Critical Brownian sheet does not have double points

Yimin Xiao

Michigan State University

Joint work with R. Dalang, D. Khoshnevisan, E. Nualart and D. Wu

Beijing, July 19–24, 2010

- The Brownian sheet and multiple points
- No double points in the critical case
- \bullet Hitting probability of M_2
- Hausdorff dimension of $M_2 \cap A$

つくい

1. The Brownian sheet and multiple points

The Brownian sheet $B = \{B(t), t \in \mathbb{R}^N_+\}$ is a centered (*N*, *d*)-Gaussian field whose covariance function is

$$
\mathbb{E}\big[B_i(s)B_j(t)\big]=\delta_{ij}\prod_{k=1}^N s_k\wedge t_k,
$$

where $\delta_{i,j} = 1$ if $i = j$ and 0 otherwise.

- When $N = 1$, *B* is Brownian motion in \mathbb{R}^d .
- *B* is *N*/2-self-similar, but it does not have stationary increments.

nar

Multiple points of the Brownian sheet

Recall that $x \in \mathbb{R}^d$ is a *k-multiple point of B* if there exist distinct points $t^1, \ldots, t^k \in (0, \infty)^N$ such that $B(t^1) =$ $\cdots = B(t^k) = x.$

We write *M^k* for the set of all *k*-multiple points of *B*. Note that $M_{k+1} \subset M_k$ for all $k > 2$.

We may also consider the set of *k*-multiple times:

 $L_k = \{(t^1, \cdots, t^k) \in \mathbb{R}_{\neq}^{kN}:\ B(t^1) = \cdots = B(t^k)\}.$

റെ ദ

When $N = 1$, i.e., *B* is Brownian motion, there is a large literature on

- \bullet the existence of multiple points, starting with the works of Dvoretzky, Erdös and Kakutani (1950–).
- fractal properties of M_k and L_k : Taylor (1966), LeGall $(1986, 1987), \ldots$
- self-intersection local times: Wolpert (1978), Geman, Horowitz and Rosen (1984), Dynkin (1985, 1986, 1987, 1988),

 Ω

• See Taylor (1986) and X. (2004) for surveys.

When $N = 1$, i.e., *B* is Brownian motion, there is a large literature on

- \bullet the existence of multiple points, starting with the works of Dvoretzky, Erdös and Kakutani (1950–).
- fractal properties of M_k and L_k : Taylor (1966), LeGall $(1986, 1987), \ldots$
- self-intersection local times: Wolpert (1978), Geman, Horowitz and Rosen (1984), Dynkin (1985, 1986, 1987, 1988),

つのへ

• See Taylor (1986) and X. (2004) for surveys.

When $N = 1$, i.e., *B* is Brownian motion, there is a large literature on

- \bullet the existence of multiple points, starting with the works of Dvoretzky, Erdös and Kakutani (1950–).
- fractal properties of M_k and L_k : Taylor (1966), LeGall $(1986, 1987), \ldots$
- self-intersection local times: Wolpert (1978), Geman, Horowitz and Rosen (1984), Dynkin (1985, 1986, 1987, $1988)$,
- See Taylor (1986) and X. (2004) for surveys.

When $N = 1$, i.e., *B* is Brownian motion, there is a large literature on

- \bullet the existence of multiple points, starting with the works of Dvoretzky, Erdös and Kakutani (1950–).
- fractal properties of M_k and L_k : Taylor (1966), LeGall $(1986, 1987), \ldots$
- self-intersection local times: Wolpert (1978), Geman, Horowitz and Rosen (1984), Dynkin (1985, 1986, 1987, $1988)$,
- See Taylor (1986) and X. (2004) for surveys.

For *N* > 1, it is known [Rosen, 1984; Khoshnevisan, 1997] that

• If
$$
Nk < (k-1)d/2
$$
, then $M_k = \emptyset$ a.s.

 \bullet If *Nk* > (*k* − 1)*d*/2, then $M_k \neq \emptyset$ a.s.

When $Nk > (k-1)d/2$, Rosen (1984) showed that

$$
\mathrm{dim}_{\mathrm{H}} L_k = Nk - (k-1)d/2 \quad \text{a.s.}
$$

When $d = 1$, Zhou (1994) studied the exact Hausdorff measure of *Lk*.

The Hausdorff dimension of *M^k* was determined by Chen Xiong (1994), Khoshnevisan, Wu and X. (2006):

$$
\mathrm{dim}_{\scriptscriptstyle \mathrm{H}} M_k = d - k(d - 2N)^+ \qquad \text{a.s.}
$$

where $a^+ = \max\{0, a\}.$

For *N* > 1, it is known [Rosen, 1984; Khoshnevisan, 1997] that

• If
$$
Nk < (k-1)d/2
$$
, then $M_k = \emptyset$ a.s.

 \bullet If *Nk* > (*k* − 1)*d*/2, then $M_k \neq \emptyset$ a.s.

When $Nk > (k-1)d/2$, Rosen (1984) showed that

$$
\mathrm{dim}_{_{\mathrm{H}}} L_k = Nk - (k-1)d/2 \qquad \text{a.s.}
$$

When $d = 1$, Zhou (1994) studied the exact Hausdorff measure of *Lk*.

