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Ornstein-Uhlenbeck process

dx(t) = −αx(t)dt + σdB(t) on t ≥ 0

with initial value x(0) = x0. The unique solution is

x(t) = e−αtx0 + σ

∫ t

0
e−α(t−s)dB(s).

It has the mean
Ex(t) = e−αtx0

and the variance

Var(x(t)) = E |x(t)− Ex(t)|2 = e−2αtx0 +
σ2

2α
(1− e−2αt).

The distribution of x(t) will converge to the normal distribution
N(0, σ2/2α).
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Let {Ω,F , {Ft}t≥0,P} be a complete probability space
equipped with some filtration {Ft}t≥0 satisfying the usual
conditions.
Let H, K be two real separable Hilbert spaces. Denote by
L(K , H) the set of all linear bounded operators from K into
H.
Denote by {W (t), t ≥ 0} a K -valued {Ft}t≥0-Wiener
process with covariance operator Q, i.e.,

E〈W (t), x〉K 〈W (s), y〉K = (t ∧ s)〈Qx , y〉K , ∀x , y ∈ K ,

where Q is a positive, self-adjoint, trace class operator on
K .
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Let K0 = Q
1
2 (K ) be the subspace of K .

Let L0
2 = L2(K0, H) denote the space of all Hilbert-Schmidt

operators from K0 into H, equipped with the norm

‖Φ‖2
L0

2
= tr((ΦQ

1
2 )(ΦQ

1
2 )∗) for any Φ ∈ L0

2.
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In this talk, we consider the following semi-linear stochastic
partial differential equation

dX (t) = [AX (t) + F (X (t))]dt + G(X (t))dW (t), t ≥ 0, (1.1)

with initial data X (0) = ξ ∈ H.

Chenggui Yuan Stability in Distribution of SPDEs
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A, generally unbounded, is the infinitesimal generator of a
C0-semigroup T (t), t ≥ 0, of contraction.
The mappings F : H → H, G : H → L(K , H) are both Borel
measurable and satisfy the following Lipschitz condition

‖F (x)− F (y)‖H + ‖G(x)−G(y)‖L0
2
≤ L‖x − y‖H ,

for some constant L > 0 and arbitrary x , y ∈ H.

Chenggui Yuan Stability in Distribution of SPDEs
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Definition
A stochastic process {X (t), t ∈ [0, T ]}, 0 ≤ T < ∞, is called a
strong solution of (1.1) if
(i) X (t) is adapted to Ft and continuous in t wp 1;
(ii) X (t) ∈ D(A), the domain of A, on [0, T ]× Ω with∫ T

0 ‖AX (t)‖Hdt < ∞ with probability one,

X (t) = ξ +

∫ t

0
[AX (s) + F (X (s))]ds +

∫ t

0
G(X (s))dW (s)

for all t ∈ [0, T ] with probability one.

Chenggui Yuan Stability in Distribution of SPDEs
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Definition
A stochastic process {X (t), t ∈ [0, T ]}, 0 ≤ T < ∞, is called a
mild solution of (1.1) if
(i) X (t) is adapted to Ft ;
(ii) X (t) is measurable and

∫ T
0 ‖X (t)‖2

Hds < ∞ wp 1,

X (t) = T (t)ξ+

∫ t

0
T (t−s)F (X (s))ds+

∫ t

0
T (t−s)G(X (s))dW (s)

for all t ∈ [0, T ] with probability one.

Chenggui Yuan Stability in Distribution of SPDEs
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Definition
The process X (t) with the initial state y(0) = ξ is said to be
stable in distribution if there exists a probability measure π(·) on
H such that P(X ξ(t) ∈ dy) converges weakly to π(dy) as
t →∞ for any ξ ∈ H. (1.1) is said to be stable in distribution if
X (t) is stable in distribution.

Remark Since the mild solution X (t) to (1.1) is a strong Markov
process, using Kolmogorov-Chapman equation, it is not difficult
to show that the stability in distribution of mild solution X (t)
implies the existence of a unique invariant probability measure
for mild solution X (t).

