Weakly Coupled Lévy Type Operators and Switched Lévy Type Processes

Fubao Xi Beijing Institute of Technology

Joint work with Zhen-Qing Chen

The 7th Workshop on Markov Processes and Related Topics July 19-23 2010, Beijing

Contents

Introduction

- 2 Construction of the Process
- 3 Non-Explosiveness
 - 4 Feller Property
- 5 Some Other Properties
- 6 Exponential Ergodicity

- Switched Diffusion Processes are often used to describe some typical hybrid systems: systems with multiple modes.
 - Stability;
 - Ergodicity;
 - Harnack Inequality;
 - • • • • •
- Lévy Type Processes (or Jump-Diffusion Processes) can be considered as continuous Itô diffusions perturbed by random jumps.
 - Stability;
 - Ergodicity;
 - Harnack Inequality;
 - • • • • •

(日) (同) (三) (三)

- Switched Diffusion Processes are often used to describe some typical hybrid systems: systems with multiple modes.
 - Stability;
 - Ergodicity;
 - Harnack Inequality;
 - • • • • •
- Lévy Type Processes (or Jump-Diffusion Processes) can be considered as continuous Itô diffusions perturbed by random jumps.
 - Stability;
 - Ergodicity;
 - Harnack Inequality;
 - • • • •

- 4 @ > - 4 @ > - 4 @ >

- Switched Diffusion Processes are often used to describe some typical hybrid systems: systems with multiple modes.
 - Stability;
 - Ergodicity;
 - Harnack Inequality;
 - • • • • •
- Lévy Type Processes (or Jump-Diffusion Processes) can be considered as continuous Itô diffusions perturbed by random jumps.
 - Stability;
 - Ergodicity;
 - Harnack Inequality;
 - • • • • •

- 4 @ > - 4 @ > - 4 @ >

- Switched Diffusion Processes are often used to describe some typical hybrid systems: systems with multiple modes.
 - Stability;
 - Ergodicity;
 - Harnack Inequality;

• • • • • • • • •

- Lévy Type Processes (or Jump-Diffusion Processes) can be considered as continuous Itô diffusions perturbed by random jumps.
 - Stability;
 - Ergodicity;
 - Harnack Inequality;
 - • • • .

(日) (同) (三) (三)

- Switched Diffusion Processes are often used to describe some typical hybrid systems: systems with multiple modes.
 - Stability;
 - Ergodicity;
 - Harnack Inequality;
 - • • • • •
- Lévy Type Processes (or Jump-Diffusion Processes) can be considered as continuous Itô diffusions perturbed by random jumps.
 - Stability;
 - Ergodicity;
 - Harnack Inequality;
 - • • • • •

(日) (同) (三) (三)

- Switched Diffusion Processes are often used to describe some typical hybrid systems: systems with multiple modes.
 - Stability;
 - Ergodicity;
 - Harnack Inequality;
 - • • • • •
- Lévy Type Processes (or Jump-Diffusion Processes) can be considered as continuous Itô diffusions perturbed by random jumps.
 - Stability;
 - Ergodicity;
 - Harnack Inequality;
 - • • • .

A B F A B F

- Switched Diffusion Processes are often used to describe some typical hybrid systems: systems with multiple modes.
 - Stability;
 - Ergodicity;
 - Harnack Inequality;
 - • • • • •
- Lévy Type Processes (or Jump-Diffusion Processes) can be considered as continuous Itô diffusions perturbed by random jumps.
 - Stability;
 - Ergodicity;
 - Harnack Inequality;
 - • • • • •

A B A A B A

- Switched Diffusion Processes are often used to describe some typical hybrid systems: systems with multiple modes.
 - Stability;
 - Ergodicity;
 - Harnack Inequality;
 - • • • • •
- Lévy Type Processes (or Jump-Diffusion Processes) can be considered as continuous Itô diffusions perturbed by random jumps.
 - Stability;
 - Ergodicity;
 - Harnack Inequality;
 - • • • • •

A B M A B M

- Switched Diffusion Processes are often used to describe some typical hybrid systems: systems with multiple modes.
 - Stability;
 - Ergodicity;
 - Harnack Inequality;
 - • • • • •
- Lévy Type Processes (or Jump-Diffusion Processes) can be considered as continuous Itô diffusions perturbed by random jumps.
 - Stability;
 - Ergodicity;
 - Harnack Inequality;

• • • • • • • •

4 3 > 4 3

- Switched Diffusion Processes are often used to describe some typical hybrid systems: systems with multiple modes.
 - Stability;
 - Ergodicity;
 - Harnack Inequality;
 - • • • • •
- Lévy Type Processes (or Jump-Diffusion Processes) can be considered as continuous Itô diffusions perturbed by random jumps.
 - Stability;
 - Ergodicity;
 - Harnack Inequality;
 - • • • •

In this work, we will consider switched Lévy type processes.

Roughly, a switched Lévy type process is a combination of switched diffusion process and Lévy type process.

We will use a weakly coupled Lévy type operator to generate a switched Lévy type process.

In this work, we will consider switched Lévy type processes.

Roughly, a switched Lévy type process is a combination of switched diffusion process and Lévy type process.

We will use a weakly coupled Lévy type operator to generate a switched Lévy type process.

In this work, we will consider switched Lévy type processes.

Roughly, a switched Lévy type process is a combination of switched diffusion process and Lévy type process.

We will use a weakly coupled Lévy type operator to generate a switched Lévy type process.

Let d and N be two positive integers and set $\mathbb{S} := \{1, 2, \cdots, N\}$. For certain "nice" functions

$$f = \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_N \end{pmatrix} : \mathbb{R}^d \mapsto \mathbb{R}^N,$$

consider the following weakly coupled Lévy type operator:

$$Sf = \begin{pmatrix} \mathcal{L}_1 & 0 & \cdots & 0 \\ 0 & \mathcal{L}_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mathcal{L}_N \end{pmatrix} f + Qf.$$
(1)

(日) (同) (三) (三)

Let d and N be two positive integers and set $\mathbb{S} := \{1, 2, \cdots, N\}$. For certain "nice" functions

$$f = \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_N \end{pmatrix} : \mathbb{R}^d \mapsto \mathbb{R}^N,$$

consider the following weakly coupled Lévy type operator:

$$Sf = \begin{pmatrix} \mathcal{L}_1 & 0 & \cdots & 0 \\ 0 & \mathcal{L}_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mathcal{L}_N \end{pmatrix} f + Qf.$$
(1)

イロト 人間ト イヨト イヨト

Here, for each $k \in \mathbb{S}$, \mathcal{L}_k is a Lévy type operator defined as follows:

$$\mathcal{L}_k f_k(x) = \frac{1}{2} \operatorname{tr} \left(a(x,k) \operatorname{Hess} f_k(x) \right) + \langle b(x,k), \nabla f_k(x) \rangle + \int_{\mathbb{R}^d \setminus \{0\}} \left(f_k(x+u) - f_k(x) - \langle \nabla f_k(x), u \rangle \mathbf{1}_{\{|u| \le \varepsilon_0\}} \right) \nu(x,k,du),$$
(2)

where for each $(x,k) \in \mathbb{R}^d \times \mathbb{S}$,

 $a(x,k) = (a_{ij}(x,k))$ is a nonnegative definite symmetric $d \times d$ -matrix, $b(x,k) = (b_i(x,k))$ is a d-dimensional vector,

