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Background

Switched Diffusion Processes are often used to describe some typical
hybrid systems: systems with multiple modes.

Stability;
Ergodicity;
Harnack Inequality;
· · · · · · .

Lévy Type Processes (or Jump-Diffusion Processes) can be considered
as continuous Itô diffusions perturbed by random jumps.
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Lévy Type Processes (or Jump-Diffusion Processes) can be considered
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Our Work

In this work, we will consider switched Lévy type processes.

Roughly, a switched Lévy type process is a combination of switched
diffusion process and Lévy type process.

We will use a weakly coupled Lévy type operator to generate a
switched Lévy type process.
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We will use a weakly coupled Lévy type operator to generate a
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Weakly Coupled Lévy Type Operator

Let d and N be two positive integers and set S := {1, 2, · · · , N}. For
certain “nice” functions

f =


f1

f2
...

fN

 : Rd 7→ RN ,

consider the following weakly coupled Lévy type operator:

Sf =


L1 0 · · · 0
0 L2 · · · 0
...

...
. . .

...
0 0 · · · LN

 f + Qf. (1)
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Weakly Coupled Lévy Type Operator

Here, for each k ∈ S, Lk is a Lévy type operator defined as follows:

Lkfk(x) =
1

2
tr

(
a(x, k)Hessfk(x)

)
+ 〈b(x, k),∇fk(x)〉

+

∫
Rd\{0}

(
fk(x + u)− fk(x)− 〈∇fk(x), u〉1{|u|≤ε0}

)
ν(x, k, du),

(2)
where for each (x, k) ∈ Rd × S,

a(x, k) =
(
aij(x, k)

)
is a nonnegative definite symmetric d×d-matrix,

b(x, k) =
(
bi(x, k)

)
is a d-dimensional vector,

and ν(x, k, ·) is a Lévy kernel satisfying that ν(x, k, ·) is a nonnegative
σ-finite measure on Rd \ {0} such that there exists a nonnegative
constant ε0 satisfying that

∫
Rd\{0} |u|

21{|u|≤ε0}ν(x, k, du) < ∞ and

ν(x, k, Rd \ {|u| ≤ ε0}) < ∞.
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Weakly Coupled Lévy Type Operator

Here, for each k ∈ S, Lk is a Lévy type operator defined as follows:

Lkfk(x) =
1

2
tr

(
a(x, k)Hessfk(x)

)
+ 〈b(x, k),∇fk(x)〉

+

∫
Rd\{0}

(
fk(x + u)− fk(x)− 〈∇fk(x), u〉1{|u|≤ε0}

)
ν(x, k, du),

(2)
where for each (x, k) ∈ Rd × S,

a(x, k) =
(
aij(x, k)

)
is a nonnegative definite symmetric d×d-matrix,

b(x, k) =
(
bi(x, k)

)
is a d-dimensional vector,
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Weakly Coupled Lévy Type Operator

And here, Q =
(
qkl(x)

)
is an N ×N matrix-valued measurable

function on Rd such that

qkl(x) ≥ 0 on Rd for k 6= l (3)

and, for each fixed k ∈ S,∑
l∈S

qkl(x) = 0 on Rd. (4)

Moreover, ∇fk(·) and Hessfk(·) denote the gradient and Hessian
matrix of fk(·), respectively.
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Weakly Coupled Lévy Type Operator (again)

So, for certain “nice” functions

f =


f1

f2
...

fN

 : Rd 7→ RN ,
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Switched Lévy Type Process

As is well known, under some mild conditions, a Lévy type operator as
in (2) can be associated with a regular (i.e. non-explosive) Lévy type
process.

For the existence and uniqueness of the strong Markov process
Y = (X, Λ) corresponding to the weakly coupled Lévy type operator
S defined in (1), we make the following assumption.

Assumption 1

Assume that for each k ∈ S, the Lévy type operator Lk defined in (2) is
associated with a regular (i.e. non-explosive) Lévy type process X̃(k).
Moreover, assume that for each k ∈ S, the function qkk(x) ≤ 0 is
bounded from below.
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Assume that for each k ∈ S, the Lévy type operator Lk defined in (2) is
associated with a regular (i.e. non-explosive) Lévy type process X̃(k).
Moreover, assume that for each k ∈ S, the function qkk(x) ≤ 0 is
bounded from below.
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The First Switching Time

We will use the Ikeda-Nagasawa-Watanabe piecing together
procedure to construct the strong Markov process Y = (X, Λ) which
has infinitesimal generator S defined by (1).

Let
τ = inf{t > 0 : Λ(t) 6= Λ(0)} (5)

be the first switching time of Y .

