Critical Brownian sheet does not have double points

Yimin Xiao

Michigan State University

Joint work with R. Dalang, D. Khoshnevisan, E. Nualart and D. Wu

Beijing, July 19-24, 2010

- The Brownian sheet and multiple points
- No double points in the critical case
- Hitting probability of *M*₂
- Hausdorff dimension of $M_2 \cap A$

1. The Brownian sheet and multiple points

The Brownian sheet $B = \{B(t), t \in \mathbb{R}^N_+\}$ is a centered (N, d)-Gaussian field whose covariance function is

$$\mathbb{E}\big[B_i(s)B_j(t)\big] = \delta_{ij} \prod_{k=1}^N s_k \wedge t_k,$$

where $\delta_{i,j} = 1$ if i = j and 0 otherwise.

- When N = 1, *B* is Brownian motion in \mathbb{R}^d .
- *B* is *N*/2-self-similar, but it does not have stationary increments.

Multiple points of the Brownian sheet

Recall that $x \in \mathbb{R}^d$ is a *k*-multiple point of *B* if there exist distinct points $t^1, \ldots, t^k \in (0, \infty)^N$ such that $B(t^1) = \cdots = B(t^k) = x$.

We write M_k for the set of all *k*-multiple points of *B*. Note that $M_{k+1} \subseteq M_k$ for all $k \ge 2$.

We may also consider the set of *k*-multiple times:

 $L_k = \{(t^1, \cdots, t^k) \in \mathbb{R}^{kN}_{\neq} : B(t^1) = \cdots = B(t^k)\}.$

When N = 1, i.e., B is Brownian motion, there is a large literature on

- the existence of multiple points, starting with the works of Dvoretzky, Erdös and Kakutani (1950–).
- fractal properties of M_k and L_k : Taylor (1966), LeGall (1986, 1987), ...
- self-intersection local times: Wolpert (1978), Geman, Horowitz and Rosen (1984), Dynkin (1985, 1986, 1987, 1988),

5/22

• See Taylor (1986) and X. (2004) for surveys.

When N = 1, i.e., B is Brownian motion, there is a large literature on

- the existence of multiple points, starting with the works of Dvoretzky, Erdös and Kakutani (1950–).
- fractal properties of M_k and L_k : Taylor (1966), LeGall (1986, 1987), ...
- self-intersection local times: Wolpert (1978), Geman, Horowitz and Rosen (1984), Dynkin (1985, 1986, 1987, 1988),

5/22

• See Taylor (1986) and X. (2004) for surveys.

When N = 1, i.e., B is Brownian motion, there is a large literature on

- the existence of multiple points, starting with the works of Dvoretzky, Erdös and Kakutani (1950–).
- fractal properties of M_k and L_k : Taylor (1966), LeGall (1986, 1987), ...
- self-intersection local times: Wolpert (1978), Geman, Horowitz and Rosen (1984), Dynkin (1985, 1986, 1987, 1988),

5/22

• See Taylor (1986) and X. (2004) for surveys.

When N = 1, i.e., B is Brownian motion, there is a large literature on

- the existence of multiple points, starting with the works of Dvoretzky, Erdös and Kakutani (1950–).
- fractal properties of M_k and L_k : Taylor (1966), LeGall (1986, 1987), ...
- self-intersection local times: Wolpert (1978), Geman, Horowitz and Rosen (1984), Dynkin (1985, 1986, 1987, 1988),
- See Taylor (1986) and X. (2004) for surveys.

For N > 1, it is known [Rosen, 1984; Khoshnevisan, 1997] that

• If
$$Nk < (k-1)d/2$$
, then $M_k = \emptyset$ a.s.

• If Nk > (k-1)d/2, then $M_k \neq \emptyset$ a.s.

When Nk > (k - 1)d/2, Rosen (1984) showed that

$$\dim_{\rm H} L_k = Nk - (k-1)d/2 \qquad \text{a.s.}$$

When d = 1, Zhou (1994) studied the exact Hausdorff measure of L_k .

The Hausdorff dimension of M_k was determined by Chen Xiong (1994), Khoshnevisan, Wu and X. (2006):

$$\dim_{_{\rm H}} M_k = d - k(d - 2N)^+$$
 a.s.

where $a^{+} = \max\{0, a\}$

For N > 1, it is known [Rosen, 1984; Khoshnevisan, 1997] that

• If
$$Nk < (k-1)d/2$$
, then $M_k = \emptyset$ a.s.

• If
$$Nk > (k-1)d/2$$
, then $M_k \neq \emptyset$ a.s.

When Nk > (k - 1)d/2, Rosen (1984) showed that

$$\dim_{\rm H} L_k = Nk - (k-1)d/2 \qquad \text{a.s.}$$

When d = 1, Zhou (1994) studied the exact Hausdorff measure of L_k .