Chenggui Yuan Stability in Distribution of SPDEs
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Lemma

Suppose V ∈ C2(H; R+) and {X (t), t ≥ 0} is a strong solution
of (1.1), for t ≥ 0

V (X (t)) = V (ξ)+

∫ t

0
LV (X (s))ds+

∫ t

0
〈Vx(X (s)), G(X (s))dW (s)〉H ,

where, ∀x ∈ D(A)

LV (x) = 〈Vx(x), Ax + F (x)〉H +
1
2

tr(Vxx(x)G(x)QG∗(x)).

Chenggui Yuan Stability in Distribution of SPDEs
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we introduce the following approximating system of (1.1), for
t ≥ 0

dXn(t) =AXn(t)dt + R(n)F (Xn(t))dt + R(n)G(Xn(t))dW (t),
X (0) =R(n)ξ ∈ D(A),

(1.2)

where n ∈ ρ(A), the resolvent set of A and R(n) = nR(n, A),
R(n, A) is the resolvent of A.

Chenggui Yuan Stability in Distribution of SPDEs
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Similar to operator L defined in Lemma 4, the operator Ln
associated with (1.2), for any x ∈ D(A), can be defined by

LnV (x) = 〈Vx(x), Ax + R(n)F (x)〉H

+
1
2

tr(Vxx(x))R(n)G(x)Q(R(n)G(x))∗).

Chenggui Yuan Stability in Distribution of SPDEs
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Lemma

Under the condition (H1) and (H2), (1.2) has a unique strong
solution Xn(t) which lies in C(0, T ; L2(Ω,F , P; H)) for all T ≥ 0.
Moreover, Xn(t) converges to the mild solution X (t) of (1.1) in
C(0, T ; L2(Ω,F , P; H)) as n →∞.

Chenggui Yuan Stability in Distribution of SPDEs
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Lemma

Let conditions (H1) and (H2) hold. Assume that there exists a
function V (x) ∈ C2(H; R+) such that for any x ∈ H

c‖x‖2
H ≥V (x) + ‖x‖H‖Vx(x)‖H + ‖x‖2

H‖Vxx(x)‖,
c1‖x‖2

H ≤V (x),
(2.1)

Moreover, assume

LV (x) ≤ −λ1V (x) + β x ∈ D(A) (2.2)

Then, for any ξ ∈ H and ε > 0, there exists a constant M > 0
such that for any t ≥ 0

P{‖X (t)‖H ≥ M} < ε. (2.3)

Chenggui Yuan Stability in Distribution of SPDEs
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In what follows we need to consider the difference between two
mild solutions of (1.1) starting from different initial data, namely
for any t ≥ 0

X ξ(t)− X η(t) =T (t)ξ − T (t)η +

∫ t

0
T (t − s)[F (X ξ(s))− F (X η(s))]ds

+

∫ t

0
T (t − s)[G(X ξ(s))−G(X η(s))]dW (s).

(2.4)

Chenggui Yuan Stability in Distribution of SPDEs
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Now, for t ≥ 0 we introduce an approximating system in
correspondence with (2.4)

d [X ξ
n (t)− X η

n (t)] =A[X ξ
n (t)− X η

n (t)]dt + R(n)[F (X ξ
n (t))− F (X η

n (t))]dt

+R(n)[G(X ξ
n (t))−G(X η

n (t))]dW (t),

X ξ
n (0)− X η

n (0) =R(n)(ξ − η) ∈ D(A),

(2.5)

where n ∈ ρ(A), the resolvent set of A and R(n) = nR(n, A),
R(n, A) is the resolvent of A.

Chenggui Yuan Stability in Distribution of SPDEs
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For given U ∈ C2(H; R+), define an operator LnU : H ×H → R
associated with (2.5) by for any x , y ∈ D(A)

LnU(x , y) = 〈Ux(x − y), A(x − y) + R(n)(F (x)− F (y))〉H

+
1
2

tr(Uxx(x − y)R(n)(G(x)−G(y))Q(R(n)(G(x)−G(y)))∗).