The Hausdorff dimension of *M^k* was determined by Chen Xiong (1994), Khoshnevisan, Wu and X. (2006):

$$
\mathrm{dim}_{\scriptscriptstyle \mathrm{H}} M_k = d - k(d - 2N)^+ \qquad \text{a.s.}
$$

where
$$
a^+ = \max\{0, a\}
$$
.

For *N* > 1, it is known [Rosen, 1984; Khoshnevisan, 1997] that

• If
$$
Nk < (k-1)d/2
$$
, then $M_k = \emptyset$ a.s.

 \bullet If *Nk* > $(k-1)d/2$, then $M_k \neq \emptyset$ a.s.

When $Nk > (k-1)d/2$, Rosen (1984) showed that

$$
\mathrm{dim}_{_{\mathrm{H}}}L_k = Nk - (k-1)d/2 \qquad \text{a.s.}
$$

When $d = 1$, Zhou (1994) studied the exact Hausdorff measure of *Lk*.

The Hausdorff dimension of *M^k* was determined by Chen Xiong (1994), Khoshnevisan, Wu and X. (2006):

$$
\mathrm{dim}_{\scriptscriptstyle \mathrm{H}} M_k = d - k(d - 2N)^+ \qquad \text{a.s.}
$$

where $a^+ = \max\{0, a\}.$ 200 Yimin Xiao (Michigan State University) [Critical Brownian sheet does not have double points](#page-0-0) Beijing, July 19–24, 2010 6 / 22

• If
$$
Nk = (k-1)d/2
$$
, then $M_k = \emptyset$ a.s.

² Determine hitting probability for *Mk*. That is, provide explicit conditions on $F \subset \mathbb{R}^d$ such that

 $\mathbb{P}\big\{M_k \cap F \neq \varnothing\big\} > 0.$

- ³ Similar question for *Lk*.
- ⁴ Find exact Hausdorff and packing measure functions for M_k and L_k (if exist).

In this paper, we solve Problems (1) a[nd](#page-10-0) (2) (2) (2) [f](#page-17-0)[or](#page-0-0) $k = 2$ $k = 2$ $k = 2$ $k = 2$ [.](#page-0-0)

• If
$$
Nk = (k-1)d/2
$$
, then $M_k = \emptyset$ a.s.

² Determine hitting probability for *Mk*. That is, provide explicit conditions on $F \subset \mathbb{R}^d$ such that

 $\mathbb{P}\big\{M_k \cap F \neq \varnothing\big\} > 0.$

- ³ Similar question for *Lk*.
- ⁴ Find exact Hausdorff and packing measure functions for M_k and L_k (if exist).

In this paper, we solve Problems (1) a[nd](#page-11-0) (2) (2) (2) [f](#page-17-0)[or](#page-0-0) $k = 2$ $k = 2$ $k = 2$ $k = 2$ [.](#page-0-0)

• If
$$
Nk = (k-1)d/2
$$
, then $M_k = \emptyset$ a.s.

 \bullet Determine hitting probability for M_k . That is, provide explicit conditions on $F \subset \mathbb{R}^d$ such that

$$
\mathbb{P}\big\{M_k\cap F\neq\varnothing\big\}>0.
$$

³ Similar question for *Lk*.

⁴ Find exact Hausdorff and packing measure functions for M_k and L_k (if exist).

In this paper, we solve Problems (1) a[nd](#page-12-0) (2) (2) (2) [f](#page-17-0)[or](#page-0-0) $k = 2$ $k = 2$ $k = 2$ $k = 2$ [.](#page-0-0)

Yimin Xiao (Michigan State University) [Critical Brownian sheet does not have double points](#page-0-0) Beijing, July 19–24, 2010 7 / 22

• If
$$
Nk = (k-1)d/2
$$
, then $M_k = \emptyset$ a.s.

 \bullet Determine hitting probability for M_k . That is, provide explicit conditions on $F \subset \mathbb{R}^d$ such that

$$
\mathbb{P}\big\{M_k\cap F\neq\varnothing\big\}>0.
$$

³ Similar question for *Lk*.

⁴ Find exact Hausdorff and packing measure functions for M_k and L_k (if exist).

In this paper, we solve Problems (1) a[nd](#page-13-0) (2) (2) (2) [f](#page-17-0)[or](#page-0-0) $k = 2$ $k = 2$ $k = 2$ $k = 2$ [.](#page-0-0)

• If
$$
Nk = (k-1)d/2
$$
, then $M_k = \emptyset$ a.s.

 \bullet Determine hitting probability for M_k . That is, provide explicit conditions on $F \subset \mathbb{R}^d$ such that

$$
\mathbb{P}\big\{M_k\cap F\neq\varnothing\big\}>0.
$$

- ³ Similar question for *Lk*.
- ⁴ Find exact Hausdorff and packing measure functions for M_k and L_k (if exist).

In this paper, we solve Problems (1) a[nd](#page-14-0) (2) (2) (2) [f](#page-17-0)[or](#page-0-0) $k = 2$ $k = 2$ $k = 2$ $k = 2$ [.](#page-0-0)

• If
$$
Nk = (k-1)d/2
$$
, then $M_k = \emptyset$ a.s.

2 Determine hitting probability for M_k . That is, provide explicit conditions on $F \subset \mathbb{R}^d$ such that

$$
\mathbb{P}\big\{M_k\cap F\neq\varnothing\big\}>0.
$$

- ³ Similar question for *Lk*.
- ⁴ Find exact Hausdorff and packing measure functions for M_k and L_k (if exist).