The Hausdorff dimension of M_k was determined by Chen Xiong (1994), Khoshnevisan, Wu and X. (2006):

$$\dim_{_{\rm H}} M_k = d - k(d - 2N)^+$$
 a.s.

where
$$a^+ = \max\{0, a\}$$

For N > 1, it is known [Rosen, 1984; Khoshnevisan, 1997] that

• If
$$Nk < (k-1)d/2$$
, then $M_k = \emptyset$ a.s.

• If
$$Nk > (k-1)d/2$$
, then $M_k \neq \emptyset$ a.s.

When Nk > (k - 1)d/2, Rosen (1984) showed that

$$\dim_{\rm H} L_k = Nk - (k-1)d/2 \qquad \text{a.s.}$$

When d = 1, Zhou (1994) studied the exact Hausdorff measure of L_k .

The Hausdorff dimension of M_k was determined by Chen Xiong (1994), Khoshnevisan, Wu and X. (2006):

$$\dim_{H} M_{k} = d - k(d - 2N)^{+}$$
 a.s.

where $a^+ = \max\{0, a\}$.

If
$$Nk = (k-1)d/2$$
, then $M_k = \emptyset$ a.s.

2 Determine hitting probability for M_k . That is, provide explicit conditions on $F \subset \mathbb{R}^d$ such that

 $\mathbb{P}\big\{M_k\cap F\neq\varnothing\big\}>0.$

Similar question for L_k .

• Find exact Hausdorff and packing measure functions for M_k and L_k (if exist).

• If
$$Nk = (k-1)d/2$$
, then $M_k = \emptyset$ a.s.

3 Determine hitting probability for M_k . That is, provide explicit conditions on $F \subset \mathbb{R}^d$ such that

 $\mathbb{P}\big\{M_k\cap F\neq\varnothing\big\}>0.$

- Similar question for L_k .
- Find exact Hausdorff and packing measure functions for M_k and L_k (if exist).

• If
$$Nk = (k-1)d/2$$
, then $M_k = \emptyset$ a.s.

2 Determine hitting probability for M_k . That is, provide explicit conditions on $F \subset \mathbb{R}^d$ such that

$$\mathbb{P}\big\{M_k\cap F\neq\varnothing\big\}>0.$$

Similar question for L_k .

• Find exact Hausdorff and packing measure functions for M_k and L_k (if exist).

If
$$Nk = (k-1)d/2$$
, then $M_k = \emptyset$ a.s.

2 Determine hitting probability for M_k . That is, provide explicit conditions on $F \subset \mathbb{R}^d$ such that

$$\mathbb{P}\big\{M_k\cap F\neq\varnothing\big\}>0.$$

3 Similar question for L_k .

• Find exact Hausdorff and packing measure functions for M_k and L_k (if exist).

• If
$$Nk = (k-1)d/2$$
, then $M_k = \emptyset$ a.s.

2 Determine hitting probability for M_k . That is, provide explicit conditions on $F \subset \mathbb{R}^d$ such that

$$\mathbb{P}\big\{M_k\cap F\neq\varnothing\big\}>0.$$

- 3 Similar question for L_k .
- Find exact Hausdorff and packing measure functions for M_k and L_k (if exist).

• If
$$Nk = (k-1)d/2$$
, then $M_k = \emptyset$ a.s.

2 Determine hitting probability for M_k . That is, provide explicit conditions on $F \subset \mathbb{R}^d$ such that

$$\mathbb{P}\big\{M_k\cap F\neq\varnothing\big\}>0.$$

- 3 Similar question for L_k .
- Find exact Hausdorff and packing measure functions for M_k and L_k (if exist).

2. No double points in the critical case

The following is our main result.

Theorem (2.1)

An N-parameter, d-dimensional Brownian sheet has double points if and only if 2(d - 2N) < d. In addition, M_2 has positive Lebesgue measure almost surely if and only if d < 2N.

The first part shows that *B* has no double points when 2N = d/2. The second verifies a conjecture of Fristedt (1995).

2. No double points in the critical case

The following is our main result.

Theorem (2.1)

An N-parameter, d-dimensional Brownian sheet has double points if and only if 2(d - 2N) < d. In addition, M_2 has positive Lebesgue measure almost surely if and only if d < 2N.

The first part shows that *B* has no double points when 2N = d/2. The second verifies a conjecture of Fristedt (1995).

The following is our main result.

Theorem (2.1)

An N-parameter, d-dimensional Brownian sheet has double points if and only if 2(d - 2N) < d. In addition, M_2 has positive Lebesgue measure almost surely if and only if d < 2N.

The first part shows that *B* has no double points when 2N = d/2. The second verifies a conjecture of Fristedt (1995).

The following is our main result.