Here, for each $k \in \mathbb{S}$, \mathcal{L}_k is a Lévy type operator defined as follows:

$$\mathcal{L}_{k}f_{k}(x) = \frac{1}{2} \operatorname{tr} \left(a(x,k) \operatorname{Hess} f_{k}(x) \right) + \langle b(x,k), \nabla f_{k}(x) \rangle + \int_{\mathbb{R}^{d} \setminus \{0\}} \left(f_{k}(x+u) - f_{k}(x) - \langle \nabla f_{k}(x), u \rangle \mathbf{1}_{\{|u| \leq \varepsilon_{0}\}} \right) \nu(x,k,du),$$
(2)

where for each $(x,k) \in \mathbb{R}^d \times \mathbb{S}$,

 $a(x,k) = (a_{ij}(x,k))$ is a nonnegative definite symmetric $d \times d$ -matrix, $b(x,k) = (b_i(x,k))$ is a d-dimensional vector,

Here, for each $k \in \mathbb{S}$, \mathcal{L}_k is a Lévy type operator defined as follows:

$$\mathcal{L}_{k}f_{k}(x) = \frac{1}{2} \operatorname{tr}(a(x,k) \operatorname{Hess} f_{k}(x)) + \langle b(x,k), \nabla f_{k}(x) \rangle + \int_{\mathbb{R}^{d} \setminus \{0\}} (f_{k}(x+u) - f_{k}(x) - \langle \nabla f_{k}(x), u \rangle \mathbf{1}_{\{|u| \leq \varepsilon_{0}\}}) \nu(x,k,du),$$
(2)

where for each $(x, k) \in \mathbb{R}^d \times \mathbb{S}$, $a(x, k) = (a_{ij}(x, k))$ is a nonnegative definite symmetric $d \times d$ -matrix, $b(x, k) = (b_i(x, k))$ is a d-dimensional vector,

Here, for each $k \in \mathbb{S}$, \mathcal{L}_k is a Lévy type operator defined as follows:

$$\mathcal{L}_{k}f_{k}(x) = \frac{1}{2} \operatorname{tr}(a(x,k) \operatorname{Hess} f_{k}(x)) + \langle b(x,k), \nabla f_{k}(x) \rangle + \int_{\mathbb{R}^{d} \setminus \{0\}} (f_{k}(x+u) - f_{k}(x) - \langle \nabla f_{k}(x), u \rangle \mathbf{1}_{\{|u| \leq \varepsilon_{0}\}}) \nu(x,k,du),$$
(2)

where for each $(x, k) \in \mathbb{R}^d \times \mathbb{S}$,

 $a(x,k) = (a_{ij}(x,k))$ is a nonnegative definite symmetric $d \times d$ -matrix, $b(x,k) = (b_i(x,k))$ is a d-dimensional vector,

Here, for each $k \in \mathbb{S}$, \mathcal{L}_k is a Lévy type operator defined as follows:

$$\mathcal{L}_{k}f_{k}(x) = \frac{1}{2} \operatorname{tr}(a(x,k) \operatorname{Hess} f_{k}(x)) + \langle b(x,k), \nabla f_{k}(x) \rangle + \int_{\mathbb{R}^{d} \setminus \{0\}} (f_{k}(x+u) - f_{k}(x) - \langle \nabla f_{k}(x), u \rangle \mathbf{1}_{\{|u| \leq \varepsilon_{0}\}}) \nu(x,k,du),$$
(2)

where for each $(x,k) \in \mathbb{R}^d \times \mathbb{S}$,

 $a(x,k) = (a_{ij}(x,k))$ is a nonnegative definite symmetric $d \times d$ -matrix, $b(x,k) = (b_i(x,k))$ is a d-dimensional vector,

And here, $Q = (q_{kl}(x))$ is an $N \times N$ matrix-valued measurable function on \mathbb{R}^d such that

$$q_{kl}(x) \ge 0$$
 on \mathbb{R}^d for $k \ne l$ (3)

and, for each fixed $k \in \mathbb{S}$,

$$\sum_{l \in \mathbb{S}} q_{kl}(x) = 0 \quad \text{on} \quad \mathbb{R}^d.$$
(4)

Moreover, $\nabla f_k(\cdot)$ and $\text{Hess}f_k(\cdot)$ denote the gradient and Hessian matrix of $f_k(\cdot)$, respectively.

And here, $Q = (q_{kl}(x))$ is an $N \times N$ matrix-valued measurable function on \mathbb{R}^d such that

$$q_{kl}(x) \ge 0$$
 on \mathbb{R}^d for $k \ne l$ (3)

and, for each fixed $k \in \mathbb{S}$,

$$\sum_{l\in\mathbb{S}}q_{kl}(x)=0\quad\text{on}\quad\mathbb{R}^d.\tag{4}$$

Moreover, $\nabla f_k(\cdot)$ and $\text{Hess}f_k(\cdot)$ denote the gradient and Hessian matrix of $f_k(\cdot)$, respectively.

And here, $Q = (q_{kl}(x))$ is an $N \times N$ matrix-valued measurable function on \mathbb{R}^d such that

$$q_{kl}(x) \ge 0$$
 on \mathbb{R}^d for $k \ne l$ (3)

and, for each fixed $k \in \mathbb{S}$,

$$\sum_{l\in\mathbb{S}}q_{kl}(x)=0\quad\text{on}\quad\mathbb{R}^d.\tag{4}$$

Moreover, $\nabla f_k(\cdot)$ and $\text{Hess} f_k(\cdot)$ denote the gradient and Hessian matrix of $f_k(\cdot)$, respectively.

Weakly Coupled Lévy Type Operator (again)

So, for certain "nice" functions

$$f = \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_N \end{pmatrix} : \mathbb{R}^d \mapsto \mathbb{R}^N,$$

we can consider the following weakly coupled Lévy type operator:

$$Sf = \begin{pmatrix} \mathcal{L}_1 & 0 & \cdots & 0 \\ 0 & \mathcal{L}_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mathcal{L}_N \end{pmatrix} f + Qf.$$
(1)

Fubao Xi (BIT)

< ∃ ►

Weakly Coupled Lévy Type Operator (again)

So, for certain "nice" functions

$$f = \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_N \end{pmatrix} : \mathbb{R}^d \mapsto \mathbb{R}^N,$$

we can consider the following weakly coupled Lévy type operator:

$$Sf = \begin{pmatrix} \mathcal{L}_1 & 0 & \cdots & 0 \\ 0 & \mathcal{L}_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mathcal{L}_N \end{pmatrix} f + Qf.$$
(1)

As is well known, under some mild conditions, a Lévy type operator as in (2) can be associated with a regular (i.e. non-explosive) Lévy type process.

For the existence and uniqueness of the strong Markov process $Y = (X, \Lambda)$ corresponding to the weakly coupled Lévy type operator S defined in (1), we make the following assumption.

Assumption 1

Assume that for each $k \in \mathbb{S}$, the Lévy type operator \mathcal{L}_k defined in (2) is associated with a regular (i.e. non-explosive) Lévy type process $\widetilde{X}^{(k)}$. Moreover, assume that for each $k \in \mathbb{S}$, the function $q_{kk}(x) \leq 0$ is bounded from below. As is well known, under some mild conditions, a Lévy type operator as in (2) can be associated with a regular (i.e. non-explosive) Lévy type process.

For the existence and uniqueness of the strong Markov process $Y = (X, \Lambda)$ corresponding to the weakly coupled Lévy type operator S defined in (1), we make the following assumption.