In this paper, we solve Problems (1) (1) (1) a[nd](#page-15-0) (2) (2) (2) [f](#page-17-0)[or](#page-0-0) $k = 2$ $k = 2$ $k = 2$ $k = 2$ [.](#page-0-0)

2. No double points in the critical case

The following is our main result.

Theorem (2.1)

An N-parameter, d-dimensional Brownian sheet has double points if and only if $2(d - 2N) < d$.

*In addition, M*² *has positive Lebesgue measure almost surely if and only if d* < 2*N.*

The first part shows that *B* has no double points when $2N =$ *d*/2. The second verifies a conjecture of Fristedt (1995).

The proof of Theorem 2.1 depends on the following decoupling theorem.

2. No double points in the critical case

The following is our main result.

Theorem (2.1)

An N-parameter, d-dimensional Brownian sheet has double points if and only if $2(d - 2N) < d$. *In addition, M*² *has positive Lebesgue measure almost surely if and only if d* < 2*N.*

The first part shows that *B* has no double points when $2N =$ *d*/2. The second verifies a conjecture of Fristedt (1995).

The proof of Theorem 2.1 depends on the following decoupling theorem.

2. No double points in the critical case

The following is our main result.

Theorem (2.1)

An N-parameter, d-dimensional Brownian sheet has double points if and only if $2(d - 2N) < d$. *In addition, M*² *has positive Lebesgue measure almost surely if and only if d* < 2*N.*

The first part shows that *B* has no double points when $2N =$ *d*/2. The second verifies a conjecture of Fristedt (1995).

The proof of Theorem 2.1 depends on the following decoupling theorem.

The following is our main result.

Theorem (2.1)

An N-parameter, d-dimensional Brownian sheet has double points if and only if $2(d - 2N) < d$. *In addition, M*² *has positive Lebesgue measure almost surely if and only if d* < 2*N.*

The first part shows that *B* has no double points when $2N =$ *d*/2. The second verifies a conjecture of Fristedt (1995).

The proof of Theorem 2.1 depends on the following decoupling theorem.

The following is our main result.

Theorem (2.1)

An N-parameter, d-dimensional Brownian sheet has double points if and only if $2(d - 2N) < d$. *In addition, M*² *has positive Lebesgue measure almost surely if and only if d* < 2*N.*

The first part shows that *B* has no double points when $2N =$ *d*/2. The second verifies a conjecture of Fristedt (1995).

The proof of Theorem 2.1 depends on the following decoupling theorem.

つくい

A decoupling theorem

Denote
$$
\mathcal{T} := \{(s, t) \in (0, \infty)^{2N} : s_i \neq t_i, i = 1, ..., N\}
$$
.

Theorem (2.2)

Choose and fix a Borel set $A \subseteq \mathbb{R}^d$ *. Then,*

$$
\mathbb{P}\left\{\exists \,(t^1\,,t^2)\in \mathcal{T}:\ B(t^1)=B(t^2)\in A\right\}>0\qquad (1)
$$

if and only if

$$
\mathbb{P}\left\{\exists (t^1, t^2) \in \mathcal{T}: \ W_1(t^1) = W_2(t^2) \in A\right\} > 0, \qquad (2)
$$

*where W*¹ *and W*² *are independent N-parameter Brownian sheets in* \mathbb{R}^d (unrelated to \overline{B}).

つくい

For proving Theorem 2.2, we develop a conditional potential theory for the Brownian sheet *B*.

We start with some notation.

• We identify subsets of $\{1, \ldots, N\}$ with partial orders on \mathbb{R}^N as follows: For all $s, t \in \mathbb{R}^N$ and $\pi \subseteq \{1, \ldots, N\},$

$$
s \prec_{\pi} t \quad \text{iff} \quad \begin{cases} s_i \leq t_i & \text{for all } i \in \pi, \\ s_i \geq t_i & \text{for all } i \notin \pi. \end{cases}
$$

• We identify subsets of $\{1, \ldots, N\}$ with partial orders on \mathbb{R}^N as follows: For all $s, t \in \mathbb{R}^N$ and $\pi \subseteq \{1, \ldots, N\},$

$$
s \prec_{\pi} t \quad \text{iff} \quad \begin{cases} s_i \leq t_i & \text{for all } i \in \pi, \\ s_i \geq t_i & \text{for all } i \notin \pi. \end{cases}
$$

• We identify subsets of $\{1, \ldots, N\}$ with partial orders on \mathbb{R}^N as follows:

For all $s, t \in \mathbb{R}^N$ and $\pi \subseteq \{1, \ldots, N\},$

$$
s \prec_{\pi} t \quad \text{iff} \quad \begin{cases} s_i \leq t_i & \text{for all } i \in \pi, \\ s_i \geq t_i & \text{for all } i \notin \pi. \end{cases}
$$

• We identify subsets of $\{1, \ldots, N\}$ with partial orders on \mathbb{R}^N as follows:

For all $s, t \in \mathbb{R}^N$ and $\pi \subseteq \{1, \ldots, N\},\$

$$
s \prec_{\pi} t \quad \text{iff} \quad \begin{cases} s_i \leq t_i & \text{for all } i \in \pi, \\ s_i \geq t_i & \text{for all } i \notin \pi. \end{cases}
$$

• We identify subsets of $\{1, \ldots, N\}$ with partial orders on \mathbb{R}^N as follows:

For all $s, t \in \mathbb{R}^N$ and $\pi \subseteq \{1, \ldots, N\},\$

$$
s \prec_{\pi} t \quad \text{iff} \quad \begin{cases} s_i \leq t_i & \text{for all } i \in \pi, \\ s_i \geq t_i & \text{for all } i \notin \pi. \end{cases}
$$

• We identify subsets of $\{1, \ldots, N\}$ with partial orders on \mathbb{R}^N as follows:

For all $s, t \in \mathbb{R}^N$ and $\pi \subseteq \{1, \ldots, N\},\$

$$
s \prec_{\pi} t \quad \text{iff} \quad \begin{cases} s_i \leq t_i & \text{for all } i \in \pi, \\ s_i \geq t_i & \text{for all } i \notin \pi. \end{cases}
$$

• We identify subsets of $\{1, \ldots, N\}$ with partial orders on \mathbb{R}^N as follows:

For all $s, t \in \mathbb{R}^N$ and $\pi \subseteq \{1, \ldots, N\},\$

$$
s \prec_{\pi} t \quad \text{iff} \quad \begin{cases} s_i \leq t_i & \text{for all } i \in \pi, \\ s_i \geq t_i & \text{for all } i \notin \pi. \end{cases}
$$

• We write $s \nightharpoonup_{\pi} t$ for the *N*-vector whose *j*th coordinate is min(s_j , t_j) if $j \in \pi$ and max(s_j , t_j) otherwise.

- Given a partial order π and a point $s \in \mathbb{R}^N_+$, we define $\mathcal{F}_{\pi}(s)$ to be the σ -algebra generated by $\{B(u), u \prec_{\pi}$ *s*} and all *P*-null sets. We then make the filtration $(\mathcal{F}_{\pi}(s), s \in \mathbb{R}^N_+)$ right-continuous in the partial order π , so that $\mathcal{F}_{\pi}(s) = \bigcap_{t \succ s} \mathcal{F}_{\pi}(t)$.
- Let \mathbb{P}_{s}^{π} be a regular conditional distribution for *B* given $\mathcal{F}_{\pi}(s)$ and let

$$
\mathbb{E}^{\pi}_{s}f := \int f \, d\mathbb{P}^{\pi}_{s} = \mathbb{E}(f \mid \mathcal{F}_{\pi}(s))
$$

nar

- We write $s \nightharpoonup_{\pi} t$ for the *N*-vector whose *j*th coordinate is min(s_j , t_j) if $j \in \pi$ and max(s_j , t_j) otherwise.
- Given a partial order π and a point $s \in \mathbb{R}^N_+$, we define $\mathcal{F}_{\pi}(s)$ to be the σ -algebra generated by $\{B(u), u \prec_{\pi}$ *s*} and all *P*-null sets. We then make the filtration $(\mathcal{F}_{\pi}(s), s \in \mathbb{R}^N_+)$ right-continuous in the partial order π , so that $\mathcal{F}_{\pi}(s) = \bigcap_{t \in \mathbb{R}} \mathcal{F}_{\pi}(t)$.
- Let \mathbb{P}_{s}^{π} be a regular conditional distribution for *B* given $\mathcal{F}_{\pi}(s)$ and let

$$
\mathbb{E}^\pi_s f := \int f \, d\mathbb{P}^\pi_s = \mathbb{E}(f \mid \mathcal{F}_\pi(s))
$$

つのへ

- We write $s \nightharpoonup_{\pi} t$ for the *N*-vector whose *j*th coordinate is min(s_j , t_j) if $j \in \pi$ and max(s_j , t_j) otherwise.
- Given a partial order π and a point $s \in \mathbb{R}^N_+$, we define $\mathcal{F}_{\pi}(s)$ to be the σ -algebra generated by $\{B(u), u \prec_{\pi}$ *s*} and all *P*-null sets. We then make the filtration $(\mathcal{F}_{\pi}(s), s \in \mathbb{R}^N_+)$ right-continuous in the partial order π , so that $\mathcal{F}_{\pi}(s) = \bigcap_{t \succ s} \mathcal{F}_{\pi}(t)$.
- Let \mathbb{P}_{s}^{π} be a regular conditional distribution for *B* given $\mathcal{F}_{\pi}(s)$ and let

$$
\mathbb{E}^\pi_s f := \int f \, d\mathbb{P}^\pi_s = \mathbb{E}(f \mid \mathcal{F}_\pi(s))
$$

つのへ

- We write $s \nightharpoonup_{\pi} t$ for the *N*-vector whose *j*th coordinate is min(s_j , t_j) if $j \in \pi$ and max(s_j , t_j) otherwise.
- Given a partial order π and a point $s \in \mathbb{R}^N_+$, we define $\mathcal{F}_{\pi}(s)$ to be the *σ*-algebra generated by $\{B(u), u \prec_{\pi}$ *s*} and all *P*-null sets. We then make the filtration $(\mathcal{F}_{\pi}(s), s \in \mathbb{R}^N_+)$ right-continuous in the partial order π , so that $\mathcal{F}_{\pi}(s) = \bigcap_{t \succ s} \mathcal{F}_{\pi}(t)$.
- Let \mathbb{P}_{s}^{π} be a regular conditional distribution for *B* given $\mathcal{F}_{\pi}(s)$ and let

$$
\mathbb{E}^\pi_s f := \int f \, d\mathbb{P}^\pi_s = \mathbb{E}(f \mid \mathcal{F}_\pi(s))
$$

nar

Theorem (2.3)