Theorem (2.1)

An N-parameter, d-dimensional Brownian sheet has double points if and only if 2(d - 2N) < d. In addition, M_2 has positive Lebesgue measure almost surely if and only if d < 2N.

The first part shows that *B* has no double points when 2N = d/2. The second verifies a conjecture of Fristedt (1995).

The following is our main result.

Theorem (2.1)

An N-parameter, d-dimensional Brownian sheet has double points if and only if 2(d - 2N) < d. In addition, M_2 has positive Lebesgue measure almost surely if and only if d < 2N.

The first part shows that *B* has no double points when 2N = d/2. The second verifies a conjecture of Fristedt (1995).

A decoupling theorem

Denote
$$\mathcal{T} := \{(s, t) \in (0, \infty)^{2N} : s_i \neq t_i, i = 1, ..., N\}.$$

Theorem (2.2)

Choose and fix a Borel set $A \subseteq \mathbb{R}^d$ *. Then,*

$$\mathbb{P}\left\{\exists \left(t^{1}, t^{2}\right) \in \mathcal{T} : B(t^{1}) = B(t^{2}) \in A\right\} > 0 \qquad (1)$$

if and only if

$$\mathbb{P}\left\{\exists (t^1, t^2) \in \mathcal{T} : W_1(t^1) = W_2(t^2) \in A\right\} > 0, \quad (2)$$

where W_1 and W_2 are independent N-parameter Brownian sheets in \mathbb{R}^d (unrelated to B).

For proving Theorem 2.2, we develop a conditional potential theory for the Brownian sheet *B*.

We start with some notation.

 We identify subsets of {1,...,N} with partial orders on ℝ^N as follows:
 For all s, t ∈ ℝ^N and π ⊂ {1,...,N}.

$$s \prec_{\pi} t$$
 iff $\begin{cases} s_i \leq t_i & \text{for all } i \in \pi, \\ s_i \geq t_i & \text{for all } i \notin \pi. \end{cases}$

 We identify subsets of {1,...,N} with partial orders on ℝ^N as follows: For all s, t ∈ ℝ^N and π ⊆ {1,...,N},

$$s \prec_{\pi} t$$
 iff $\begin{cases} s_i \leq t_i & \text{for all } i \in \pi, \\ s_i \geq t_i & \text{for all } i \notin \pi. \end{cases}$

• We identify subsets of $\{1, \ldots, N\}$ with partial orders on \mathbb{R}^N as follows:

For all $s, t \in \mathbb{R}^N$ and $\pi \subseteq \{1, \ldots, N\}$,

$$s \prec_{\pi} t$$
 iff $\begin{cases} s_i \leq t_i & \text{for all } i \in \pi, \\ s_i \geq t_i & \text{for all } i \notin \pi. \end{cases}$

• We identify subsets of $\{1, ..., N\}$ with partial orders on \mathbb{R}^N as follows:

For all $s, t \in \mathbb{R}^N$ and $\pi \subseteq \{1, \ldots, N\}$,

$$s \prec_{\pi} t$$
 iff $\begin{cases} s_i \leq t_i & \text{for all } i \in \pi, \\ s_i \geq t_i & \text{for all } i \notin \pi. \end{cases}$

• We identify subsets of $\{1, \ldots, N\}$ with partial orders on \mathbb{R}^N as follows:

For all $s, t \in \mathbb{R}^N$ and $\pi \subseteq \{1, \ldots, N\}$,

$$s \prec_{\pi} t$$
 iff $\begin{cases} s_i \leq t_i & \text{for all } i \in \pi, \\ s_i \geq t_i & \text{for all } i \notin \pi. \end{cases}$

• We identify subsets of $\{1, \ldots, N\}$ with partial orders on \mathbb{R}^N as follows:

For all $s, t \in \mathbb{R}^N$ and $\pi \subseteq \{1, \ldots, N\}$,

$$s \prec_{\pi} t$$
 iff $\begin{cases} s_i \leq t_i & \text{for all } i \in \pi, \\ s_i \geq t_i & \text{for all } i \notin \pi. \end{cases}$

• We identify subsets of $\{1, \ldots, N\}$ with partial orders on \mathbb{R}^N as follows:

For all $s, t \in \mathbb{R}^N$ and $\pi \subseteq \{1, \ldots, N\}$,

$$s \prec_{\pi} t$$
 iff $\begin{cases} s_i \leq t_i & \text{for all } i \in \pi, \\ s_i \geq t_i & \text{for all } i \notin \pi. \end{cases}$

We write s λ_π t for the N-vector whose jth coordinate is min(s_j, t_j) if j ∈ π and max(s_j, t_j) otherwise.

