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1, Scale-Free Real-World Networks

For the real-world network of World Wide Web/Internet,
experimental studies by Albert, Barabási & Jeong
(1999) etc. demonstrated that the proportion of vertices
of a given degree follows an approximate inverse power
law, i.e.,

the number of vertices of degree k

the total unmber of vertices
≈ Ck−α

for some constants C and α.
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1, Scale-Free Real-World Networks

For the real-world network of World Wide Web/Internet,
experimental studies by Albert, Barabási & Jeong
(1999) etc. demonstrated that the proportion of vertices
of a given degree follows an approximate inverse power
law, i.e.,

the number of vertices of degree k

the total unmber of vertices
≈ Ck−α

for some constants C and α.

The degree distribution of many real-world networks
(including the Internet) are power law (It is also called
scale-free).— heavy-tailed.
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For the classical random graph model Gn,p introduced
by Erdös & Rényi (1959), the proportion of vertices of a
given degree follows an approximate Poisson law, i.e.,

the number of vertices of degree k

the total unmber of vertices
≈ λk

k!
e−λ,

where λ = np.
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the number of vertices of degree k

the total unmber of vertices
≈ λk
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where λ = np.

The degree distribution of classical random graph
model Gn,p is light-tailed.
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For the classical random graph model Gn,p introduced
by Erdös & Rényi (1959), the proportion of vertices of a
given degree follows an approximate Poisson law, i.e.,

the number of vertices of degree k

the total unmber of vertices
≈ λk

k!
e−λ,

where λ = np.

The degree distribution of classical random graph
model Gn,p is light-tailed.

Scale-free degree distribution is one of the most
important features of real-world networks.
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2, Other real-world networks.

Guassian distribution can be observed in the
acquaintance network of Mormons Bernard et al. (1988).
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2, Other real-world networks.

Guassian distribution can be observed in the
acquaintance network of Mormons Bernard et al. (1988).

Exponential distribution can be observed in the
powergrid of southern California Watts & Strogatz
(1998).
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2, Other real-world networks.

Guassian distribution can be observed in the
acquaintance network of Mormons Bernard et al. (1988).

Exponential distribution can be observed in the
powergrid of southern California Watts & Strogatz
(1998).

The degree distribution of the network of world airports
Amaral et al. (2000) interpolates between Gaussian and
exponential distributions.
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2, Other real-world networks.

Guassian distribution can be observed in the
acquaintance network of Mormons Bernard et al. (1988).

Exponential distribution can be observed in the
powergrid of southern California Watts & Strogatz
(1998).

The degree distribution of the network of world airports
Amaral et al. (2000) interpolates between Gaussian and
exponential distributions.

The degree distribution of the citation network in high
energy physics Lehmann, Lautrup & Jackson (2003)
interpolates between exponential and power law
distributions.
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An example: a model which exhibits more than one D.S.

For a general model of collaboration networks in Zhou
et al. (2005) indicate that:

while a relevant parameter α increases from 0 to 1.5,
four kinds of degree distributions appear as:

1, exponential,

2, arsy-varsy,

3, semi-power law and

4, power law

in turn.
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3, Models lead to Power Law D. S.

Why Power Law?: What is the underlying causes for the
emergence of power law degree distributions?
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3, Models lead to Power Law D. S.

Why Power Law?: What is the underlying causes for the
emergence of power law degree distributions?

Actually, people use the Random Graph processes
{Gt = (Vt, Et) : t ≥ 1} to model the evolving real-world
network.
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For given t ≥ 1, one may select a vertex from Vt

uniformly at random, and let ξt be the degree of the
selected vertex, then the distribution of ξt is called the
degree distribution of Gt.
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For given t ≥ 1, one may select a vertex from Vt

uniformly at random, and let ξt be the degree of the
selected vertex, then the distribution of ξt is called the
degree distribution of Gt.

Let Dk(t) be the number of vertices with degree k ≥ 0 in
Gt and let Dk(t) be the expectation of Dk(t). Suppose
that vt = |Vt| grow linearly, then

P(ξt = k) = E(
Dk(t)

vt
) ∝ Dk(t)

t
.
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For given t ≥ 1, one may select a vertex from Vt

uniformly at random, and let ξt be the degree of the
selected vertex, then the distribution of ξt is called the
degree distribution of Gt.

Let Dk(t) be the number of vertices with degree k ≥ 0 in
Gt and let Dk(t) be the expectation of Dk(t). Suppose
that vt = |Vt| grow linearly, then

P(ξt = k) = E(
Dk(t)

vt
) ∝ Dk(t)

t
.