Clearly, we can identify Y (t) = (X(t),Λ(t)) with (X̃(k)(t),Λ(0)) for
0 ≤ t < τ when (X(0),Λ(0)) = (x, k), where X̃(k) just is the Lévy
type process introduced in Assumption 1.

Meanwhile, we also have that P(x,k)(τ > 0) = 1 for all
(x, k) ∈ Rd × S.
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Killed Lévy Type Processes

To construct Y = (X, Λ), we need to introduce a family of killed Lévy
type processes.

For each k ∈ S, we kill the Lévy type process X̃(k) at the rate (−qkk),

E(x)
k [f(X(k)(t))] = E(x)

k [f(X̃(k)(t)); t < τ ]

= E(x)
k [exp{

∫ t

0
qkk(X̃

(k)(s))ds}f(X̃(k)(t))],
(6)

to get a subprocess X(k).

Equivalently, X(k) can be defined as X(k)(t) = X̃(k)(t) if t < τ and
X(k)(t) = ∂ if t ≥ τ , where ∂ is a cemetery point added to Rd.
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Ikeda-Nagasawa-Watanabe Piecing Together Procedure

By the Ikeda-Nagasawa-Watanabe piecing together procedure, now
we construct the switched Lévy type process Y = (X, Λ) on Rd × S
as follows.

For given (x, k) ∈ Rd × S, let Y (t) = (X(k)(t),Λ(0)) for 0 ≤ t < τ (1),
where X(k)(0) = x, Λ(0) = k and τ (1) = inf{t > 0 : Λ(t) 6= Λ(0)}.

Next, we select an l ∈ S \ {k} with the probability distribution
(−qkl/qkk)(X(τ (1)−)) and glue a copy of Y = (X, Λ) starting from
(X(τ (1)−), l).

Namely, define Y (τ (1) + t) = (X(l)(t),Λ(0)) for 0 ≤ t < τ (2), where
X(l)(0) = X(τ (1)−), Λ(0) = l and τ (2) = inf{t > 0 : Λ(t) 6= Λ(0)}.

Then iterating the above procedure countably many times, we get a
strong Markov process Y = (X, Λ) on Rd × S.
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we construct the switched Lévy type process Y = (X, Λ) on Rd × S
as follows.

For given (x, k) ∈ Rd × S, let Y (t) = (X(k)(t),Λ(0)) for 0 ≤ t < τ (1),
where X(k)(0) = x, Λ(0) = k and τ (1) = inf{t > 0 : Λ(t) 6= Λ(0)}.

Next, we select an l ∈ S \ {k} with the probability distribution
(−qkl/qkk)(X(τ (1)−)) and glue a copy of Y = (X, Λ) starting from
(X(τ (1)−), l).

Namely, define Y (τ (1) + t) = (X(l)(t),Λ(0)) for 0 ≤ t < τ (2), where
X(l)(0) = X(τ (1)−), Λ(0) = l and τ (2) = inf{t > 0 : Λ(t) 6= Λ(0)}.

Then iterating the above procedure countably many times, we get a
strong Markov process Y = (X, Λ) on Rd × S.
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Y Has Infinitesimal Generator S

Theorem 2

Suppose that Assumption 1 holds. Then, the process Y constructed above
is a switched Lévy type process on Rd × S associated the infinitesimal
generator S in (1).

Sketched Proof. Denote by {Pt, t ≥ 0} and {Gα, α > 0},
respectively, the transition semigroup and resolvent of the switched
process Y = (X, Λ).

For each k ∈ S, let {G(k)
α , α > 0} be the resolvent for the generator

Lk + qkk.

Let f(x, k) ≥ 0 on Rd × S.

Applying the strong Markov property at the first switching time τ and
recalling the construction of Y , we obtain
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Y Has Infinitesimal Generator S (Cont)

Gαf(x, k) = E(x,k)

[∫ ∞

0
e−αtf(Xt,Λt)dt

]
= E(x,k)

[∫ τ

0
e−αtf(Xt, k)dt

]
+ E(x,k)

[∫ ∞

τ
e−αtf(Xt,Λt)dt

]
= G(k)

α f(x, k) + E(x,k)

[
e−ατGαf(Xτ ,Λτ )

]
= G(k)

α f(x, k) +
∑

l∈S\{k}

E(x,k)

[
e−ατ

(
− qkl

qkk

)
(Xτ−)Gαf(Xτ−, l)

]
= G(k)

α f(x, k) +
∑

l∈S\{k}

G(k)
α (qklGαf(·, l))(x).

