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Backgrounds

Nearest neighbor setting

(1) Simple random walk:

Sp = 21£Z7

where §; i.i.d., satistying P(§; =1) = p, P(§& = —1) = q.

. N _Jpitj=1i4+1,
P(Sn_]‘sn—l_ )_{q if j=i—1.



Simple RW with nonhomogeneous environment

(2) Simple RW with nonhomogeneous envi-
ronment

P,(Xp1=z+ 1‘Xn =) = wy(1);

Pw(Xn—i-l =T — 1|Xn = x) — Wx(—l). (1)

Here X,, cannot be written as sums of i.i.d. ran-
dom variables any longer.



Random Walks in Random Environment

Randomizing the environment{w, },cz, letting {w, }.cz ~ P,
one has

(3) Nearest neighbor Random Walk in Random Environ-
ment (RWRE)

For fixing w, P,(Xp41 =2 + 1|Xn =) = w;(1); 5
P, (Xn+1 :x—l‘Xn:x) = w,(-1). @
P°(-) is called quenched probability;

PO(.) = / P2()P(dw) is called annealed probability.



Nearest neighbor RWRE

The history of the nearest neighbor RWRE:
(1) 0-1law and LLN ( w; i.i.d. ) (Solomon 1975 Ann. Prob.)
(2) 0-1 law, LLN, CLT (ergodic w)

(Alili 1999 JAP, Zeitouni 2004 LNM)

wi(—l)
wi(1)

Let Pi =
E(log pp) determines the recurrence and transience.

E(po) determines the LLN.

(3) LDP (i.i.d. w )(See Greven-Hollander 1994 Ann. Prob.).

(4) LDP (ergodic w )
(See Comets-Gantert-Zeitouni 2000 PTRF).

(5) Kesten-Kozlov-Spitzer [6](1975) proved a stable limit theorem for
the nearest neighbor RWRE.



Difficulties arise when randomizing w

(1) Under the quenched probability P9, X,, cannot be writ-
ten as sums of i.i.d. random variables any longer.
Simple random walk: S, =>"" | &, & i.id..

(2) Under the annealed probability P°
{X,} is not a Markov chain.

One needs new tools for further studies of RWRE.

“Branching Structure”: a powerful tool.



Branching structure for nearest neighbor RWRE

Define T, = inf[k > 0: X = n].
While X,, — oo, define

Uln:#{kSTnkalthk:Z_]‘}

P,(U} = k|Ufyy = 1) = [wi(=1)]*wi(1).
Then
Uy =0,Upq,---, U7
are the first n generations of a branching process with immigration in

random environment. Moreover,

T.=n+2)» U

i<n



The function of the branching structure

The function of the branching structure:

1 One can count exactly the steps of the walk before 7T;,,
T.=n+2>,.U"

2 Give the explicit expression of “invariant density”, the
key element of the method “The environment viewed
from particle” (Zeitouni (2004) LNM).

3 Kesten-Kozlov-Spitzer (1975) proved the stable law for
nearest neighbor RWRE.

4 Kesten (1977 Proceedings) proved the renewal theorem
for nearest neighbor RWRE.

5 Gantert-Shi (2002 SPA) proved a limit theorem for the
maximum of the occupation time.



Where this paper begins

Kesten-Kozlov-Spitzer (1975) (Branching structure for nearest neigh-
bor RWRE)

In the literature we are aware of there is no description of the branching
structure for non-nearest neighbor RWRE.

Questions:

(1) Are there any intrinsic connections between non-nearest
neighbor RWRE and Branching Process in Random Envi-
ronment?

(2) How to construct the branching structure for non-nearest
neighbor RWRE? To what extent can we use the branch-
ing structure to study the limiting behaviors of non-nearest
neighbor RWRE?