- Given a partial order π and a point s ∈ ℝ^N₊, we define *F*_π(s) to be the σ-algebra generated by {*B*(*u*), *u* ≺_π s} and all *P*-null sets. We then make the filtration (*F*_π(s), s ∈ ℝ^N₊) right-continuous in the partial order π, so that *F*_π(s) = ∩_{t≻πs} *F*_π(t).
- Let \mathbb{P}_s^{π} be a regular conditional distribution for *B* given $\mathcal{F}_{\pi}(s)$ and let

$$\mathbb{E}_{s}^{\pi}f := \int f \, d\mathbb{P}_{s}^{\pi} = \mathbb{E}(f \mid \mathcal{F}_{\pi}(s))$$

- We write s λ_π t for the N-vector whose jth coordinate is min(s_j, t_j) if j ∈ π and max(s_j, t_j) otherwise.
- Given a partial order π and a point s ∈ ℝ^N₊, we define *F*_π(s) to be the σ-algebra generated by {*B*(*u*), *u* ≺_π s} and all *P*-null sets. We then make the filtration (*F*_π(s), s ∈ ℝ^N₊) right-continuous in the partial order π, so that *F*_π(s) = ∩_{t≻πs} *F*_π(t).
- Let \mathbb{P}_s^{π} be a regular conditional distribution for *B* given $\mathcal{F}_{\pi}(s)$ and let

$$\mathbb{E}_{s}^{\pi}f := \int f \, d\mathbb{P}_{s}^{\pi} = \mathbb{E}(f \mid \mathcal{F}_{\pi}(s))$$

- We write s λ_π t for the N-vector whose jth coordinate is min(s_j, t_j) if j ∈ π and max(s_j, t_j) otherwise.
- Given a partial order π and a point s ∈ ℝ^N₊, we define *F*_π(s) to be the σ-algebra generated by {*B*(*u*), *u* ≺_π *s*} and all *P*-null sets. We then make the filtration (*F*_π(s), s ∈ ℝ^N₊) right-continuous in the partial order π, so that *F*_π(s) = ∩_{t≻πs} *F*_π(t).
- Let P^π_s be a regular conditional distribution for *B* given *F*_π(s) and let

$$\mathbb{E}_s^{\pi} f := \int f \, d\mathbb{P}_s^{\pi} = \mathbb{E}(f \mid \mathcal{F}_{\pi}(s))$$

- We write $s \downarrow_{\pi} t$ for the *N*-vector whose *j*th coordinate is $\min(s_j, t_j)$ if $j \in \pi$ and $\max(s_j, t_j)$ otherwise.
- Given a partial order π and a point s ∈ ℝ^N₊, we define *F*_π(s) to be the σ-algebra generated by {*B*(*u*), *u* ≺_π *s*} and all *P*-null sets. We then make the filtration (*F*_π(s), s ∈ ℝ^N₊) right-continuous in the partial order π, so that *F*_π(s) = ∩_{t≻πs} *F*_π(t).
- Let P^π_s be a regular conditional distribution for *B* given *F*_π(s) and let

$$\mathbb{E}_{s}^{\pi}f := \int f \, d\mathbb{P}_{s}^{\pi} = \mathbb{E}(f \mid \mathcal{F}_{\pi}(s))$$

Theorem (2.3)

Choose and fix an upright box $\Theta := \prod_{j=1}^{N} [a_j, b_j]$ in $(0, \infty)^N$. For any partial order $\pi \subseteq \{1, \ldots, N\}$, choose and fix some vector $s \in (0, \infty)^N \setminus \Theta$ such that $s \prec_{\pi} t$ for every $t \in \Theta$. Then for all $\mathcal{F}_{\pi}(s)$ -measurable bounded random sets A,

 $\mathbb{P}^{\pi}_{s} \{ B(u) \in A \text{ for some } u \in \Theta \} \asymp \operatorname{Cap}_{d-2N}(A), \quad (3)$

where $Z_1 \simeq Z_2$ means $\mathbb{P} \left\{ \mathbf{1}_{\{Z_1 > 0\}} = \mathbf{1}_{\{Z_2 > 0\}} \right\} = 1$.

This theorem generalizes Theorem 1.1 of Khoshnevisan and Shi (1999).

Theorem (2.3)

Choose and fix an upright box $\Theta := \prod_{j=1}^{N} [a_j, b_j]$ in $(0, \infty)^N$. For any partial order $\pi \subseteq \{1, \ldots, N\}$, choose and fix some vector $s \in (0, \infty)^N \setminus \Theta$ such that $s \prec_{\pi} t$ for every $t \in \Theta$. Then for all $\mathcal{F}_{\pi}(s)$ -measurable bounded random sets A,

 $\mathbb{P}_{s}^{\pi} \{ B(u) \in A \text{ for some } u \in \Theta \} \asymp \operatorname{Cap}_{d-2N}(A), \quad (3)$

where
$$Z_1 \asymp Z_2$$
 means $\mathbb{P} \left\{ \mathbf{1}_{\{Z_1 > 0\}} = \mathbf{1}_{\{Z_2 > 0\}} \right\} = 1$.

