt IB1(f0))
αexp(− α

α− 1

1

t
η2)ν(Cf0), (45)

where (33) has been used for f = f0.
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Small time asymptotics

With the special choice of f0, it follows from (34) that

lim
t→0

tlogPν(u(t) ∈ B, u(0) ∈ C )

≥ lim
t→0

tlog(Tt IB1(f0))
α + lim

t→0
tlogν(Cf0)−

α

α− 1
η2

= − α

α− 1
η2 (46)

Let α →∞ to obtain

lim
t→0

tlogPν(u(t) ∈ B, u(0) ∈ C ) ≥ −η2.

Sending η to d(B,C ) we reach the upper bound:

lim
t→0

tlogPν(u(t) ∈ B, u(0) ∈ C ) ≥ −d2(B, C ).
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Large deviations: skeleton equations

The Cameron-Martin space associated with the Brownian sheet
{W (x , t), x ∈ [0, 1], t ∈ R+} is given by

H = {h =

∫ ·

0

∫ ·

0
ḣ(x , s)dxds;

∫ T

0

∫ 1

0
ḣ2(x , s)dxds < ∞}.

For h =
∫ ·
0

∫ ·
0 ḣ(x , s)dxds ∈ H, consider the following reflected

deterministic PDE (the skeleton equation):





∂sh(x ,t)
∂t − ∂2sh(x ,t)

∂x2 + f (x , t; sh) = σ(x , t; sh)ḣ(x , t) + ηh;
sh(·, 0) = u0;
sh(0, t) = sh(1, t) = 0.

(47)

As in the SPDE case, equation (44) has a unique solution.
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Large deviations: the rate function

Define a function by

I (f ) :=
1

2
inf

{h∈H,sh(·,·)=f }
|h|2H, f ∈ C+([0, 1]× [0, T ])

with the convention inf{∅} = ∞.

Theorem (7)

The function I (·) defined above is a good rate function on
C+([0, 1]× [0, T ]), that is, {f : I (f ) ≤ a} is compact for any a ≥ 0.
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Small noise perturbation

Consider the following small noise perturbation of the SPDEs with
reflection:





∂uε(x ,t)
∂t − ∂2uε(x ,t)

∂x2 + f (x , t; uε) = εσ(x , t; uε)Ẇ (x , t) + ηε;
uε(·, 0) = u0;
uε(0, t) = uε(1, t) = 0.

(48)
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Large deviation principle

Recall that uε denotes the solution of Eq(48). Here is the large
deviation principle:

Theorem (8)

The laws µε of {uε(·, ·)}ε>0 satisfy a large deviation principle on
C+([0, 1]× [0, T ]) with the rate function I (·), i.e.,
(i) For any closed subset C ⊂ C+([0, 1]× [0, T ]),

lim sup
ε→0

ε2 log µε(C ) ≤ − inf
f ∈C

I (f ).

(ii) For any open set G ⊂ C+([0, 1]× [0, T ]),

lim inf
ε→0

ε2 log µε(G ) ≥ − inf
f ∈G

I (f ).
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