Hence for each fixed k ∈ S,

LkGαf(·, k) +
∑
l∈S

qklGαf(·, l)− αGαf(·, k) = −f(·, k).

This shows that S defined in (1) is the infinitesimal generator of Y .
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Dynkin’s Formula

Remark 3

For each k ∈ S, and for any function f(·, k) ∈ C2
0 (Rd), define an

operator A as follows:

Af(x, k) = Lkf(x, k) + Q(x)f(x, k), (7)

where operator Q(x) is further defined as

Q(x)f(x, k) =
∑
l∈S

qkl(x)
(
f(x, l)− f(x, k)

)
. (8)

Since S is the infinitesimal generator of Y by Theorem 2, we know that
for each bounded stopping time τ for the process Y and each function
f(·, k) ∈ C2

0 (Rd) with k ∈ S, the Dynkin’s formula

E(x,k)f(X(τ),Λ(τ)) = f(x, k) + E(x,k)

∫ τ

0
Af(X(s),Λ(s))ds (9)

holds for each point (x, k) ∈ Rd × S.
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Successive Switching Instants

We now consider the non-explosiveness of the process Y = (X, Λ).

To do so, we need to prove that Y = (X, Λ) can only have finitely
many switches during a finite time interval.

Let us denote the successive switching instants of (X, Λ) by

τ1 = inf{t > 0 : Λ(t) 6= Λ(0)},
τn = inf{t : t > τn−1,Λ(t) 6= Λ(τn−1)}, n ≥ 2,

(10)

with the convention that inf ∅ = +∞.

Moreover, we also define a counting process, υ(t) := max{n : τn ≤ t}.

Obviously, τ1 just is the first switching time τ defined in (5) and υ(t)
is the total number of switches of (X, Λ) prior to t.
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Exit Times

Lemma 4

Suppose that Assumption 1 holds. For every (x, k) ∈ Rd × S and every
t > 0, we have that

P(x,k)( lim
n→∞

τn = ∞) = 1, P(x,k)
(
υ(t) < +∞

)
= 1. (11)

We now proceed to prove the non-explosiveness of Y = (X, Λ). For
all integers m ≥ 1, let Om := {x ∈ Rd : |x| < m} and define

γm := inf{t ≥ 0 : (X(t),Λ(t)) ∈ Oc
m × S}.

It follows from the second equality in (11) that for every
(x, k) ∈ Rd × S and every t > 0, P(x,k)

(
υ(t) < +∞

)
= 1.

Consequently, for every m ≥ 1, we then have that

P(x,k)
(
γm ≤ t

)
=

∞∑
n=0

P(x,k)
(
γm ≤ t, υ(t) = n

)
. (12)
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Non-Explosiveness

Theorem 5

Suppose that Assumption 1 holds. The process Y = (X, Λ) is
non-explosive.

Remark 6

We can define truncations (X(t ∧ γm),Λ(t ∧ γm)) (m ≥ 1) of the
non-explosive process (X, Λ). Then we have that for every m ≥ 1,

E(x,k)f(X(t ∧ γm),Λ(t ∧ γm))

= f(x, k) + E(x,k)

∫ t

0
Af(X(s ∧ γm),Λ(s ∧ γm))ds

(13)

holds for each point (x, k) ∈ Om × S and each function f(·, k) ∈ C2(Rd)
with k ∈ S.
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Some Conditions

We will prove the Feller property for the switched Lévy type process
Y = (X, Λ) under some conditions.

Assumption 7

Assume that for (x, k) ∈ Rd × S, the Lévy kernel ν(x, k, ·) is a
nonnegative finite measure on Rd \ {0}. Moreover, assume that there
exists a constant H > 0 such that

|σ(x, k)− σ(y, k)|+ |b(x, k)− b(y, k)| ≤ H|x− y| (14)

and ∫
Rd\{0}

|z|‖ν(x, k, ·)− ν(y, k, ·)‖(dz) ≤ H|x− y| (15)

for all x, y ∈ Rd and k ∈ S, where σ(x, k) is a square root of a(x, k)
such that a(x, k) = σ(x, k)σ(x, k)∗.
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Feller Property

Using the coupling methods, we prove the following two lemmas.

Lemma 8

Suppose that Assumptions 1 and 7 hold. For each k ∈ S, the Lévy type
process X̃(k) generated by the Lévy type operator Lk defined in (2) has
Feller property.

Lemma 9

Suppose that Assumptions 1 and 7 hold. For each k ∈ S, the killed Lévy
type process X(k) introduced in (6) has Feller property.
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Feller Property

By virtue of the relation of Y = (X, Λ) and the killed Lévy type
processes X(k), k ∈ S, we prove the following theorem.