This theorem generalizes Theorem 1.1 of Khoshnevisan and Shi (1999).

Theorem (2.3)

Choose and fix an upright box $\Theta := \prod_{j=1}^{N} [a_j, b_j]$ in $(0, \infty)^N$. For any partial order $\pi \subseteq \{1, \ldots, N\}$, choose and fix some vector $s \in (0, \infty)^N \setminus \Theta$ such that $s \prec_{\pi} t$ for every $t \in \Theta$. Then for all $\mathcal{F}_{\pi}(s)$ -measurable bounded random sets A,

 $\mathbb{P}^{\pi}_{s} \{ B(u) \in A \text{ for some } u \in \Theta \} \asymp \operatorname{Cap}_{d-2N}(A), \quad (3)$

where
$$Z_1 \asymp Z_2$$
 means $\mathbb{P}\left\{\mathbf{1}_{\{Z_1 > 0\}} = \mathbf{1}_{\{Z_2 > 0\}}\right\} = 1$.

This theorem generalizes Theorem 1.1 of Khoshnevisan and Shi (1999).

Analysis of pinned sheets

For all
$$s \in (0, \infty)^N$$
 and $t \in \mathbb{R}^N_+$, define
 $B_s(t) := B(t) - \delta_s(t)B(s),$ (4)

where

$$\delta_s(t) := \prod_{j=1}^N \left(\frac{s_j \wedge t_j}{s_j} \right). \tag{5}$$

It is not too difficult to see that

$$B_{s}(t) = B(t) - \mathbb{E}\left[B(t) \mid B(s)\right].$$
(6)

Proof of Theorem 2.3 replies on the following lemma.

Lemma (Khoshnevisan and X., 2007)

Choose and fix a partial order $\pi \subseteq \{1, ..., N\}$ and a time point $s \in (0, \infty)^N$. Then $\{B_s(t)\}_{t \succ_{\pi} s}$ is independent of $\mathcal{F}_{\pi}(s)$.

Moreover, for every nonrandom upright box $I \subset (0, \infty)^N$ and $\pi \subseteq \{1, ..., N\}$, there exists a constant c > 1 such that for all $s, u, v \in I$,

 $c^{-1} \|u - v\| \le \operatorname{Var}\left(B_s^1(u) - B_s^1(v)\right) \le c \|u - v\|,$ (7)

where $B_s^1(t)$ denotes the first coordinate of $B_s(t)$ for all $t \in \mathbb{R}^N_+$.

Proof of Theorem 2.3 replies on the following lemma.

Lemma (Khoshnevisan and X., 2007)

Choose and fix a partial order $\pi \subseteq \{1, ..., N\}$ and a time point $s \in (0, \infty)^N$. Then $\{B_s(t)\}_{t \succ_{\pi} s}$ is independent of $\mathcal{F}_{\pi}(s)$. Moreover, for every nonrandom upright box $I \subset (0, \infty)^N$

and $\pi \subseteq \{1, ..., N\}$, there exists a constant c > 1 such that for all $s, u, v \in I$,

$$c^{-1} \|u - v\| \le \operatorname{Var}\left(B_s^1(u) - B_s^1(v)\right) \le c \|u - v\|,$$
 (7)

where $B_s^1(t)$ denotes the first coordinate of $B_s(t)$ for all $t \in \mathbb{R}^N_+$.

Proof of Theorem 2.2

Observe that there exist distinct points *s* and $t \in \mathcal{T}$ such that $B(s) = B(t) \in A$, if and only if we can find disjoint closed upright boxes Θ_1 and Θ_2 , with vertices with rational coordinates, such that $B(\Theta_1) \cap B(\Theta_2) \cap A \neq \emptyset$. There exist $s \in (0, \infty)^N$ and a partial order $\pi \subseteq \{1, \ldots, N\}$ such that

• $u \prec_{\pi} s$ for all $u \in \Theta_1$ and

• $s \prec_{\pi} v$ for all $v \in \Theta_2$. Applying Theorem 2.3, we derive

$\mathbb{P}\left\{B(\Theta_1) \cap B(\Theta_2) \cap A \neq \varnothing\right\} > 0$ $\Leftrightarrow \mathbb{E}\left[\operatorname{Cap}_{d-2N}\left(B(\Theta_1) \cap A\right)\right] > 0.$

Proof of Theorem 2.2

Observe that there exist distinct points *s* and $t \in \mathcal{T}$ such that $B(s) = B(t) \in A$, if and only if we can find disjoint closed upright boxes Θ_1 and Θ_2 , with vertices with rational coordinates, such that $B(\Theta_1) \cap B(\Theta_2) \cap A \neq \emptyset$. There exist $s \in (0, \infty)^N$ and a partial order $\pi \subseteq \{1, \ldots, N\}$ such that

• $u \prec_{\pi} s$ for all $u \in \Theta_1$ and

• $s \prec_{\pi} v$ for all $v \in \Theta_2$.