Our goal is to study the limit limt→∞
Dk(t)

t
under various

setting of Gt.
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Some random graph models were introduced to explain
“Why Power law?":

‘LCD model’ of Bollobás & O. Riordan (2004);
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Some random graph models were introduced to explain
“Why Power law?":

‘LCD model’ of Bollobás & O. Riordan (2004);

the generalization of ‘LCD’ model due to Buckley &
Osthus (2004);

‘copying’ models of Kumar et al (2000);

the very general models defined by Copper & Frieze
(2003);

the other model with random deletions defined by
Copper, Frieze & Vera (2004).
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Some random graph models were introduced to explain
“Why Power law?":

‘LCD model’ of Bollobás & O. Riordan (2004);

the generalization of ‘LCD’ model due to Buckley &
Osthus (2004);

‘copying’ models of Kumar et al (2000);

the very general models defined by Copper & Frieze
(2003);

the other model with random deletions defined by
Copper, Frieze & Vera (2004).

“hard copying" model of Ning, Wu & Cai (2008). etc.
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4, A Model Leads to Critical Phenomenon

Researches reveal that PREFERENTIAL
ATTACHMENT ( also called “BA mechanism" ) and
COPYING are the most important mechanisms which
lead to power law degree sequences
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4, A Model Leads to Critical Phenomenon

Researches reveal that PREFERENTIAL
ATTACHMENT ( also called “BA mechanism" ) and
COPYING are the most important mechanisms which
lead to power law degree sequences

Our Problem:

Does it exist some dynamically evolving random graph
process which brings forth various degree distributions
by continuous changing of its parameters only?
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4, A Model Leads to Critical Phenomenon

Researches reveal that PREFERENTIAL
ATTACHMENT ( also called “BA mechanism" ) and
COPYING are the most important mechanisms which
lead to power law degree sequences

Our Problem:

Does it exist some dynamically evolving random graph
process which brings forth various degree distributions
by continuous changing of its parameters only?

Our goal:

Answer the above problem in a mathematically rigorous
manner.
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The First Result (A simplified version!)

Model 1 [Wu, Dong, Liu and Cai (2009),JAP]:

{Gt = (Vt, Et), t ≥ 1}, Write et = |Et|, vt = |Vt|.
Let G1 = {x1}
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The First Result (A simplified version!)

Model 1 [Wu, Dong, Liu and Cai (2009),JAP]:

{Gt = (Vt, Et), t ≥ 1}, Write et = |Et|, vt = |Vt|.
Let G1 = {x1}
At Time-Step t ≥ 2, to define Gt from Gt−1, one of the
two following substeps is executed.
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The First Result (A simplified version!)

Model 1 [Wu, Dong, Liu and Cai (2009),JAP]:

{Gt = (Vt, Et), t ≥ 1}, Write et = |Et|, vt = |Vt|.
Let G1 = {x1}
At Time-Step t ≥ 2, to define Gt from Gt−1, one of the
two following substeps is executed.

With probability α > 0 we add a vertex xt to Gt−1. We
then add m random edges incident with xt. When a
edge is added, the random neighbour w of xt is chosen
in the manner of preferential attachment, namely,

P(w = v) =
dv(t − 1)

2et−1
,

where dv(t − 1) denotes the degree of vertex v in Gt−1.
Phase Transition on The Degree Sequence of a Random Graph Process with Vertex Copying and Deletion – p. 11/26



With probability 1 − α ≥ 0 we delete min{m, et−1}
randomly chosen edges from Et−1.

Remark 1: In this setting, {et : t ≥ 1} is Markovian and

E(et) ≈ (2α − 1)mt.

Note that, to the best of my knowledge, almost all
studied models have linear edge and vertex growth.
To some extent, this makes the argument standard
(or, relatively easy!).
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With probability 1 − α ≥ 0 we delete min{m, et−1}
randomly chosen edges from Et−1.

Remark 1: In this setting, {et : t ≥ 1} is Markovian and

E(et) ≈ (2α − 1)mt.

Note that, to the best of my knowledge, almost all
studied models have linear edge and vertex growth.
To some extent, this makes the argument standard
(or, relatively easy!).