Chenggui Yuan Stability in Distribution of SPDEs
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Lemma

Let conditions (H1) and (H2) hold. For any x ∈ H assume that
there exists function U(x) ∈ C2(H; R+) such that with some
constants d , c2, λ2 ≥ 0

d‖x‖2
H ≥U(x) + ‖x‖H‖Ux(x)‖H + ‖x‖2

H‖Uxx(x)‖,
c2‖x‖2

H ≤U(x).
(2.6)

LU(x , y) ≤ −λ2U(x − y). (2.7)

Then, for any ε > 0 and any compact subset K of H, there
exists a T = T (ε,K) > 0 such that

P{‖X ξ(t)− X η(t)‖H < ε} ≥ 1− ε, t ≥ T (2.8)

whenever ξ, η ∈ K.
Chenggui Yuan Stability in Distribution of SPDEs
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Sketch of Proof

It is easy to see from (2.6) that U(0) = 0. For any ε ∈ (0, 1), by
the continuity of U, we then can choose α ∈ (0, ε) sufficiently
small such that

sup‖x‖H≤α U(x)

c2ε2 <
ε

2
. (2.9)

Denote by X ξ(t) and X η(t) two different mild solutions to (1.1)
starting from initial datums ξ and η, respectively. Let K be any
compact subset of H and fix any ξ, η ∈ K. For β > α, we define
two stopping times as follows:

τα = inf{t ≥ 0 : ‖X ξ(t)− X η(t)‖H ≤ α},
τβ = inf{t ≥ 0 : ‖X ξ(t)− X η(t)‖H ≥ β}.

Chenggui Yuan Stability in Distribution of SPDEs
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Sketch of Proof

Set tβ = τβ ∧ t . Using the Itô formula (i.e. Lemma 4) to function
U(x) and strong solution X ξ

n (t)− X η
n (t) to (2.5),

EU(X ξ
n (tβ)− X η

n (tβ))

= EU(R(n)(ξ − η)) + E
∫ tβ

0
LnU(X ξ

n (s), X η
n (s))ds

= EU(R(n)(ξ − η)) + E
∫ tβ

0
LU(X ξ

n (s), X η
n (s))ds

+ E
∫ tβ

0
[LnU(X ξ

n (s), X η
n (s))− LU(X ξ

n (s), X η
n (s))]ds.

Chenggui Yuan Stability in Distribution of SPDEs
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Sketch of Proof

EU(X ξ(tβ)− X η(tβ)) ≤ EU(ξ − η)− λ2E
∫ tβ

0
U(X ξ(s)− X η(s))ds.

(2.10)

By (2.6), it directly follows that

c2E[‖X ξ(τβ)− X η(τβ)‖2
H I{τβ≤t}] ≤ EU(ξ − η),

which, together with the definition of τβ, gives that

P{τβ ≤ t} ≤ EU(ξ − η)

c2β2 .

Hence, there exists a β = β(K, ε) > 0 such that

P{τβ < ∞} ≤ ε

4
. (2.11)

Chenggui Yuan Stability in Distribution of SPDEs
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Sketch of Proof

Fix the β and let tα = τα ∧ τβ ∧ t . In the same way as (2.10) was
done, we can obtain from (2.6) that

EU(X ξ(tα)− X η(tα))

≤ EU(ξ − η)− λ2E
∫ tα

0
U(X ξ(s)− X η(s))ds

≤ EU(ξ − η)− c2λ2E
∫ tα

0
‖X ξ(s)− X η(s)‖2

Hds

≤ EU(ξ − η)− c2λ2α
2E(τα ∧ τβ ∧ t).

Chenggui Yuan Stability in Distribution of SPDEs
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Sketch of Proof

Hence
P{τα ∧ τβ ≥ t} ≤ EU(ξ − η)

c2λ2α2t
,

which furthermore implies that for given ε ∈ (0, 1) there exists a
constant T = T (K, ε) > 0 such that

P{τα ∧ τβ ≤ T} > 1− ε

4
, (2.12)

which yields
P{τα ≤ T} ≥ 1− ε

2
. (2.13)

Chenggui Yuan Stability in Distribution of SPDEs
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Sketch of Proof

Now, define stopping time

σ = inf{t ≥ τα ∧ T : ‖X ξ(t)− X η(t)‖H ≥ ε}.
Let t > T , we have

P{τα ≤ T , σ ≤ t} <
ε

2
. (2.14)

While, by (2.13) and (2.14)

P{σ ≤ t} ≤ P{τα ≤ T , σ ≤ t}+ P{τα > T} < ε.

Letting t →∞, we have

P{σ < ∞} ≤ ε.