Applying Theorem 2.3, we derive

$$\mathbb{P}\left\{B(\Theta_1) \cap B(\Theta_2) \cap A \neq \varnothing\right\} > 0$$

$$\Leftrightarrow \mathbb{E}\left[\operatorname{Cap}_{d-2N}\left(B(\Theta_1) \cap A\right)\right] > 0.$$

Proof of Theorem 2.2

Observe that there exist distinct points *s* and $t \in \mathcal{T}$ such that $B(s) = B(t) \in A$, if and only if we can find disjoint closed upright boxes Θ_1 and Θ_2 , with vertices with rational coordinates, such that $B(\Theta_1) \cap B(\Theta_2) \cap A \neq \emptyset$. There exist $s \in (0, \infty)^N$ and a partial order $\pi \subseteq \{1, \ldots, N\}$ such that

•
$$u \prec_{\pi} s$$
 for all $u \in \Theta_1$ and

• $s \prec_{\pi} v$ for all $v \in \Theta_2$.

Applying Theorem 2.3, we derive

$$\mathbb{P}\left\{B(\Theta_1) \cap B(\Theta_2) \cap A \neq \varnothing\right\} > 0$$

$$\Leftrightarrow \mathbb{E}\left[\operatorname{Cap}_{d-2N}\left(B(\Theta_1) \cap A\right)\right] > 0.$$

The main result of Khoshnevisan and Shi (1999) is that

$\operatorname{Cap}_{d-2N}(E) > 0 \iff \mathbb{P}\{W_2(\Theta_2) \cap E \neq \emptyset\} > 0,$

where W_2 is a Brownian sheet that is independent of *B*. We apply this with $E := B(\Theta_1) \cap A$ first, and then $E := W_2(\Theta_2) \cap A$ to deduce that

 $\mathbb{P}\left\{B(\Theta_{1}) \cap B(\Theta_{2}) \cap A \neq \varnothing\right\} > 0$ $\Leftrightarrow \mathbb{P}\left\{B(\Theta_{1}) \cap W_{2}(\Theta_{2}) \cap A \neq \varnothing\right\} > 0$ $\Leftrightarrow \mathbb{E}\left[\operatorname{Cap}_{d-2N}\left(W_{2}(\Theta_{2}) \cap A\right)\right\} > 0$ $\Leftrightarrow \mathbb{P}\left\{W_{1}(\Theta_{1}) \cap W_{2}(\Theta_{2}) \cap A \neq \varnothing\right\} > 0,$

where W_1 is a Brownian sheet that is independent of B and W_2 .

The main result of Khoshnevisan and Shi (1999) is that

 $\operatorname{Cap}_{d-2N}(E) > 0 \iff \mathbb{P}\{W_2(\Theta_2) \cap E \neq \emptyset\} > 0,$

where W_2 is a Brownian sheet that is independent of *B*. We apply this with $E := B(\Theta_1) \cap A$ first, and then $E := W_2(\Theta_2) \cap A$ to deduce that

$$\begin{split} \mathbb{P}\left\{B(\Theta_1) \cap B(\Theta_2) \cap A \neq \varnothing\right\} > 0 \\ \Leftrightarrow \ \mathbb{P}\left\{B(\Theta_1) \cap W_2(\Theta_2) \cap A \neq \varnothing\right\} > 0 \\ \Leftrightarrow \ \mathbb{E}\left[\operatorname{Cap}_{d-2N}\left(W_2(\Theta_2) \cap A\right)\right\} > 0 \\ \Leftrightarrow \ \mathbb{P}\left\{W_1(\Theta_1) \cap W_2(\Theta_2) \cap A \neq \varnothing\right\} > 0, \end{split}$$

where W_1 is a Brownian sheet that is independent of *B* and W_2 .

The main result of Khoshnevisan and Shi (1999) is that

 $\operatorname{Cap}_{d-2N}(E) > 0 \iff \mathbb{P}\{W_2(\Theta_2) \cap E \neq \emptyset\} > 0,$

where W_2 is a Brownian sheet that is independent of *B*. We apply this with $E := B(\Theta_1) \cap A$ first, and then $E := W_2(\Theta_2) \cap A$ to deduce that

$$\begin{split} \mathbb{P}\left\{B(\Theta_1) \cap B(\Theta_2) \cap A \neq \varnothing\right\} > 0 \\ \Leftrightarrow \ \mathbb{P}\left\{B(\Theta_1) \cap W_2(\Theta_2) \cap A \neq \varnothing\right\} > 0 \\ \Leftrightarrow \ \mathbb{E}\left[\operatorname{Cap}_{d-2N}\left(W_2(\Theta_2) \cap A\right)\right\} > 0 \\ \Leftrightarrow \ \mathbb{P}\left\{W_1(\Theta_1) \cap W_2(\Theta_2) \cap A \neq \varnothing\right\} > 0, \end{split}$$

where W_1 is a Brownian sheet that is independent of *B* and W_2 .