Choose and fix an upright box Θ := $\prod_{j=1}^{N} [a_j, b_j]$ *in* $(0, \infty)^N$ *. For any partial order* $\pi \subseteq \{1, \ldots, N\}$ *, choose* and fix some vector $s~\in~(0\,,\infty)^N\setminus\Theta$ such that $s~\prec_\pi~t$ *for every t* $\in \Theta$ *. Then for all* $\mathcal{F}_{\pi}(s)$ *-measurable bounded random sets A,*

 $\mathbb{P}_{s}^{\pi} \left\{ B(u) \in A \text{ for some } u \in \Theta \right\} \asymp \text{Cap}_{d-2N}(A),$ (3)

 $where Z_1 \asymp Z_2$ *means* $\mathbb{P}\left\{ \mathbf{1}_{\{Z_1>0\}} = \mathbf{1}_{\{Z_2>0\}} \right\} = 1.$

This theorem generalizes Theorem 1.1 of Khoshnevisan and Shi (1999).

Theorem (2.3)

Choose and fix an upright box Θ := $\prod_{j=1}^{N} [a_j, b_j]$ *in* $(0, \infty)^N$ *. For any partial order* $\pi \subseteq \{1, \ldots, N\}$ *, choose* and fix some vector $s~\in~(0\,,\infty)^N\setminus\Theta$ such that $s~\prec_\pi~t$ *for every t* $\in \Theta$ *. Then for all* $\mathcal{F}_{\pi}(s)$ *-measurable bounded random sets A,*

 $\mathbb{P}_{s}^{\pi} \left\{ B(u) \in A \text{ for some } u \in \Theta \right\} \asymp \text{Cap}_{d-2N}(A),$ (3)

where
$$
Z_1 \simeq Z_2
$$
 means $\mathbb{P}\left\{1_{\{Z_1>0\}}=1_{\{Z_2>0\}}\right\}=1$.

This theorem generalizes Theorem 1.1 of Khoshnevisan and Shi (1999).

Theorem (2.3)

Choose and fix an upright box Θ := $\prod_{j=1}^{N} [a_j, b_j]$ *in* $(0, \infty)^N$ *. For any partial order* $\pi \subseteq \{1, \ldots, N\}$ *, choose* and fix some vector $s~\in~(0\,,\infty)^N\setminus\Theta$ such that $s~\prec_\pi~t$ *for every t* $\in \Theta$ *. Then for all* $\mathcal{F}_{\pi}(s)$ *-measurable bounded random sets A,*

 $\mathbb{P}_{s}^{\pi} \left\{ B(u) \in A \text{ for some } u \in \Theta \right\} \asymp \text{Cap}_{d-2N}(A),$ (3)

where
$$
Z_1 \simeq Z_2
$$
 means $\mathbb{P}\left\{1_{\{Z_1>0\}}=1_{\{Z_2>0\}}\right\}=1$.

This theorem generalizes Theorem 1.1 of Khoshnevisan and Shi (1999).

Analysis of pinned sheets

For all
$$
s \in (0, \infty)^N
$$
 and $t \in \mathbb{R}^N_+$, define

$$
B_s(t) := B(t) - \delta_s(t)B(s), \qquad (4)
$$

where

$$
\delta_s(t) := \prod_{j=1}^N \left(\frac{s_j \wedge t_j}{s_j} \right). \tag{5}
$$

It is not too difficult to see that

$$
B_s(t) = B(t) - \mathbb{E}\left[B(t) | B(s)\right]. \tag{6}
$$

 QQ

Proof of Theorem 2.3 replies on the following lemma.

Lemma (Khoshnevisan and X., 2007)

Choose and fix a partial order $\pi \subseteq \{1, \ldots, N\}$ *and a time* $point \, s \, \in \, (0 \, , \infty)^N$ *. Then* $\{B_s(t)\}_{t \succ_{\pi^S}}$ is independent of $\mathcal{F}_{\pi}(s)$.

Moreover, for every nonrandom upright box I $\subset (0 \,, \infty)^N$ *and* $\pi \subset \{1, \ldots, N\}$, there exists a constant $c > 1$ such *that for all s, u, v* \in *I,*

 c^{-1} ||*u* − *v*|| ≤ Var (B_s^1) $s^1(s) - B_s^1$ $s^{\{1\}}(v) \leq c \|u - v\|,$ (7)

where $B_{s}^{1}(t)$ denotes the first coordinate of $B_{s}(t)$ for all $t\in$ *N* +*.*

Proof of Theorem 2.3 replies on the following lemma.