Assumption 1

Assume that for each $k \in \mathbb{S}$, the Lévy type operator \mathcal{L}_k defined in (2) is associated with a regular (i.e. non-explosive) Lévy type process $\widetilde{X}^{(k)}$. Moreover, assume that for each $k \in \mathbb{S}$, the function $q_{kk}(x) \leq 0$ is bounded from below.

A (10) < A (10) </p>

As is well known, under some mild conditions, a Lévy type operator as in (2) can be associated with a regular (i.e. non-explosive) Lévy type process.

For the existence and uniqueness of the strong Markov process $Y = (X, \Lambda)$ corresponding to the weakly coupled Lévy type operator S defined in (1), we make the following assumption.

Assumption 1

Assume that for each $k \in \mathbb{S}$, the Lévy type operator \mathcal{L}_k defined in (2) is associated with a regular (i.e. non-explosive) Lévy type process $\widetilde{X}^{(k)}$. Moreover, assume that for each $k \in \mathbb{S}$, the function $q_{kk}(x) \leq 0$ is bounded from below.

Let

$$\tau = \inf\{t > 0 : \Lambda(t) \neq \Lambda(0)\}$$
 (5)

be the first switching time of Y.

Clearly, we can identify $Y(t) = (X(t), \Lambda(t))$ with $(\tilde{X}^{(k)}(t), \Lambda(0))$ for $0 \le t < \tau$ when $(X(0), \Lambda(0)) = (x, k)$, where $\tilde{X}^{(k)}$ just is the Lévy type process introduced in Assumption 1.

Meanwhile, we also have that $\mathbb{P}^{(x,k)}(\tau > 0) = 1$ for all $(x,k) \in \mathbb{R}^d \times \mathbb{S}$.

Let

$$\tau = \inf\{t > 0 : \Lambda(t) \neq \Lambda(0)\}$$
(5)

be the first switching time of Y.

Clearly, we can identify $Y(t) = (X(t), \Lambda(t))$ with $(\tilde{X}^{(k)}(t), \Lambda(0))$ for $0 \le t < \tau$ when $(X(0), \Lambda(0)) = (x, k)$, where $\tilde{X}^{(k)}$ just is the Lévy type process introduced in Assumption 1.

Meanwhile, we also have that $\mathbb{P}^{(x,k)}(\tau > 0) = 1$ for all $(x,k) \in \mathbb{R}^d \times \mathbb{S}$.

Let

$$\tau = \inf\{t > 0 : \Lambda(t) \neq \Lambda(0)\}$$
(5)

be the first switching time of Y.

Clearly, we can identify $Y(t) = (X(t), \Lambda(t))$ with $(\widetilde{X}^{(k)}(t), \Lambda(0))$ for $0 \le t < \tau$ when $(X(0), \Lambda(0)) = (x, k)$, where $\widetilde{X}^{(k)}$ just is the Lévy type process introduced in Assumption 1.

Meanwhile, we also have that $\mathbb{P}^{(x,k)}(au > 0) = 1$ for all $(x,k) \in \mathbb{R}^d imes \mathbb{S}.$

Let

$$\tau = \inf\{t > 0 : \Lambda(t) \neq \Lambda(0)\}$$
(5)

be the first switching time of Y.

Clearly, we can identify $Y(t) = (X(t), \Lambda(t))$ with $(\widetilde{X}^{(k)}(t), \Lambda(0))$ for $0 \le t < \tau$ when $(X(0), \Lambda(0)) = (x, k)$, where $\widetilde{X}^{(k)}$ just is the Lévy type process introduced in Assumption 1.

Meanwhile, we also have that $\mathbb{P}^{(x,k)}(\tau > 0) = 1$ for all $(x,k) \in \mathbb{R}^d \times \mathbb{S}$.

To construct $Y = (X, \Lambda)$, we need to introduce a family of killed Lévy type processes.

For each $k\in\mathbb{S}$, we kill the Lévy type process $\widetilde{X}^{(k)}$ at the rate $(-q_{kk}),$

$$\mathbb{E}_{k}^{(x)}[f(X^{(k)}(t))] = \mathbb{E}_{k}^{(x)}[f(\widetilde{X}^{(k)}(t)); t < \tau] = \mathbb{E}_{k}^{(x)}[\exp\{\int_{0}^{t} q_{kk}(\widetilde{X}^{(k)}(s))ds\}f(\widetilde{X}^{(k)}(t))],$$
⁽⁶⁾

to get a subprocess $X^{(k)}$.

Equivalently, $X^{(k)}$ can be defined as $X^{(k)}(t) = \widetilde{X}^{(k)}(t)$ if $t < \tau$ and $X^{(k)}(t) = \partial$ if $t \ge \tau$, where ∂ is a cemetery point added to \mathbb{R}^d .

To construct $Y = (X, \Lambda)$, we need to introduce a family of killed Lévy type processes.

For each $k \in \mathbb{S}$, we kill the Lévy type process $\widetilde{X}^{(k)}$ at the rate $(-q_{kk})$,

$$\mathbb{E}_{k}^{(x)}[f(X^{(k)}(t))] = \mathbb{E}_{k}^{(x)}[f(\widetilde{X}^{(k)}(t)); t < \tau]
= \mathbb{E}_{k}^{(x)}[\exp\{\int_{0}^{t} q_{kk}(\widetilde{X}^{(k)}(s))ds\}f(\widetilde{X}^{(k)}(t))],$$
(6)

to get a subprocess $X^{(k)}$.

Equivalently, $X^{(k)}$ can be defined as $X^{(k)}(t) = \widetilde{X}^{(k)}(t)$ if $t < \tau$ and $X^{(k)}(t) = \partial$ if $t \ge \tau$, where ∂ is a cemetery point added to \mathbb{R}^d .

To construct $Y = (X, \Lambda)$, we need to introduce a family of killed Lévy type processes.

For each $k \in S$, we kill the Lévy type process $\widetilde{X}^{(k)}$ at the rate $(-q_{kk})$,

$$\mathbb{E}_{k}^{(x)}[f(X^{(k)}(t))] = \mathbb{E}_{k}^{(x)}[f(\widetilde{X}^{(k)}(t)); t < \tau] = \mathbb{E}_{k}^{(x)}[\exp\{\int_{0}^{t} q_{kk}(\widetilde{X}^{(k)}(s))ds\}f(\widetilde{X}^{(k)}(t))],$$
(6)

to get a subprocess $X^{(k)}$.

Equivalently, $X^{(k)}$ can be defined as $X^{(k)}(t) = \widetilde{X}^{(k)}(t)$ if $t < \tau$ and $X^{(k)}(t) = \partial$ if $t \ge \tau$, where ∂ is a cemetery point added to \mathbb{R}^d .

To construct $Y = (X, \Lambda)$, we need to introduce a family of killed Lévy type processes.

For each $k \in \mathbb{S}$, we kill the Lévy type process $\widetilde{X}^{(k)}$ at the rate $(-q_{kk})$,

$$\mathbb{E}_{k}^{(x)}[f(X^{(k)}(t))] = \mathbb{E}_{k}^{(x)}[f(\widetilde{X}^{(k)}(t)); t < \tau] = \mathbb{E}_{k}^{(x)}[\exp\{\int_{0}^{t} q_{kk}(\widetilde{X}^{(k)}(s))ds\}f(\widetilde{X}^{(k)}(t))],$$
(6)

to get a subprocess $X^{(k)}$.