The main results for Model 1 follow as
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Theorem: Let αc =
2

3
, then it is a critical point for the

degree sequence of the model satisfying:

Phase Transition on The Degree Sequence of a Random Graph Process with Vertex Copying and Deletion – p. 13/26



Theorem: Let αc =
2

3
, then it is a critical point for the

degree sequence of the model satisfying:
1. if α > αc, then there exists constant C1 = C1(m,α)

such that,

lim
t→∞

Dk(t)

t
= C1k

−1−β + O(k−2−β);
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Theorem: Let αc =
2

3
, then it is a critical point for the

degree sequence of the model satisfying:
1. if α > αc, then there exists constant C1 = C1(m,α)

such that,

lim
t→∞

Dk(t)

t
= C1k

−1−β + O(k−2−β);

2. if 4
7 < α < αc, then there exists constant

C2 =C2(m,α) such that

lim
t→∞

Dk(t)

t
= C2γ

kk−1+β + O(γkk−2+β);
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3 if α = αc, then there exists constant Cc = Cc(m,α) such
that,

lim
t→∞

Dk(t)

t
= Ccuc(k).

Where

uc(k) =

∫ 1

0
tk−1e−

1

1−t dt

and

β =
4α − 2

3α − 2
, γ =

α

2(1 − α)
.
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Remark 2: Three years later, I get the following

uc(k) = e−O(
√

k)

I will thank Prof. Yong-Hua Mao in this point, it’s him

who suggest me to consider the function e−
√

k.
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Remark 2: Three years later, I get the following

uc(k) = e−O(
√

k)

I will thank Prof. Yong-Hua Mao in this point, it’s him

who suggest me to consider the function e−
√

k.

So, Model 1 exhibits a perfect critical phenomenon on
its degree distribution!
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Remark 2: Three years later, I get the following

uc(k) = e−O(
√

k)

I will thank Prof. Yong-Hua Mao in this point, it’s him

who suggest me to consider the function e−
√

k.

So, Model 1 exhibits a perfect critical phenomenon on
its degree distribution!

Recall that Model 1 only consider edge deletion, we
note that the argument fails when vertex deletion is
considered additionally.
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5. The Model (2) and Main results

Fix a constant µ > 0. Consider the random graph process
{Gt = (Vt, Et) : t ≥ 1} defined as follows:

Time-Step 1. Let G1 consist of an isolated vertex x1.
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5. The Model (2) and Main results

Fix a constant µ > 0. Consider the random graph process
{Gt = (Vt, Et) : t ≥ 1} defined as follows:

Time-Step 1. Let G1 consist of an isolated vertex x1.

Time-Step t ≥ 2. In the case of vt−1 = 0, let Gt consist of
an isolated vertex xt. Otherwise, we do the following:

Phase Transition on The Degree Sequence of a Random Graph Process with Vertex Copying and Deletion – p. 16/26



5. The Model (2) and Main results

Fix a constant µ > 0. Consider the random graph process
{Gt = (Vt, Et) : t ≥ 1} defined as follows:

Time-Step 1. Let G1 consist of an isolated vertex x1.

Time-Step t ≥ 2. In the case of vt−1 = 0, let Gt consist of
an isolated vertex xt. Otherwise, we do the following:
1. With probability α > 0, we add a vertex xt to Gt−1.

Then, for each vertex x ∈ Vt−1, independently, we
add the edge between x and xt with probability
min{µ/vt−1, 1}.
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5. The Model (2) and Main results

Fix a constant µ > 0. Consider the random graph process
{Gt = (Vt, Et) : t ≥ 1} defined as follows:

Time-Step 1. Let G1 consist of an isolated vertex x1.

Time-Step t ≥ 2. In the case of vt−1 = 0, let Gt consist of
an isolated vertex xt. Otherwise, we do the following:
1. With probability α > 0, we add a vertex xt to Gt−1.

Then, for each vertex x ∈ Vt−1, independently, we
add the edge between x and xt with probability
min{µ/vt−1, 1}.

2. With probability 0 ≤ β ≤ 1 − α, we generate vertex xt

by copying an existing vertex x from Vt−1 uniformly at
random.
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5. The Model (2) and Main results

Fix a constant µ > 0. Consider the random graph process
{Gt = (Vt, Et) : t ≥ 1} defined as follows:

Time-Step 1. Let G1 consist of an isolated vertex x1.

Time-Step t ≥ 2. In the case of vt−1 = 0, let Gt consist of
an isolated vertex xt. Otherwise, we do the following:
1. With probability α > 0, we add a vertex xt to Gt−1.

Then, for each vertex x ∈ Vt−1, independently, we
add the edge between x and xt with probability
min{µ/vt−1, 1}.

2. With probability 0 ≤ β ≤ 1 − α, we generate vertex xt

by copying an existing vertex x from Vt−1 uniformly at
random.