Lemma (Khoshnevisan and X., 2007)

Choose and fix a partial order $\pi \subseteq \{1, \ldots, N\}$ *and a time* $point \, s \, \in \, (0 \, , \infty)^N$ *. Then* $\{B_s(t)\}_{t \succ_{\pi^S}}$ is independent of $\mathcal{F}_{\pi}(s)$. *Moreover, for every nonrandom upright box I* $\subset (0 \,, \infty)^N$ *and* $\pi \subseteq \{1, \ldots, N\}$, there exists a constant $c > 1$ such *that for all s, u, v* \in *I,*

$$
c^{-1} \|u - v\| \leq \text{Var}\left(B_s^1(u) - B_s^1(v)\right) \leq c \|u - v\|, \quad (7)
$$

where $B_{s}^{1}(t)$ denotes the first coordinate of $B_{s}(t)$ for all $t\in$ $\mathbb{R}^N_+.$

Proof of Theorem 2.2

Observe that there exist distinct points *s* and $t \in \mathcal{T}$ such that $B(s) = B(t) \in A$, if and only if we can find disjoint closed upright boxes Θ_1 and Θ_2 , with vertices with rational coordinates, such that $B(\Theta_1) \cap B(\Theta_2) \cap A \neq \emptyset$. There exist $s \in (0,\infty)^N$ and a partial order $\pi \subseteq \{1,\ldots,N\}$ such that

• $u \prec_{\pi} s$ for all $u \in \Theta_1$ and

 \bullet *s* \prec_{π} *v* for all $v \in \Theta$. Applying Theorem 2.3, we derive

$\mathbb{P} \{ B(\Theta_1) \cap B(\Theta_2) \cap A \neq \varnothing \} > 0$ \Leftrightarrow $\mathbb{E}\left[\text{Cap}_{d-2N}\left(B(\Theta_1)\cap A\right)\right]>0.$

Proof of Theorem 2.2

Observe that there exist distinct points *s* and $t \in \mathcal{T}$ such that $B(s) = B(t) \in A$, if and only if we can find disjoint closed upright boxes Θ_1 and Θ_2 , with vertices with rational coordinates, such that $B(\Theta_1) \cap B(\Theta_2) \cap A \neq \emptyset$. There exist $s \in (0, \infty)^N$ and a partial order $\pi \subseteq \{1, \ldots, N\}$ such that

•
$$
u \prec_{\pi} s
$$
 for all $u \in \Theta_1$ and

 \bullet *s* \prec_{π} *v* for all $\nu \in \Theta$ ₂.

Applying Theorem 2.3, we derive

$$
\mathbb{P}\left\{B(\Theta_1) \cap B(\Theta_2) \cap A \neq \varnothing\right\} > 0
$$

\n
$$
\Leftrightarrow \mathbb{E}\left[\mathrm{Cap}_{d-2N}\left(B(\Theta_1) \cap A\right)\right] > 0.
$$

Proof of Theorem 2.2

Observe that there exist distinct points *s* and $t \in \mathcal{T}$ such that $B(s) = B(t) \in A$, if and only if we can find disjoint closed upright boxes Θ_1 and Θ_2 , with vertices with rational coordinates, such that $B(\Theta_1) \cap B(\Theta_2) \cap A \neq \emptyset$. There exist $s \in (0, \infty)^N$ and a partial order $\pi \subseteq \{1, \ldots, N\}$ such that

•
$$
u \prec_{\pi} s
$$
 for all $u \in \Theta_1$ and

• $s \prec_{\pi} v$ for all $v \in \Theta_2$.

Applying Theorem 2.3, we derive

$$
\mathbb{P}\left\{B(\Theta_1) \cap B(\Theta_2) \cap A \neq \varnothing\right\} > 0
$$

\n
$$
\Leftrightarrow \mathbb{E}\left[\mathrm{Cap}_{d-2N}\left(B(\Theta_1) \cap A\right)\right] > 0.
$$

The main result of Khoshnevisan and Shi (1999) is that

$Cap_{d-2N}(E) > 0 \Leftrightarrow \mathbb{P}\{W_2(\Theta_2) \cap E \neq \emptyset\} > 0,$

where W_2 is a Brownian sheet that is independent of B . We apply this with $E := B(\Theta_1) \cap A$ first, and then $E :=$ $W_2(\Theta_2) \cap A$ to deduce that

 $\mathbb{P} \{B(\Theta_1) \cap B(\Theta_2) \cap A \neq \varnothing\} > 0$ \Leftrightarrow $\mathbb{P} \{ B(\Theta_1) \cap W_2(\Theta_2) \cap A \neq \emptyset \} > 0$ \Leftrightarrow $\mathbb{E}\left[\text{Cap}_{d-2N}\left(W_2(\Theta_2)\cap A\right)\right]>0$ \Leftrightarrow $\mathbb{P}\{W_1(\Theta_1) \cap W_2(\Theta_2) \cap A \neq \emptyset\} > 0,$

where *W*¹ is a Brownian sheet that is independent of *B* and W_2 . Ω The main result of Khoshnevisan and Shi (1999) is that

 $Cap_{d-2N}(E) > 0 \Leftrightarrow \mathbb{P}\{W_2(\Theta_2) \cap E \neq \emptyset\} > 0,$

where W_2 is a Brownian sheet that is independent of B . We apply this with $E := B(\Theta_1) \cap A$ first, and then $E :=$ $W_2(\Theta_2) \cap A$ to deduce that

 $\mathbb{P} \{ B(\Theta_1) \cap B(\Theta_2) \cap A \neq \emptyset \} > 0$ \Leftrightarrow $\mathbb{P}\left\{B(\Theta_1) \cap W_2(\Theta_2) \cap A \neq \emptyset\right\} > 0$ \Leftrightarrow $\mathbb{E}\left[\text{Cap}_{d-2N}\left(W_2(\Theta_2)\cap A\right)\right]>0$ \Leftrightarrow $\mathbb{P}\{W_1(\Theta_1) \cap W_2(\Theta_2) \cap A \neq \emptyset\} > 0,$

where *W*¹ is a Brownian sheet that is independent of *B* and W_2 . Ω The main result of Khoshnevisan and Shi (1999) is that