Equivalently, $X^{(k)}$ can be defined as $X^{(k)}(t) = \widetilde{X}^{(k)}(t)$ if $t < \tau$ and $X^{(k)}(t) = \partial$ if $t \ge \tau$, where ∂ is a cemetery point added to \mathbb{R}^d .

For given $(x,k) \in \mathbb{R}^d \times \mathbb{S}$, let $Y(t) = (X^{(k)}(t), \Lambda(0))$ for $0 \le t < \tau^{(1)}$, where $X^{(k)}(0) = x$, $\Lambda(0) = k$ and $\tau^{(1)} = \inf\{t > 0 : \Lambda(t) \ne \Lambda(0)\}$.

Next, we select an $l \in \mathbb{S} \setminus \{k\}$ with the probability distribution $(-q_{kl}/q_{kk})(X(\tau^{(1)}-))$ and glue a copy of $Y = (X, \Lambda)$ starting from $(X(\tau^{(1)}-), l)$.

Namely, define $Y(\tau^{(1)} + t) = (X^{(l)}(t), \Lambda(0))$ for $0 \le t < \tau^{(2)}$, where $X^{(l)}(0) = X(\tau^{(1)}), \Lambda(0) = l$ and $\tau^{(2)} = \inf\{t > 0 : \Lambda(t) \ne \Lambda(0)\}.$

For given $(x,k) \in \mathbb{R}^d \times \mathbb{S}$, let $Y(t) = (X^{(k)}(t), \Lambda(0))$ for $0 \le t < \tau^{(1)}$, where $X^{(k)}(0) = x$, $\Lambda(0) = k$ and $\tau^{(1)} = \inf\{t > 0 : \Lambda(t) \ne \Lambda(0)\}$.

Next, we select an $l \in S \setminus \{k\}$ with the probability distribution $(-q_{kl}/q_{kk})(X(\tau^{(1)}-))$ and glue a copy of $Y = (X, \Lambda)$ starting from $(X(\tau^{(1)}-), l)$.

Namely, define $Y(\tau^{(1)} + t) = (X^{(l)}(t), \Lambda(0))$ for $0 \le t < \tau^{(2)}$, where $X^{(l)}(0) = X(\tau^{(1)}), \Lambda(0) = l$ and $\tau^{(2)} = \inf\{t > 0 : \Lambda(t) \ne \Lambda(0)\}.$

For given $(x,k) \in \mathbb{R}^d \times \mathbb{S}$, let $Y(t) = (X^{(k)}(t), \Lambda(0))$ for $0 \le t < \tau^{(1)}$, where $X^{(k)}(0) = x$, $\Lambda(0) = k$ and $\tau^{(1)} = \inf\{t > 0 : \Lambda(t) \ne \Lambda(0)\}$.

Next, we select an $l \in \mathbb{S} \setminus \{k\}$ with the probability distribution $(-q_{kl}/q_{kk})(X(\tau^{(1)}-))$ and glue a copy of $Y = (X, \Lambda)$ starting from $(X(\tau^{(1)}-), l)$.

Namely, define $Y(\tau^{(1)} + t) = (X^{(l)}(t), \Lambda(0))$ for $0 \le t < \tau^{(2)}$, where $X^{(l)}(0) = X(\tau^{(1)}), \Lambda(0) = l$ and $\tau^{(2)} = \inf\{t > 0 : \Lambda(t) \ne \Lambda(0)\}.$

For given $(x,k) \in \mathbb{R}^d \times \mathbb{S}$, let $Y(t) = (X^{(k)}(t), \Lambda(0))$ for $0 \le t < \tau^{(1)}$, where $X^{(k)}(0) = x$, $\Lambda(0) = k$ and $\tau^{(1)} = \inf\{t > 0 : \Lambda(t) \ne \Lambda(0)\}$.

Next, we select an $l \in \mathbb{S} \setminus \{k\}$ with the probability distribution $(-q_{kl}/q_{kk})(X(\tau^{(1)}-))$ and glue a copy of $Y = (X, \Lambda)$ starting from $(X(\tau^{(1)}-), l)$.

Namely, define $Y(\tau^{(1)} + t) = (X^{(l)}(t), \Lambda(0))$ for $0 \le t < \tau^{(2)}$, where $X^{(l)}(0) = X(\tau^{(1)}-), \Lambda(0) = l$ and $\tau^{(2)} = \inf\{t > 0 : \Lambda(t) \ne \Lambda(0)\}.$

For given $(x,k) \in \mathbb{R}^d \times \mathbb{S}$, let $Y(t) = (X^{(k)}(t), \Lambda(0))$ for $0 \le t < \tau^{(1)}$, where $X^{(k)}(0) = x$, $\Lambda(0) = k$ and $\tau^{(1)} = \inf\{t > 0 : \Lambda(t) \ne \Lambda(0)\}$.

Next, we select an $l \in \mathbb{S} \setminus \{k\}$ with the probability distribution $(-q_{kl}/q_{kk})(X(\tau^{(1)}-))$ and glue a copy of $Y = (X, \Lambda)$ starting from $(X(\tau^{(1)}-), l)$.

Namely, define $Y(\tau^{(1)} + t) = (X^{(l)}(t), \Lambda(0))$ for $0 \le t < \tau^{(2)}$, where $X^{(l)}(0) = X(\tau^{(1)}), \Lambda(0) = l$ and $\tau^{(2)} = \inf\{t > 0 : \Lambda(t) \ne \Lambda(0)\}.$

Suppose that Assumption 1 holds. Then, the process Y constructed above is a switched Lévy type process on $\mathbb{R}^d \times \mathbb{S}$ associated the infinitesimal generator S in (1).

Sketched Proof. Denote by $\{P_t, t \ge 0\}$ and $\{G_\alpha, \alpha > 0\}$, respectively, the transition semigroup and resolvent of the switched process $Y = (X, \Lambda)$.

For each $k \in S$, let $\{G_{\alpha}^{(k)}, \alpha > 0\}$ be the resolvent for the generator $\mathcal{L}_k + q_{kk}$.

Let $f(x,k) \ge 0$ on $\mathbb{R}^d \times \mathbb{S}$.

Applying the strong Markov property at the first switching time τ and recalling the construction of Y, we obtain

Suppose that Assumption 1 holds. Then, the process Y constructed above is a switched Lévy type process on $\mathbb{R}^d \times \mathbb{S}$ associated the infinitesimal generator S in (1).

Sketched Proof. Denote by $\{P_t, t \ge 0\}$ and $\{G_\alpha, \alpha > 0\}$, respectively, the transition semigroup and resolvent of the switched process $Y = (X, \Lambda)$.

For each $k \in S$, let $\{G_{\alpha}^{(k)}, \alpha > 0\}$ be the resolvent for the generator $\mathcal{L}_k + q_{kk}$.

Let $f(x,k) \ge 0$ on $\mathbb{R}^d \times \mathbb{S}$.

Applying the strong Markov property at the first switching time τ and recalling the construction of Y, we obtain

Suppose that Assumption 1 holds. Then, the process Y constructed above is a switched Lévy type process on $\mathbb{R}^d \times \mathbb{S}$ associated the infinitesimal generator S in (1).

Sketched Proof. Denote by $\{P_t, t \ge 0\}$ and $\{G_\alpha, \alpha > 0\}$, respectively, the transition semigroup and resolvent of the switched process $Y = (X, \Lambda)$.

For each $k \in S$, let $\{G_{\alpha}^{(k)}, \alpha > 0\}$ be the resolvent for the generator $\mathcal{L}_k + q_{kk}$.