- The proof depends on ordering disjoint upright boxes Θ_1 and Θ_2 .
- This can be done for disjoint upright boxes Θ₁, Θ₂, Θ₃ in ℝ². So Theorem 2.2 and Theorem 2.1 hold for N = 2 and k = 3.
- However, this can not be done in general for disjoint upright boxes Θ₁,..., Θ_k in ℝ^N with N ≥ 3 and k ≥ 3.

- The proof depends on ordering disjoint upright boxes Θ_1 and Θ_2 .
- This can be done for disjoint upright boxes Θ₁, Θ₂, Θ₃ in ℝ². So Theorem 2.2 and Theorem 2.1 hold for N = 2 and k = 3.
- However, this can not be done in general for disjoint upright boxes Θ₁,..., Θ_k in ℝ^N with N ≥ 3 and k ≥ 3.

- The proof depends on ordering disjoint upright boxes Θ_1 and Θ_2 .
- This can be done for disjoint upright boxes Θ₁, Θ₂, Θ₃ in ℝ². So Theorem 2.2 and Theorem 2.1 hold for N = 2 and k = 3.
- However, this can not be done in general for disjoint upright boxes Θ₁,..., Θ_k in ℝ^N with N ≥ 3 and k ≥ 3.

- The proof depends on ordering disjoint upright boxes Θ_1 and Θ_2 .
- This can be done for disjoint upright boxes Θ₁, Θ₂, Θ₃ in ℝ². So Theorem 2.2 and Theorem 2.1 hold for N = 2 and k = 3.
- However, this can not be done in general for disjoint upright boxes Θ₁,..., Θ_k in ℝ^N with N ≥ 3 and k ≥ 3.

3. Hitting probabilities of *M*₂

Theorem (3.1)

Let A denote a nonrandom Borel set in \mathbb{R}^d *.*

- If d > 2N, then $\mathbb{P}\{M_2 \cap A \neq \emptyset\} > 0$ if and only if $\operatorname{Cap}_{2(d-2N)}(A) > 0$, where $\operatorname{Cap}_{\beta}$ denotes the Bessel-Riesz capacity in dimension $\beta \in \mathbb{R}$.
- If d = 2N, then $\mathbb{P}\{M_2 \cap A \neq \emptyset\} > 0$ if and only if $\exists \mu \in \mathcal{P}(A)$, such that

$$\iint \left|\log_{+}\left(\frac{1}{|x-y|}\right)\right|^{2} \mu(dx) \, \mu(dy) < \infty$$

3. Hitting probabilities of *M*₂

Theorem (3.1)

Let A denote a nonrandom Borel set in \mathbb{R}^d .

- If d > 2N, then $\mathbb{P}\{M_2 \cap A \neq \emptyset\} > 0$ if and only if $\operatorname{Cap}_{2(d-2N)}(A) > 0$, where $\operatorname{Cap}_{\beta}$ denotes the Bessel-Riesz capacity in dimension $\beta \in \mathbb{R}$.
- If d = 2N, then $\mathbb{P}{M_2 \cap A \neq \emptyset} > 0$ if and only if $\exists \mu \in \mathcal{P}(A)$, such that

$$\iint \left|\log_{+}\left(\frac{1}{|x-y|}\right)\right|^{2} \mu(dx) \, \mu(dy) < \infty$$

Theorem (3.1)

Let A denote a nonrandom Borel set in \mathbb{R}^d .

- If d > 2N, then $\mathbb{P}\{M_2 \cap A \neq \emptyset\} > 0$ if and only if $\operatorname{Cap}_{2(d-2N)}(A) > 0$, where $\operatorname{Cap}_{\beta}$ denotes the Bessel-Riesz capacity in dimension $\beta \in \mathbb{R}$.
- If d = 2N, then $\mathbb{P}\{M_2 \cap A \neq \emptyset\} > 0$ if and only if $\exists \mu \in \mathcal{P}(A)$, such that

$$\iint \Big|\log_+\Big(\frac{1}{|x-y|}\Big)\Big|^2\mu(dx)\,\mu(dy)<\infty.$$

Theorem (3.1 Continued)

• Finally, if d < 2N, then $\mathbb{P}\{M_k \cap A \neq \emptyset\} > 0$ for all $k \ge 2$ and all nonvoid nonrandom Borel sets $A \subset \mathbb{R}^d$.