 $Cap_{d-2N}(E) > 0 \Leftrightarrow \mathbb{P}\{W_2(\Theta_2) \cap E \neq \emptyset\} > 0,$

where W_2 is a Brownian sheet that is independent of B . We apply this with $E := B(\Theta_1) \cap A$ first, and then $E :=$ $W_2(\Theta_2) \cap A$ to deduce that

$$
\mathbb{P}\left\{B(\Theta_1) \cap B(\Theta_2) \cap A \neq \varnothing\right\} > 0
$$

\n
$$
\Leftrightarrow \mathbb{P}\left\{B(\Theta_1) \cap W_2(\Theta_2) \cap A \neq \varnothing\right\} > 0
$$

\n
$$
\Leftrightarrow \mathbb{E}\left[\mathrm{Cap}_{d-2N} \left(W_2(\Theta_2) \cap A\right)\right\} > 0
$$

\n
$$
\Leftrightarrow \mathbb{P}\left\{W_1(\Theta_1) \cap W_2(\Theta_2) \cap A \neq \varnothing\right\} > 0,
$$

where *W*¹ is a Brownian sheet that is independent of *B* and W_2 . QQ

- The proof depends on ordering disjoint upright boxes Θ_1 and Θ_2 .
- This can be done for disjoint upright boxes Θ_1 , Θ_2 , Θ_3 in \mathbb{R}^2 . So Theorem 2.2 and Theorem 2.1 hold for $N =$ 2 and $k = 3$.
- However, this can not be done in general for disjoint upright boxes $\Theta_1, \ldots, \Theta_k$ in \mathbb{R}^N with $N \geq 3$ and $k \geq 1$ 3.

- The proof depends on ordering disjoint upright boxes Θ_1 and Θ_2 .
- This can be done for disjoint upright boxes Θ_1 , Θ_2 , Θ_3 in \mathbb{R}^2 . So Theorem 2.2 and Theorem 2.1 hold for $N =$ 2 and $k = 3$.
- However, this can not be done in general for disjoint upright boxes $\Theta_1, \ldots, \Theta_k$ in \mathbb{R}^N with $N \geq 3$ and $k \geq 1$ 3.

- The proof depends on ordering disjoint upright boxes Θ_1 and Θ_2 .
- This can be done for disjoint upright boxes Θ_1 , Θ_2 , Θ_3 in \mathbb{R}^2 . So Theorem 2.2 and Theorem 2.1 hold for $N =$ 2 and $k = 3$.
- However, this can not be done in general for disjoint upright boxes $\Theta_1, \ldots, \Theta_k$ in \mathbb{R}^N with $N \geq 3$ and $k \geq 1$ 3.

- The proof depends on ordering disjoint upright boxes Θ_1 and Θ_2 .
- This can be done for disjoint upright boxes Θ_1 , Θ_2 , Θ_3 in \mathbb{R}^2 . So Theorem 2.2 and Theorem 2.1 hold for $N =$ 2 and $k = 3$.
- However, this can not be done in general for disjoint upright boxes $\Theta_1, \ldots, \Theta_k$ in \mathbb{R}^N with $N \geq 3$ and $k \geq 1$ 3.

3. Hitting probabilities of *M*²

Theorem (3.1)

Let A denote a nonrandom Borel set in \mathbb{R}^d .

- If $d > 2N$, then $\mathbb{P}{M_2 \cap A \neq \emptyset} > 0$ if and only if Cap2(*d*−2*N*) (*A*) > 0, *where* Cap^β *denotes the Bessel– Riesz capacity in dimension* $\beta \in \mathbb{R}$.
- **•** If $d = 2N$, then $\mathbb{P}{M_2} \cap A \neq \emptyset$ > 0 if and only if ∃ $\mu \in \mathcal{P}(A)$, such that

$$
\int \int \Big|\log_+\Big(\frac{1}{|x-y|}\Big)\Big|^2\mu(dx)\,\mu(dy)<\infty.
$$

3. Hitting probabilities of *M*²

Theorem (3.1)

Let A denote a nonrandom Borel set in \mathbb{R}^d .

- If $d > 2N$, then $\mathbb{P}{M_2 \cap A \neq \emptyset} > 0$ if and only if $\mathrm{Cap}_{2(d-2N)}(A) \, > \, 0, \, where \, \mathrm{Cap}_\beta \,$ denotes the $Bessel-$ *Riesz capacity in dimension* $\beta \in \mathbb{R}$.
- **•** If $d = 2N$, then $\mathbb{P}{M_2} \cap A \neq \emptyset$ > 0 if and only if ∃ $\mu \in \mathcal{P}(A)$, such that

$$
\int \int \left| \log_+\left(\frac{1}{|x-y|}\right)\right|^2 \mu(dx)\,\mu(dy) < \infty.
$$

Theorem (3.1)

Let A denote a nonrandom Borel set in \mathbb{R}^d .