Let $f(x,k) \ge 0$ on $\mathbb{R}^d \times \mathbb{S}$.

Applying the strong Markov property at the first switching time τ and recalling the construction of Y, we obtain

(4 個) トイヨト イヨト

Suppose that Assumption 1 holds. Then, the process Y constructed above is a switched Lévy type process on $\mathbb{R}^d \times \mathbb{S}$ associated the infinitesimal generator S in (1).

Sketched Proof. Denote by $\{P_t, t \ge 0\}$ and $\{G_\alpha, \alpha > 0\}$, respectively, the transition semigroup and resolvent of the switched process $Y = (X, \Lambda)$.

For each $k \in S$, let $\{G_{\alpha}^{(k)}, \alpha > 0\}$ be the resolvent for the generator $\mathcal{L}_k + q_{kk}$.

Let $f(x,k) \ge 0$ on $\mathbb{R}^d \times \mathbb{S}$.

Applying the strong Markov property at the first switching time τ and recalling the construction of Y, we obtain

- 4 回 ト - 4 回 ト

Suppose that Assumption 1 holds. Then, the process Y constructed above is a switched Lévy type process on $\mathbb{R}^d \times \mathbb{S}$ associated the infinitesimal generator S in (1).

Sketched Proof. Denote by $\{P_t, t \ge 0\}$ and $\{G_\alpha, \alpha > 0\}$, respectively, the transition semigroup and resolvent of the switched process $Y = (X, \Lambda)$.

For each $k \in S$, let $\{G_{\alpha}^{(k)}, \alpha > 0\}$ be the resolvent for the generator $\mathcal{L}_k + q_{kk}$.

Let
$$f(x,k) \ge 0$$
 on $\mathbb{R}^d \times \mathbb{S}$.

Applying the strong Markov property at the first switching time τ and recalling the construction of Y, we obtain

Y Has Infinitesimal Generator S (Cont)

$$\begin{aligned} G_{\alpha}f(x,k) &= \mathbb{E}^{(x,k)} \left[\int_{0}^{\infty} e^{-\alpha t} f(X_{t},\Lambda_{t}) dt \right] \\ &= \mathbb{E}^{(x,k)} \left[\int_{0}^{\tau} e^{-\alpha t} f(X_{t},k) dt \right] + \mathbb{E}^{(x,k)} \left[\int_{\tau}^{\infty} e^{-\alpha t} f(X_{t},\Lambda_{t}) dt \right] \\ &= G_{\alpha}^{(k)} f(x,k) + \mathbb{E}^{(x,k)} \left[e^{-\alpha \tau} G_{\alpha} f(X_{\tau},\Lambda_{\tau}) \right] \\ &= G_{\alpha}^{(k)} f(x,k) + \sum_{l \in \mathbb{S} \setminus \{k\}} \mathbb{E}^{(x,k)} \left[e^{-\alpha \tau} \left(-\frac{q_{kl}}{q_{kk}} \right) (X_{\tau-}) G_{\alpha} f(X_{\tau-},l) \right] \\ &= G_{\alpha}^{(k)} f(x,k) + \sum_{l \in \mathbb{S} \setminus \{k\}} G_{\alpha}^{(k)} (q_{kl} G_{\alpha} f(\cdot,l)) (x). \end{aligned}$$

Hence for each fixed $k \in \mathbb{S}$,

$$\mathcal{L}_k G_\alpha f(\cdot, k) + \sum_{l \in \mathbb{S}} q_{kl} G_\alpha f(\cdot, l) - \alpha G_\alpha f(\cdot, k) = -f(\cdot, k).$$

This shows that S defined in (1) is the infinitesimal generator of Y.

Fubao Xi (BIT)

Weakly Coupled Lévy Type Operators and Sw

July 19 2010 14 / 28

Dynkin's Formula

Remark 3

For each $k \in \mathbb{S}$, and for any function $f(\cdot, k) \in C_0^2(\mathbb{R}^d)$, define an operator \mathcal{A} as follows:

$$\mathcal{A}f(x,k) = \mathcal{L}_k f(x,k) + Q(x)f(x,k), \tag{7}$$

where operator Q(x) is further defined as

$$Q(x)f(x,k) = \sum_{l \in \mathbb{S}} q_{kl}(x) \big(f(x,l) - f(x,k) \big).$$
(8)

Since S is the infinitesimal generator of Y by Theorem 2, we know that for each bounded stopping time τ for the process Y and each function $f(\cdot, k) \in C_0^2(\mathbb{R}^d)$ with $k \in \mathbb{S}$, the Dynkin's formula

$$\mathbb{E}^{(x,k)}f(X(\tau),\Lambda(\tau)) = f(x,k) + \mathbb{E}^{(x,k)} \int_0^\tau \mathcal{A}f(X(s),\Lambda(s))ds \qquad (9)$$

To do so, we need to prove that $Y = (X, \Lambda)$ can only have finitely many switches during a finite time interval.

Let us denote the successive switching instants of (X, Λ) by

 $\tau_{1} = \inf\{t > 0 : \Lambda(t) \neq \Lambda(0)\},$ $\tau_{n} = \inf\{t : t > \tau_{n-1}, \Lambda(t) \neq \Lambda(\tau_{n-1})\}, n \ge 2,$ (10)

with the convention that $\inf \emptyset = +\infty$.

Moreover, we also define a counting process, $v(t) := \max\{n : \tau_n \leq t\}$.

To do so, we need to prove that $Y = (X, \Lambda)$ can only have finitely many switches during a finite time interval.

Let us denote the successive switching instants of (X, Λ) by

 $\tau_{1} = \inf\{t > 0 : \Lambda(t) \neq \Lambda(0)\},$ $\tau_{n} = \inf\{t : t > \tau_{n-1}, \Lambda(t) \neq \Lambda(\tau_{n-1})\}, n \ge 2,$ (10)

with the convention that $\inf \emptyset = +\infty$.

Moreover, we also define a counting process, $v(t) := \max\{n : \tau_n \leq t\}$.

To do so, we need to prove that $Y = (X, \Lambda)$ can only have finitely many switches during a finite time interval.

Let us denote the successive switching instants of (X, Λ) by

$$\tau_{1} = \inf\{t > 0 : \Lambda(t) \neq \Lambda(0)\},$$

$$\tau_{n} = \inf\{t : t > \tau_{n-1}, \Lambda(t) \neq \Lambda(\tau_{n-1})\}, n \ge 2,$$
(10)

with the convention that $\inf \emptyset = +\infty$.

Moreover, we also define a counting process, $v(t) := \max\{n : \tau_n \leq t\}$.

To do so, we need to prove that $Y = (X, \Lambda)$ can only have finitely many switches during a finite time interval.

Let us denote the successive switching instants of (X, Λ) by

$$\tau_{1} = \inf\{t > 0 : \Lambda(t) \neq \Lambda(0)\}, \tau_{n} = \inf\{t : t > \tau_{n-1}, \Lambda(t) \neq \Lambda(\tau_{n-1})\}, n \ge 2,$$
(10)

with the convention that $\inf \emptyset = +\infty$.

Moreover, we also define a counting process, $v(t) := \max\{n : \tau_n \leq t\}$.

To do so, we need to prove that $Y = (X, \Lambda)$ can only have finitely many switches during a finite time interval.