Theorem 3.1 follows from Theorem 2.2, the main theorem in Khoshnevisan and Shi (1999) and a result of Peres (1997).

Theorem (3.1 Continued)

• Finally, if d < 2N, then $\mathbb{P}\{M_k \cap A \neq \emptyset\} > 0$ for all $k \ge 2$ and all nonvoid nonrandom Borel sets $A \subset \mathbb{R}^d$.

Theorem 3.1 follows from Theorem 2.2, the main theorem in Khoshnevisan and Shi (1999) and a result of Peres (1997).

Now for any closed set $A \subset \mathbb{R}^d$, we consider $\dim_{_{\mathrm{H}}}(M_2 \cap A)$.

Theorem (4.1)

Choose and fix a nonrandom closed set $A\subset \mathbb{R}^d.$

- If $\dim_{H} A < 2(d-2N)$, then $\mathbb{P}(M_2 \cap A = \emptyset) = 1$.
- If $\dim_{H} A \geq 2(d-2N)$, then

 $\|\dim_{\mathrm{H}}(M_2 \cap A)\|_{L^{\infty}(\mathbb{P})} = \dim_{\mathrm{H}}A - 2(d - 2N)^+,$

where

$$||Z||_{L^{\infty}(\mathbb{P})} := \inf \left\{ \lambda > 0 : \mathbb{P} \{ Z > \lambda \} = 0 \right\}, \ (\inf \varnothing := 0)$$

Now for any closed set $A \subset \mathbb{R}^d$, we consider $\dim_{H}(M_2 \cap A)$.

Theorem (4.1)

Choose and fix a nonrandom closed set $A \subset \mathbb{R}^d$. • If $\dim_{H} A < 2(d-2N)$, then $\mathbb{P}(M_2 \cap A = \emptyset) = 1$. • If $\dim_{H} A \ge 2(d-2N)$, then

 $\|\dim_{_{\mathrm{H}}}(M_2 \cap A)\|_{L^{\infty}(\mathbb{P})} = \dim_{_{\mathrm{H}}}A - 2(d - 2N)^+,$

where

$||Z||_{L^{\infty}(\mathbb{P})} := \inf \left\{ \lambda > 0 : \mathbb{P} \{ Z > \lambda \} = 0 \right\}, \ (\inf \varnothing := \emptyset)$

Now for any closed set $A \subset \mathbb{R}^d$, we consider $\dim_{_{\mathrm{H}}}(M_2 \cap A)$.

Theorem (4.1)

Choose and fix a nonrandom closed set $A \subset \mathbb{R}^d$ *.*

- If $\dim_{H} A < 2(d-2N)$, then $\mathbb{P}(M_2 \cap A = \emptyset) = 1$.
- If $\dim_{H} A \geq 2(d-2N)$, then

 $\|\dim_{\mathrm{H}}(M_2 \cap A)\|_{L^{\infty}(\mathbb{P})} = \dim_{\mathrm{H}}A - 2(d - 2N)^+,$

where

$$\|Z\|_{L^{\infty}(\mathbb{P})} := \inf \left\{ \lambda > 0 : \mathbb{P} \{ Z > \lambda \} = 0 \right\}, \ (\inf \varnothing := \emptyset$$

Now for any closed set $A \subset \mathbb{R}^d$, we consider $\dim_{_{\mathrm{H}}}(M_2 \cap A)$.

Theorem (4.1)

Choose and fix a nonrandom closed set $A \subset \mathbb{R}^d$ *.*

- If $\dim_{H} A < 2(d-2N)$, then $\mathbb{P}(M_2 \cap A = \emptyset) = 1$.
- If $\dim_{H} A \geq 2(d-2N)$, then

$$\|\dim_{_{\mathrm{H}}}(M_2\cap A)\|_{L^{\infty}(\mathbb{P})}=\dim_{_{\mathrm{H}}}A-2(d-2N)^+,$$

where

$$\|Z\|_{L^\infty(\mathbb{P})}:=\inf\left\{\lambda>0:\,\mathbb{P}\{Z>\lambda
ight\}=0
ight\},\ (\infarnothing:=0)$$

The proof has two parts:

• The upper bound: it can be proved that

 $\dim_{_{\mathrm{H}}}(M_2 \cap A) \leq \dim_{_{\mathrm{H}}} A - 2(d - 2N)^+ \quad \text{almost surely.}$

• The lower bound is proved by using Theorem 2.2 and a co-dimension argument.

The proof has two parts:

• The upper bound: it can be proved that

 $\dim_{_{\mathrm{H}}}(M_2 \cap A) \leq \dim_{_{\mathrm{H}}} A - 2(d - 2N)^+ \quad \text{almost surely.}$

• The lower bound is proved by using Theorem 2.2 and a co-dimension argument.

Thank you

э