3. With probability γ := 1 − α − β, we delete a randomly
chosen vertex x from Vt−1.
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5. Why we study Model 2?

To model the www network more properly: to this end,
we consider vertex deletion!

In general, vertex deletion makes the problem more
complicated. As discussed in Copper, Frieze & Vera
(2004), vertex deletion will make edge estimation
“surprisingly difficult": if a high degree vertex is
deleted, the edge number may change by a large
amount in one step, and the use of standard
concentration inequalities is prohibited.
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5. Why we study Model 2?

To model the www network more properly: to this end,
we consider vertex deletion!

In general, vertex deletion makes the problem more
complicated. As discussed in Copper, Frieze & Vera
(2004), vertex deletion will make edge estimation
“surprisingly difficult": if a high degree vertex is
deleted, the edge number may change by a large
amount in one step, and the use of standard
concentration inequalities is prohibited.

To get a power law with exponent lies in (1,2]:
Almost all other studied models possess a power law
with an exponent larger than 2.

In this point, I shall thank Prof. Fu-Zhou Gong, it’s
him who draw my attention to this aspect.
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To this end, we consider vertex copying, which makes
the edge number of Gt grow super-linearly. A
pre-research in Ning, Wu & Cai (2008) suggests that
vertex copying may lead to such a power law exponent.

Phase Transition on The Degree Sequence of a Random Graph Process with Vertex Copying and Deletion – p. 18/26



To this end, we consider vertex copying, which makes
the edge number of Gt grow super-linearly. A
pre-research in Ning, Wu & Cai (2008) suggests that
vertex copying may lead to such a power law exponent.

Copying comes from the basic idea that a new web
page is often made by copying an old one and then
changing some of the links. One will see latter that, in
the copying step of our model, the degree increasing
rate of a vertex is just proportional to the degree of the
vertex, and this coincides with that of models with
preferential attachment mechanism.
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To this end, we consider vertex copying, which makes
the edge number of Gt grow super-linearly. A
pre-research in Ning, Wu & Cai (2008) suggests that
vertex copying may lead to such a power law exponent.

Copying comes from the basic idea that a new web
page is often made by copying an old one and then
changing some of the links. One will see latter that, in
the copying step of our model, the degree increasing
rate of a vertex is just proportional to the degree of the
vertex, and this coincides with that of models with
preferential attachment mechanism.

Other than preferential attachment mechanism, copying
plays a key role in our argument. Actually, due to
copying, any estimate for edge number is avoided, this
ENABLE us to consider vertex deletion!
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Main Results

We assume
0 < α < 1, α + β > 1/2

and

µ ≥ min{β, γ}
α

− 1.
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Main Results

We assume
0 < α < 1, α + β > 1/2

and

µ ≥ min{β, γ}
α

− 1.

Given α, β, γ, let

βc =
1 − α

2
, ξ =

α

β − γ
and ζ =

β

γ
.
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Main Results

We assume
0 < α < 1, α + β > 1/2

and

µ ≥ min{β, γ}
α

− 1.

Given α, β, γ, let

βc =
1 − α

2
, ξ =

α

β − γ
and ζ =

β

γ
.

The main results of Model 2 follow as:
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Main Theorem:

if β > βc, then there exists a constant C1 = C1(α, β, µ)

such that, for any ǫ ∈ (0, 1
2),

∣

∣

∣

∣

Dk(t)

t
− C1k

−1−ξ

∣

∣

∣

∣

= O(t−ǫ) + O(k−2−ξ);
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Main Theorem:

if β > βc, then there exists a constant C1 = C1(α, β, µ)

such that, for any ǫ ∈ (0, 1
2),

∣

∣

∣

∣

Dk(t)

t
− C1k

−1−ξ

∣

∣

∣

∣

= O(t−ǫ) + O(k−2−ξ);

if β < βc and µ < β
α + β

γ−β , then there exists a constant

C2 = C2(α, β, µ) such that, for any ǫ ∈ (0, 1
2),

∣

∣

∣

∣

Dk(t)

t
− C2ζ

kk−1+ξ

∣

∣

∣

∣

= O(t−ǫ) + O
(

ζkk−2+ξ
)

;
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if β = βc, then there exists a constant Cc = Cc(α, µ) such
that, for any ǫ ∈ (0, 1

2),

∣

∣

∣

∣

Dk(t)

t
− Ccuc(k)

∣

∣

∣

∣

= O(t−ǫ) + O

(

µk

k!