Let us denote the successive switching instants of (X, Λ) by

$$\tau_{1} = \inf\{t > 0 : \Lambda(t) \neq \Lambda(0)\}, \tau_{n} = \inf\{t : t > \tau_{n-1}, \Lambda(t) \neq \Lambda(\tau_{n-1})\}, n \ge 2,$$
(10)

with the convention that $\inf \emptyset = +\infty$.

Moreover, we also define a counting process, $v(t) := \max\{n : \tau_n \leq t\}$.

Exit Times

Lemma 4

Suppose that Assumption 1 holds. For every $(x,k) \in \mathbb{R}^d \times \mathbb{S}$ and every t > 0, we have that

$$\mathbb{P}^{(x,k)}(\lim_{n \to \infty} \tau_n = \infty) = 1, \qquad \mathbb{P}^{(x,k)}(\upsilon(t) < +\infty) = 1.$$
(11)

We now proceed to prove the non-explosiveness of $Y = (X, \Lambda)$. For all integers $m \ge 1$, let $O_m := \{x \in \mathbb{R}^d : |x| < m\}$ and define

 $\gamma_m := \inf\{t \ge 0 : (X(t), \Lambda(t)) \in O_m^c \times \mathbb{S}\}.$

It follows from the second equality in (11) that for every $(x,k) \in \mathbb{R}^d \times \mathbb{S}$ and every t > 0, $\mathbb{P}^{(x,k)}(\upsilon(t) < +\infty) = 1$. Consequently, for every $m \ge 1$, we then have that

$$\mathbb{P}^{(x,k)}(\gamma_m \le t) = \sum_{n=0}^{\infty} \mathbb{P}^{(x,k)}(\gamma_m \le t, v(t) = n).$$
(12)

Lemma 4

Suppose that Assumption 1 holds. For every $(x,k) \in \mathbb{R}^d \times \mathbb{S}$ and every t > 0, we have that

$$\mathbb{P}^{(x,k)}(\lim_{n \to \infty} \tau_n = \infty) = 1, \qquad \mathbb{P}^{(x,k)}(\upsilon(t) < +\infty) = 1.$$
(11)

We now proceed to prove the non-explosiveness of $Y = (X, \Lambda)$. For all integers $m \ge 1$, let $O_m := \{x \in \mathbb{R}^d : |x| < m\}$ and define

 $\gamma_m := \inf\{t \ge 0 : (X(t), \Lambda(t)) \in O_m^c \times \mathbb{S}\}.$

It follows from the second equality in (11) that for every $(x,k) \in \mathbb{R}^d \times \mathbb{S}$ and every t > 0, $\mathbb{P}^{(x,k)}(v(t) < +\infty) = 1$. Consequently, for every $m \ge 1$, we then have that

$$\mathbb{P}^{(x,k)}(\gamma_m \le t) = \sum_{n=0}^{\infty} \mathbb{P}^{(x,k)}(\gamma_m \le t, v(t) = n).$$
(12)

Suppose that Assumption 1 holds. The process $Y = (X, \Lambda)$ is non-explosive.

Remark 6

We can define truncations $(X(t \wedge \gamma_m), \Lambda(t \wedge \gamma_m))$ $(m \ge 1)$ of the non-explosive process (X, Λ) . Then we have that for every $m \ge 1$,

$$\mathbb{E}^{(x,k)}f(X(t \wedge \gamma_m), \Lambda(t \wedge \gamma_m)) = f(x,k) + \mathbb{E}^{(x,k)} \int_0^t \mathcal{A}f(X(s \wedge \gamma_m), \Lambda(s \wedge \gamma_m))ds$$
(13)

holds for each point $(x, k) \in O_m \times \mathbb{S}$ and each function $f(\cdot, k) \in C^2(\mathbb{R}^d)$ with $k \in \mathbb{S}$.

Fubao Xi (BIT)

Weakly Coupled Lévy Type Operators and Sw

Suppose that Assumption 1 holds. The process $Y = (X, \Lambda)$ is non-explosive.

Remark 6

We can define truncations $(X(t \land \gamma_m), \Lambda(t \land \gamma_m))$ $(m \ge 1)$ of the non-explosive process (X, Λ) . Then we have that for every $m \ge 1$,

$$\mathbb{E}^{(x,k)}f(X(t \wedge \gamma_m), \Lambda(t \wedge \gamma_m)) = f(x,k) + \mathbb{E}^{(x,k)} \int_0^t \mathcal{A}f(X(s \wedge \gamma_m), \Lambda(s \wedge \gamma_m))ds$$
(13)

holds for each point $(x, k) \in O_m \times \mathbb{S}$ and each function $f(\cdot, k) \in C^2(\mathbb{R}^d)$ with $k \in \mathbb{S}$.

Fubao Xi (BIT)

Weakly Coupled Lévy Type Operators and Sw

Suppose that Assumption 1 holds. The process $Y = (X, \Lambda)$ is non-explosive.

Remark 6

We can define truncations $(X(t \land \gamma_m), \Lambda(t \land \gamma_m))$ $(m \ge 1)$ of the non-explosive process (X, Λ) . Then we have that for every $m \ge 1$,

$$\begin{split} \Xi^{(x,k)} f(X(t \wedge \gamma_m), \Lambda(t \wedge \gamma_m)) \\ &= f(x,k) + \mathbb{E}^{(x,k)} \int_0^t \mathcal{A}f(X(s \wedge \gamma_m), \Lambda(s \wedge \gamma_m)) ds \end{split}$$
 (13)

holds for each point $(x, k) \in O_m \times \mathbb{S}$ and each function $f(\cdot, k) \in C^2(\mathbb{R}^d)$ with $k \in \mathbb{S}$.

Some Conditions

We will prove the Feller property for the switched Lévy type process $Y = (X, \Lambda)$ under some conditions.

Assumption 7

Assume that for $(x, k) \in \mathbb{R}^d \times \mathbb{S}$, the Lévy kernel $\nu(x, k, \cdot)$ is a nonnegative finite measure on $\mathbb{R}^d \setminus \{0\}$. Moreover, assume that there exists a constant H > 0 such that

$$|\sigma(x,k) - \sigma(y,k)| + |b(x,k) - b(y,k)| \le H|x - y|$$
(14)

and

$$\int_{\mathbb{R}^d \setminus \{0\}} |z| ||\nu(x,k,\cdot) - \nu(y,k,\cdot)|| (dz) \le H|x-y|$$
(15)

for all $x, y \in \mathbb{R}^d$ and $k \in \mathbb{S}$, where $\sigma(x, k)$ is a square root of a(x, k)such that $a(x, k) = \sigma(x, k)\sigma(x, k)^*$.

Some Conditions

We will prove the Feller property for the switched Lévy type process $Y = (X, \Lambda)$ under some conditions.

Assumption 7

Assume that for $(x, k) \in \mathbb{R}^d \times \mathbb{S}$, the Lévy kernel $\nu(x, k, \cdot)$ is a nonnegative finite measure on $\mathbb{R}^d \setminus \{0\}$. Moreover, assume that there exists a constant H > 0 such that

$$|\sigma(x,k) - \sigma(y,k)| + |b(x,k) - b(y,k)| \le H|x - y|$$
(14)

and

$$\int_{\mathbb{R}^d \setminus \{0\}} |z| \|\nu(x,k,\cdot) - \nu(y,k,\cdot)\|(dz) \le H|x-y|$$
(15)

for all $x, y \in \mathbb{R}^d$ and $k \in \mathbb{S}$, where $\sigma(x, k)$ is a square root of a(x, k) such that $a(x, k) = \sigma(x, k)\sigma(x, k)^*$.