Theorem 10

Suppose that Assumptions 1 and 7 hold. Then, The process Y = (X, Λ)
has Feller property.

Remark 11

The global Lipschitz condition in Assumption 7 can be relaxed to local
Lipschitz condition by making using a truncation argument.
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Some Auxiliary Processes and Further Conditions

We now introduce some auxiliary processes as follows.

For each k ∈ S, let X̃(k),0 be the unique strong Markov process
generated by operator L0

k, which is defined for “nice” function g on
Rd as follows:

L0
kg(x) =

1

2
tr

(
a(x, k)Hessg(x)

)
+ 〈b(x, k),∇g(x)〉. (16)

Assumption 12

Assume that for each k ∈ S, X̃(k),0 has a positive transition probability
density p̃(k),0(t, x, y) with respect to the Lebesgue measure. Moreover,
assume that qkl(x) > 0 for all x ∈ Rd and k 6= l ∈ S.
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generated by operator L0

k, which is defined for “nice” function g on
Rd as follows:

L0
kg(x) =

1

2
tr

(
a(x, k)Hessg(x)

)
+ 〈b(x, k),∇g(x)〉. (16)

Assumption 12

Assume that for each k ∈ S, X̃(k),0 has a positive transition probability
density p̃(k),0(t, x, y) with respect to the Lebesgue measure. Moreover,
assume that qkl(x) > 0 for all x ∈ Rd and k 6= l ∈ S.
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Irreducibility and Aperiodicity

Let us fix a probability measure µ(·) that is equivalent to the product
measure on Rd × S of the Lebesgue measure on Rd and the counting
measure on S.

Proposition 13

Suppose that Assumptions 1, 7 and 12 hold. Then (X, Λ) is µ-irreducible.
Moreover, for any given δ > 0, all compact subsets of Rd × S are petite for
the δ-skeleton chain of (X, Λ).

Proposition 14

Suppose that Assumptions 1, 7 and 12 hold. Then (X, Λ) is a
µ-irreducible, aperiodic T -process.
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Exponential Ergodicity

We proceed to investigate the exponential ergodicity for strong
Markov process Y = (X, Λ).

For any positive function Ψ(x, k) ≥ 1 defined on Rd × S and any
signed measure ν(·) defined on B(Rd × S) we write

‖ν‖Ψ = sup{|ν(Φ)| : |Φ| ≤ Ψ}.

For a function ∞ > Ψ ≥ 1 on Rd × S, Markov process (X, Λ) is said
to be Ψ-exponentially ergodic if there exist a probability measure
π(·), a constant θ < 1 and a finite-valued function Θ(x, k) such that

‖P (t, (x, k), ·)− π(·)‖Ψ ≤ Θ(x, k)θt

for all t ≥ 0 and all (x, k) ∈ Rd × S.
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Exponential Ergodicity

We proceed to investigate the exponential ergodicity for strong
Markov process Y = (X, Λ).

For any positive function Ψ(x, k) ≥ 1 defined on Rd × S and any
signed measure ν(·) defined on B(Rd × S) we write

‖ν‖Ψ = sup{|ν(Φ)| : |Φ| ≤ Ψ}.

For a function ∞ > Ψ ≥ 1 on Rd × S, Markov process (X, Λ) is said
to be Ψ-exponentially ergodic if there exist a probability measure
π(·), a constant θ < 1 and a finite-valued function Θ(x, k) such that

‖P (t, (x, k), ·)− π(·)‖Ψ ≤ Θ(x, k)θt

for all t ≥ 0 and all (x, k) ∈ Rd × S.
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Exponential Ergodicity (Cont)

Moreover, a nonnegative function V (x, k) defined on Rd × S is called
a norm-like function if V (x, k) →∞ as |x| → ∞ for all k ∈ S. A
Foster-Lyapunov drift condition: for some α, β > 0 and a norm-like
function V (x, k) which is twice continuously differentiable in x,

AV (x, k) ≤ −αV (x, k) + β (17)

for (x, k) ∈ Rd × S.

Theorem 15

Suppose that (17) and Assumptions 1, 7 and 12 hold. Then (X, Λ) is
Ψ-exponentially ergodic with Ψ(x, k) = V (x, k) + 1 and
Θ(x, k) = B

(
V (x, k) + 1

)
, where B is a finite constant. Meanwhile,

(X, Λ) is Ψ-uniformly ergodic with Ψ(x, k) = V (x, k).
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QED

Thank You Very Much!
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