- If $d > 2N$, then $\mathbb{P}{M_2 \cap A \neq \emptyset} > 0$ if and only if $\mathrm{Cap}_{2(d-2N)}(A) \, > \, 0, \, where \, \mathrm{Cap}_\beta \,$ denotes the $Bessel-$ *Riesz capacity in dimension* $\beta \in \mathbb{R}$.
- If $d = 2N$, then $\mathbb{P}\{M_2 \cap A \neq \emptyset\} > 0$ if and only if \exists $\mu \in \mathcal{P}(A)$, such that

$$
\int\int\Big|\log_+\Big(\frac{1}{|x-y|}\Big)\Big|^2\mu(dx)\,\mu(dy)<\infty.
$$

Theorem (3.1 Continued)

• Finally, if $d < 2N$, then $\mathbb{P}\{M_k \cap A \neq \emptyset\} > 0$ for all $k \geq 2$ and all nonvoid nonrandom Borel sets $A \subset \mathbb{R}^d$.

Theorem 3.1 follows from Theorem 2.2, the main theorem in Khoshnevisan and Shi (1999) and a result of Peres (1997).

റെ ദ

Theorem (3.1 Continued)

• Finally, if $d < 2N$, then $\mathbb{P}{M_k \cap A \neq \emptyset} > 0$ for all $k \geq 2$ and all nonvoid nonrandom Borel sets $A \subset \mathbb{R}^d$.

Theorem 3.1 follows from Theorem 2.2, the main theorem in Khoshnevisan and Shi (1999) and a result of Peres (1997).

Now for any closed set $A \subset \mathbb{R}^d$, we consider $\dim_{\textrm{H}} (M_2 \cap A)$.

Choose and fix a nonrandom closed set $A \subset \mathbb{R}^d$ *.*

- ∂M_{H} *A* < 2(*d* − 2*N*)*, then* $\mathbb{P}(M_2 \cap A = \varnothing) = 1$ *.*
- \bullet *If* dim_{*A}* \geq 2(*d* − 2*N*)*, then*</sub>

 $\|\dim_{\mathrm{H}} (M_2 \cap A)\|_{L^{\infty}(\mathbb{P})} = \dim_{\mathrm{H}} A - 2(d - 2N)^+$,

where

$$
||Z||_{L^{\infty}(\mathbb{P})} := \inf \{ \lambda > 0 : \mathbb{P}\{Z > \lambda\} = 0 \}, (\inf \varnothing := 0)
$$

Now for any closed set $A \subset \mathbb{R}^d$, we consider $\dim_{\textrm{H}} (M_2 \cap A)$.

Theorem (4.1)

Choose and fix a nonrandom closed set $A \subset \mathbb{R}^d$ *.* $\iint \dim_{\rm H} A < 2(d-2N)$, then $\mathbb{P}(M_2 \cap A = \varnothing) = 1$. • *If* dim_{*n*} $A > 2(d - 2N)$ *, then*

 $\|\dim_{\mathrm{H}} (M_2 \cap A)\|_{L^{\infty}(\mathbb{P})} = \dim_{\mathrm{H}} A - 2(d - 2N)^+$,

where

 $||Z||_{L^{\infty}(\mathbb{P})} := \inf \{ \lambda > 0 : \mathbb{P}\{Z > \lambda\} = 0 \}, (\inf \varnothing := \emptyset)$

Now for any closed set $A \subset \mathbb{R}^d$, we consider $\dim_{\textrm{H}} (M_2 \cap A)$.

Theorem (4.1)

Choose and fix a nonrandom closed set $A \subset \mathbb{R}^d$ *.*

- $\iint \dim_{\rm H} A < 2(d-2N)$, then $\mathbb{P}(M_2 \cap A = \varnothing) = 1$.
- *If* dim_{*n}A* $>$ 2(*d* − 2*N*)*, then*</sub>

 $\|\dim_{\text{H}} (M_2 \cap A)\|_{L^{\infty}(\mathbb{P})} = \dim_{\text{H}} A - 2(d - 2N)^+$

where

$$
||Z||_{L^{\infty}(\mathbb{P})} := \inf \{ \lambda > 0 : \mathbb{P}\{Z > \lambda\} = 0 \}, (\inf \varnothing := \emptyset)
$$

Now for any closed set $A \subset \mathbb{R}^d$, we consider $\dim_{\textrm{H}} (M_2 \cap A)$.

Theorem (4.1)

Choose and fix a nonrandom closed set $A \subset \mathbb{R}^d$ *.*

- $\iint \dim_{\rm H} A < 2(d-2N)$, then $\mathbb{P}(M_2 \cap A = \varnothing) = 1$.
- \bullet *If* dim_{*A}* \geq 2(*d* − 2*N*)*, then*</sub>

$$
||\dim_{H}(M_2 \cap A)||_{L^{\infty}(\mathbb{P})} = \dim_{H} A - 2(d - 2N)^{+},
$$

where

$$
||Z||_{L^{\infty}(\mathbb{P})} := \inf \{ \lambda > 0: \, \mathbb{P}\{Z > \lambda\} = 0 \} \, , \, (\inf \varnothing := 0)
$$

The proof has two parts:

• The upper bound: it can be proved that

 $dim_{\rm H}(M_2 \cap A) \le dim_{\rm H}A - 2(d-2N)^+$ almost surely.

• The lower bound is proved by using Theorem 2.2 and a co-dimension argument.

nar

The proof has two parts:

• The upper bound: it can be proved that

 $\dim_{\mathcal{H}} (M_2 \cap A) \leq \dim_{\mathcal{H}} A - 2(d - 2N)^+$ almost surely.

• The lower bound is proved by using Theorem 2.2 and a co-dimension argument.

nar

Thank you

 \leftarrow \Box

 299

∍