Using the coupling methods, we prove the following two lemmas.

Lemma 8

Suppose that Assumptions 1 and 7 hold. For each $k \in S$, the Lévy type process $\widetilde{X}^{(k)}$ generated by the Lévy type operator \mathcal{L}_k defined in (2) has Feller property.

Lemma 9

Suppose that Assumptions 1 and 7 hold. For each $k \in S$, the killed Lévy type process $X^{(k)}$ introduced in (6) has Feller property.

Using the coupling methods, we prove the following two lemmas.

Lemma 8

Suppose that Assumptions 1 and 7 hold. For each $k \in S$, the Lévy type process $\widetilde{X}^{(k)}$ generated by the Lévy type operator \mathcal{L}_k defined in (2) has Feller property.

Lemma 9

Suppose that Assumptions 1 and 7 hold. For each $k \in S$, the killed Lévy type process $X^{(k)}$ introduced in (6) has Feller property.

Using the coupling methods, we prove the following two lemmas.

Lemma 8

Suppose that Assumptions 1 and 7 hold. For each $k \in S$, the Lévy type process $\widetilde{X}^{(k)}$ generated by the Lévy type operator \mathcal{L}_k defined in (2) has Feller property.

Lemma 9

Suppose that Assumptions 1 and 7 hold. For each $k \in S$, the killed Lévy type process $X^{(k)}$ introduced in (6) has Feller property.

By virtue of the relation of $Y = (X, \Lambda)$ and the killed Lévy type processes $X^{(k)}$, $k \in \mathbb{S}$, we prove the following theorem.

Theorem 10

Suppose that Assumptions 1 and 7 hold. Then, The process $Y = (X, \Lambda)$ has Feller property.

Remark 11

The global Lipschitz condition in Assumption 7 can be relaxed to local Lipschitz condition by making using a truncation argument.

By virtue of the relation of $Y = (X, \Lambda)$ and the killed Lévy type processes $X^{(k)}$, $k \in \mathbb{S}$, we prove the following theorem.

Theorem 10

Suppose that Assumptions 1 and 7 hold. Then, The process $Y = (X, \Lambda)$ has Feller property.

Remark 11

The global Lipschitz condition in Assumption 7 can be relaxed to local Lipschitz condition by making using a truncation argument.

By virtue of the relation of $Y = (X, \Lambda)$ and the killed Lévy type processes $X^{(k)}$, $k \in \mathbb{S}$, we prove the following theorem.

Theorem 10

Suppose that Assumptions 1 and 7 hold. Then, The process $Y = (X, \Lambda)$ has Feller property.

Remark 11

The global Lipschitz condition in Assumption 7 can be relaxed to local Lipschitz condition by making using a truncation argument.

For each $k \in S$, let $\tilde{X}^{(k),0}$ be the unique strong Markov process generated by operator \mathcal{L}_k^0 , which is defined for "nice" function g on \mathbb{R}^d as follows:

$$\mathcal{L}_{k}^{0}g(x) = \frac{1}{2} \operatorname{tr} \left(a(x,k) \operatorname{Hess} g(x) \right) + \langle b(x,k), \nabla g(x) \rangle.$$
 (16)

Assumption 12

Assume that for each $k \in \mathbb{S}$, $\tilde{X}^{(k),0}$ has a positive transition probability density $\tilde{p}^{(k),0}(t, x, y)$ with respect to the Lebesgue measure. Moreover, assume that $q_{kl}(x) > 0$ for all $x \in \mathbb{R}^d$ and $k \neq l \in \mathbb{S}$.

For each $k \in S$, let $\widetilde{X}^{(k),0}$ be the unique strong Markov process generated by operator \mathcal{L}_k^0 , which is defined for "nice" function g on \mathbb{R}^d as follows:

$$\mathcal{L}_{k}^{0}g(x) = \frac{1}{2} \operatorname{tr}(a(x,k) \operatorname{Hess} g(x)) + \langle b(x,k), \nabla g(x) \rangle.$$
(16)

Assumption 12

Assume that for each $k \in \mathbb{S}$, $\overline{X}^{(k),0}$ has a positive transition probability density $\overline{p}^{(k),0}(t, x, y)$ with respect to the Lebesgue measure. Moreover, assume that $q_{kl}(x) > 0$ for all $x \in \mathbb{R}^d$ and $k \neq l \in \mathbb{S}$.

For each $k \in S$, let $\widetilde{X}^{(k),0}$ be the unique strong Markov process generated by operator \mathcal{L}_k^0 , which is defined for "nice" function g on \mathbb{R}^d as follows:

$$\mathcal{L}_{k}^{0}g(x) = \frac{1}{2} \operatorname{tr} \left(a(x,k) \operatorname{Hess} g(x) \right) + \langle b(x,k), \nabla g(x) \rangle.$$
 (16)

Assumption 12

Assume that for each $k \in \mathbb{S}$, $\widetilde{X}^{(k),0}$ has a positive transition probability density $\widetilde{p}^{(k),0}(t, x, y)$ with respect to the Lebesgue measure. Moreover, assume that $q_{kl}(x) > 0$ for all $x \in \mathbb{R}^d$ and $k \neq l \in \mathbb{S}$.

For each $k \in S$, let $\widetilde{X}^{(k),0}$ be the unique strong Markov process generated by operator \mathcal{L}_k^0 , which is defined for "nice" function g on \mathbb{R}^d as follows:

$$\mathcal{L}_{k}^{0}g(x) = \frac{1}{2} \operatorname{tr}(a(x,k) \operatorname{Hess} g(x)) + \langle b(x,k), \nabla g(x) \rangle.$$
(16)

Assumption 12

Assume that for each $k \in \mathbb{S}$, $\widetilde{X}^{(k),0}$ has a positive transition probability density $\widetilde{p}^{(k),0}(t, x, y)$ with respect to the Lebesgue measure. Moreover, assume that $q_{kl}(x) > 0$ for all $x \in \mathbb{R}^d$ and $k \neq l \in \mathbb{S}$.

Let us fix a probability measure $\mu(\cdot)$ that is equivalent to the product measure on $\mathbb{R}^d \times \mathbb{S}$ of the Lebesgue measure on \mathbb{R}^d and the counting measure on \mathbb{S} .

Proposition 13

Suppose that Assumptions 1, 7 and 12 hold. Then (X, Λ) is μ -irreducible. Moreover, for any given $\delta > 0$, all compact subsets of $\mathbb{R}^d \times \mathbb{S}$ are petite for the δ -skeleton chain of (X, Λ) .

Proposition 14

Suppose that Assumptions 1, 7 and 12 hold. Then (X, Λ) is a μ -irreducible, aperiodic *T*-process.

Let us fix a probability measure $\mu(\cdot)$ that is equivalent to the product measure on $\mathbb{R}^d \times \mathbb{S}$ of the Lebesgue measure on \mathbb{R}^d and the counting measure on \mathbb{S} .

Proposition 13

Suppose that Assumptions 1, 7 and 12 hold. Then (X, Λ) is μ -irreducible. Moreover, for any given $\delta > 0$, all compact subsets of $\mathbb{R}^d \times \mathbb{S}$ are petite for the δ -skeleton chain of (X, Λ) .

Proposition 14

Suppose that Assumptions 1, 7 and 12 hold. Then (X, Λ) is a μ -irreducible, aperiodic T-process.