)

,

where

uc(k) =

∫ 1

0
tk+αµ

β
−1(1 − t)

αµ

β exp

{ −α

β(1 − t)

}

dt = e−O(
√

k)

and
√

α/β
√

k ≤ O(
√

k) ≤ 2
√

α/β
√

k.
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if β = βc, then there exists a constant Cc = Cc(α, µ) such
that, for any ǫ ∈ (0, 1

2),

∣

∣

∣

∣

Dk(t)

t
− Ccuc(k)

∣

∣

∣

∣

= O(t−ǫ) + O

(

µk

k!

)

,

where

uc(k) =

∫ 1

0
tk+αµ

β
−1(1 − t)

αµ

β exp

{ −α

β(1 − t)

}

dt = e−O(
√

k)

and
√

α/β
√

k ≤ O(
√

k) ≤ 2
√

α/β
√

k.

Remark 3: In this paper, the conditions on µ are all
technical, and it is conjectured that our results hold for
any µ > 0.
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6, On the proof

The proof of the main Theorem is divided into two parts:

Part 1: To prove that the limit limt→∞
Dk(t)

t
exist and be

the solution of the following recurrence in k: d−1 = 0 and
for k ≥ −1,

(A2(k+2)+B2)dk+2 +(A1(k+1)+B1)dk+1 +(A0k+B0)dk

= − αµk+1

(k + 1)!
e−µ =: −bk+1. (∗)

where A2 =
γ

η
,A1 = −β + γ

η
,A0 =

β

η
,B2 = 0, B1 =

−1 − αµ − β + γ

η
, B0 =

αµ

η
and η = 2(α + β) − 1.
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To finish part 1, we need the following two useful estimates:

1, an upper estimate for ∆t, the maximum degree of Gt:

∆t ≤ tρ, q.s.

for some 0 < ρ < 1, and
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To finish part 1, we need the following two useful estimates:

1, an upper estimate for ∆t, the maximum degree of Gt:

∆t ≤ tρ, q.s.

for some 0 < ρ < 1, and

2, an uniform bound for the convergence rate of the
so-called law of small numbers: For any ǫ > 0,

sup
k≥1

∣

∣

∣

∣

P(Yt = k) − νk

k!
e−ν

∣

∣

∣

∣

= O(t−1+ǫ)

where Yt = b(t, ν/t) be the general binomial random
variable. (Thank Prof. Fu-Xi Zhang, she gives me a hint!)
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Part 2: Solve the above difference equation (*) in three
cases respectively. To finish part 2, we need the
following three substeps:
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Part 2: Solve the above difference equation (*) in three
cases respectively. To finish part 2, we need the
following three substeps:
1. Use the Laplace’s method to solve the following

homogenous equation

(A2(k+2)+B2)fk+2+(A1(k+1)+B1)fk+1+(A0k+B0)fk

= 0, k ≥ 1.
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Part 2: Solve the above difference equation (*) in three
cases respectively. To finish part 2, we need the
following three substeps:
1. Use the Laplace’s method to solve the following

homogenous equation

(A2(k+2)+B2)fk+2+(A1(k+1)+B1)fk+1+(A0k+B0)fk

= 0, k ≥ 1.

2. For any given integer m ≥ 0, we solve the following
non-homogenous equation: f−1 = 0 and for k ≥ −1

(A2(k+2)+B2)fk+2+(A1(k+1)+B1)fk+1+(A0k+B0)fk

= −I{k=m−1}.
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3. Finally, we construct the solution as follows to solve
the general non-homogenous equation (*)

dk :=
∞

∑

m=0

bmfm
k , k ≥ −1

where {fm
k : k ≥ −1} be the solution of the equation

considered in substep 2.
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3. Finally, we construct the solution as follows to solve
the general non-homogenous equation (*)

dk :=
∞

∑

m=0

bmfm
k , k ≥ −1

where {fm
k : k ≥ −1} be the solution of the equation

considered in substep 2.

To make the general non-homogenous equation (*)
solvable and the problem meaningful, bk must decay at

least as o(e−k). In this case we have bk = O(µk

k! ).
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3. Finally, we construct the solution as follows to solve
the general non-homogenous equation (*)

dk :=
∞

∑

m=0

bmfm
k , k ≥ −1

where {fm
k : k ≥ −1} be the solution of the equation

considered in substep 2.

To make the general non-homogenous equation (*)
solvable and the problem meaningful, bk must decay at

least as o(e−k). In this case we have bk = O(µk

k! ).

To solve such an equation successfully is a by-product
of the present paper.
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Thank You Very Much!
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