This implies that for any ξ, η ∈ K, we must have that for t ≥ T

P{‖X ξ(t)− X η(t)‖H < ε} ≥ 1− ε,

as required. Chenggui Yuan Stability in Distribution of SPDEs
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Let P(H) denote all probability measures on H. For
P1, P2 ∈ P(H) define metric dL

dL(P1, P2) = sup
f∈L

∣∣∣∣∫
H

f (x)P1(dx)−
∫

H
f (x)P2(dx)

∣∣∣∣
and

L = {f : H → R : |f (x)− f (y)| ≤ ‖x − y‖H and |f (·)| ≤ 1}

Chenggui Yuan Stability in Distribution of SPDEs
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Lemma

Let (2.8) hold. Then, for any compact subset Kof H,

lim
t→∞

dL(P(t , ξ, ·), P(t , ζ, ·)) = 0, uniformly in ξ, ζ ∈ K. (3.1)

Lemma

Let (2.3) and (2.8) hold. Then, {P(t , ξ, ·) : t ≥ 0} is Cauchy in
the space P(H) for any ξ ∈ H.

Chenggui Yuan Stability in Distribution of SPDEs
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Theorem

Under the conditions of Lemma 3.1 and Lemma 3.2, the mild
solution X (t) to (1.1) is stable in distribution.

Chenggui Yuan Stability in Distribution of SPDEs
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Consider the following semi-linear stochastic partial differential
equation{

dy(x , t) = ∂2

∂x2 y(x , t)dt + σf (y(x , t))dW (t), t ≥ 0, 0 < x < 1,

y(0, t) = y(1, t) = 0, t ≥ 0; y(x , 0) = y0(x), 0 ≤ x ≤ 1,

(4.1)
where W (t), t ≥ 0, is a real standard Brownian motion, σ is a
real number and f is a real Lipschitz continuous function on
L2(0, 1) satisfying for u, v ∈ L2(0, 1) and some positive
constants c, k

|f (u)| ≤ c(‖u‖H + 1),

|f (u)− f (v)| ≤ k‖u − v‖H .
(4.2)

Chenggui Yuan Stability in Distribution of SPDEs
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we take H = L2(0, 1) and A = ∂2

∂x2 with
D(A) = H1

0 (0, 1)
⋂

H2(0, 1). Then for any u ∈ D(A)

〈u, Au〉H ≤ −π2‖u‖2
H .

For ∀u ∈ D(A)

L‖u‖2
H = 2〈u, Au〉H +σ2|f (u)|2 ≤ −2(π2−σ2c2)‖u‖2

H +2σ2c2, .

Similarly,

L‖u − v‖2
H ≤ −(2π2 − σ2k2)‖u − v‖2

H .

Therefore, if σ2c2 < π2 and σ2k2 < 2π2, then we immediately
deduce by Theorem 10 that the mild solution process y(x , t) of
(4.1) is stable in distribution.

Chenggui Yuan Stability in Distribution of SPDEs
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dX (t) = [AX (t) + F (X (t), X (t − τ))]dt + G(X (t), X (t − τ))dW (t)

+

∫
Z

L(X (t), X (t − τ), u)Ñ(dt , du)

(5.1)

Chenggui Yuan Stability in Distribution of SPDEs
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Lemma

Assume there exist constants λ1 > λ2 ≥ 0 and β ≥ 0 such that
for any x , y ∈ D(A)

2〈x , Ax + F (x , y)〉H + ‖G(x , y)‖2
L0

2
+

∫
Z
‖L(x , y , u)‖2

Hλ(du)

≤ −λ1‖x‖2
H + λ2‖y‖2

H + β.

(5.2)

Then
sup

0≤t<∞
E‖X ξ

t ‖
2
D < ∞ ∀ξ ∈ Db

F0
([−τ, 0]; H). (5.3)
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Lemma

Assume that there are constants λ3 > λ4 ≥ 0 such that for any
x , y , z1, z2 ∈ D(A)

2〈x − y , A(x − y) + F (x , z1)− F (y , z2)〉H + ‖G(x , z1)−G(y , z2)‖2
L0

2

+

∫
Z
‖L(x , z1, u)− L(y , z2, u)‖2

Hλ(du)

≤ −λ3‖x − y‖2
H + λ4‖z1 − z2‖2

H .

(5.4)

Then for any compact subset K of D([−τ, 0]; H)

lim
t→∞

E‖X ξ
t − X η

t ‖
2
D = 0 uniformly in ξ, η ∈ K. (5.5)
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