イロト イヨト イヨト イヨト

Let us fix a probability measure $\mu(\cdot)$ that is equivalent to the product measure on $\mathbb{R}^d \times \mathbb{S}$ of the Lebesgue measure on \mathbb{R}^d and the counting measure on \mathbb{S} .

Proposition 13

Suppose that Assumptions 1, 7 and 12 hold. Then (X, Λ) is μ -irreducible. Moreover, for any given $\delta > 0$, all compact subsets of $\mathbb{R}^d \times \mathbb{S}$ are petite for the δ -skeleton chain of (X, Λ) .

Proposition 14

Suppose that Assumptions 1, 7 and 12 hold. Then (X, Λ) is a μ -irreducible, aperiodic *T*-process.

We proceed to investigate the exponential ergodicity for strong Markov process $Y = (X, \Lambda)$.

For any positive function $\Psi(x,k) \ge 1$ defined on $\mathbb{R}^d \times \mathbb{S}$ and any signed measure $\nu(\cdot)$ defined on $\mathcal{B}(\mathbb{R}^d \times \mathbb{S})$ we write

 $\|\nu\|_{\Psi} = \sup\{|\nu(\Phi)|: |\Phi| \leq \Psi\}.$

For a function $\infty > \Psi \ge 1$ on $\mathbb{R}^d \times \mathbb{S}$, Markov process (X, Λ) is said to be Ψ -exponentially ergodic if there exist a probability measure $\pi(\cdot)$, a constant $\theta < 1$ and a finite-valued function $\Theta(x, k)$ such that

 $\|P(t,(x,k),\cdot) - \pi(\cdot)\|_{\Psi} \le \Theta(x,k)\theta^t$

for all $t \ge 0$ and all $(x, k) \in \mathbb{R}^d \times \mathbb{S}$.

We proceed to investigate the exponential ergodicity for strong Markov process $Y = (X, \Lambda)$.

For any positive function $\Psi(x,k) \ge 1$ defined on $\mathbb{R}^d \times \mathbb{S}$ and any signed measure $\nu(\cdot)$ defined on $\mathcal{B}(\mathbb{R}^d \times \mathbb{S})$ we write

 $\|\nu\|_{\Psi} = \sup\{|\nu(\Phi)|: |\Phi| \leq \Psi\}.$

For a function $\infty > \Psi \ge 1$ on $\mathbb{R}^d \times \mathbb{S}$, Markov process (X, Λ) is said to be Ψ -exponentially ergodic if there exist a probability measure $\pi(\cdot)$, a constant $\theta < 1$ and a finite-valued function $\Theta(x, k)$ such that

 $\|P(t,(x,k),\cdot) - \pi(\cdot)\|_{\Psi} \le \Theta(x,k)\theta^t$

for all $t \ge 0$ and all $(x, k) \in \mathbb{R}^d \times \mathbb{S}$.

We proceed to investigate the exponential ergodicity for strong Markov process $Y = (X, \Lambda)$.

For any positive function $\Psi(x,k) \ge 1$ defined on $\mathbb{R}^d \times \mathbb{S}$ and any signed measure $\nu(\cdot)$ defined on $\mathcal{B}(\mathbb{R}^d \times \mathbb{S})$ we write

 $\|\nu\|_{\Psi} = \sup\{|\nu(\Phi)|: |\Phi| \leq \Psi\}.$

For a function $\infty > \Psi \ge 1$ on $\mathbb{R}^d \times \mathbb{S}$, Markov process (X, Λ) is said to be Ψ -exponentially ergodic if there exist a probability measure $\pi(\cdot)$, a constant $\theta < 1$ and a finite-valued function $\Theta(x, k)$ such that

 $\|P(t,(x,k),\cdot) - \pi(\cdot)\|_{\Psi} \le \Theta(x,k)\theta^t$

for all $t \ge 0$ and all $(x, k) \in \mathbb{R}^d \times \mathbb{S}$.

Moreover, a nonnegative function V(x,k) defined on $\mathbb{R}^d \times \mathbb{S}$ is called a norm-like function if $V(x,k) \to \infty$ as $|x| \to \infty$ for all $k \in \mathbb{S}$. A Foster-Lyapunov drift condition: for some α , $\beta > 0$ and a norm-like function V(x,k) which is twice continuously differentiable in x,

$$\mathcal{A}V(x,k) \le -\alpha V(x,k) + \beta \tag{17}$$

for
$$(x,k) \in \mathbb{R}^d \times \mathbb{S}$$
.

Theorem 15

Suppose that (17) and Assumptions 1, 7 and 12 hold. Then (X, Λ) is Ψ -exponentially ergodic with $\Psi(x, k) = V(x, k) + 1$ and $\Theta(x, k) = B(V(x, k) + 1)$, where B is a finite constant. Meanwhile, (X, Λ) is Ψ -uniformly ergodic with $\Psi(x, k) = V(x, k)$.

Moreover, a nonnegative function V(x,k) defined on $\mathbb{R}^d \times \mathbb{S}$ is called a norm-like function if $V(x,k) \to \infty$ as $|x| \to \infty$ for all $k \in \mathbb{S}$. A Foster-Lyapunov drift condition: for some α , $\beta > 0$ and a norm-like function V(x,k) which is twice continuously differentiable in x,

$$\mathcal{A}V(x,k) \le -\alpha V(x,k) + \beta \tag{17}$$

for
$$(x,k) \in \mathbb{R}^d \times \mathbb{S}$$
.

Theorem 15

Suppose that (17) and Assumptions 1, 7 and 12 hold. Then (X, Λ) is Ψ -exponentially ergodic with $\Psi(x, k) = V(x, k) + 1$ and $\Theta(x, k) = B(V(x, k) + 1)$, where B is a finite constant. Meanwhile, (X, Λ) is Ψ -uniformly ergodic with $\Psi(x, k) = V(x, k)$.

- M.F. Chen, From Markov Chains to Non-Equilibrium Particle Systems, Second Edition, World Scientific, Singapore, 2004.
- Z.Q. Chen, Z. Zhao, Switched diffusion processes and systems of elliptic equations–a Dirichlet space approach, *Proc. Roy. Soc. Edinburgh A*, 124(1994), 673–701.
- Z.Q. Chen, Z. Zhao, Potential theory for elliptic systems, Ann. Probab., 24(1996), 293–319.
- Z.Q. Chen, Z. Zhao, Harnack principle for weakly coupled elliptic systems, *J. Differential Equations*, 139(1997), 261–282.
- S.P. Meyn, R.L. Tweedie, Stability of Markovian processes III: Foster-Lyapunov criteria for continuous-time processes, *Adv. Appl. Probab.*, 25(1993), 518–548.

- F.B. Xi, Asymptotic properties of jump-diffusion processes with state-dependent switching, *Stoch. Proc. Appl.*, 119(2009), 2198–2221.
- F.B. Xi, L.Q. Zhao, On the stability of diffusion processes with state-dependent switching, *Sci. China, Ser. A*, 49(2006), 1258–1274.
- G. Yin, F.B. Xi, Stability of Regime-Switching Jump Diffusions, *SIAM J. Contr. Optim.* To appear.
- C.G. Yuan, X.R. Mao, Asymptotic stability in distribution of stochastic differential equations with Markovian switching, *Stoch. Proc. Appl.*, 103(2003), 277–291.
- C. Zhu, G. Yin, Asymtotic properties of hybrid diffusion systems, *SIAM J. Contr. Optim.*, 46(2007), 1155–1179.

Thank You Very Much!