(L-1) RWRE

The model of the paper
(L-1) RWRE X,,:

Po(Xpt1 =z + 1| Xn = z) = w(l),

{Wz}meZ = {(wx(fL)a s 7‘*)03(71),‘*}96(1))}9662 ~P.



The model

Y : The simplex in R+,
Q) := %%, space of the environment.
1 : a probability measure on .
P= ®Z 1 is the product measure on 2, which makes w;,x € Z i.i.d..
Assume that P satisfies some elliptic condition: There exists € > 0,
such that

P (wo(=1)/wo(l) > e, VIeA) =1. (3)

For w € Q, define (L-1) RWRE as a Markov chain, with initial value
Xy = 0, transition probabilities

P,(Xpp1 =2+ 21X, =2) =w,(2),Vz €Z,z € A. (4)

P2(-) : is called the quenched probability;
Pe() = fQ P2(-)P(dw) : is called the annealed probability.



(L-1) RWRE

(L-R) RWRE was first introduced in Key (1984) Ann. Prob..

Brémont (2002) Ann. Prob. gave the 0-1 law and LLN.

Let
al(l) coo al(L — 1) ai(L)

o 1 0 0
M; = . s (5)
0 1 0
wi(=D)+...fwi(=L)

where a;(1) = o

Let vz, be the great Lyapunov exponent of {M;}.



Relations between certain matrices

Define
b_i(1) -+ b_(L—1) b_4(L)
14by(1)- by(L—1) bi(L
b_i(1) ---14+b_;(L—1)b_;(L)
where b; (1) = %(_13)71 << L;
1
11
B= (7)
11-.-1

Then M; = B~'M;B. Moreover, {M;} and {M;} share the same great
Lyapunov exponent .



(L-1) RWRE

Theorem (Brémont 2002 Ann. Prob.)
(i) v < 0= X,, — o0 P°-a.s.;

(i) vz > 0= X,, » —o0 P°-a.5.;
(i) vz = 0 = —oo = liminf X,, < limsup X,, = co P°-a.s..

Also, Brémont showed a LLN under a condition called (IM) condition
by him, that is,

X
lim == — v P°as..
n—oo N



Branching structure for (L-1) RWRE

Branching structure for (L-1) RWRE(lim sup,,_,,, X,, =
o0)

Uﬁl:#{0<k<Tnth_1>i,Xk:i—l+1},
Uin = (U1n1/U1n2/ ’UZZL)

n—1 n—1 n—1
To=n+ Y U+ > U4=n+ > UM21,., D)7

1=—00 1=—00 1=—00



Immigration structure

Path decomposition and immigration structure



Path decomposition

I = {Xm Ty <m < Tp1}, k=0,1,....,n — 1.
For 1 <1< L, i<k, define

U[n(k‘,7) = #{Tk <m< Tk+1 X1 >0, Xy =1 — [+ 1}.

Then U;*(k, i) records all steps by the walk from above i downwards
to i — [+ 1 in the random walk path Ij. Let

U"(k,i) = (U'(k,1), U3 (k, i), ..., Ul (k, 1)),

recording all steps by the walk crossing or reaching ¢ from above
downwards in the random walk path Ir. For ¢ > k, let U™(k,i) = 0,
and let U"(k, k) = e;. Then by definition of U* and U™(k, ),

n—1

Ur=Y_ U"k).

k=(i+1)VO0



Path decomposition

The offspring distribution of the type-1 particles

P,(U™(k,i—1) = (uy,...,ur)|U"(k,i) = e1)
_ (ug + -+ +up)!

U.)j,(*l)ul <o w,(fL)“va(l)
ul! toe UL!



Path decomposition

The offspring distribution of the type-I(> 2) par-
ticles

For2<I< L,
P, (U™(k,i—1) = (u1,...; 1 + w1, .y up) [U™(k,4) = &)

_ (ut - Fug)!

(—=1)% L (— L)Y .
m'uL' wz( 1) ' wl( L) sz(l)'



Branching structure for (L-1) RWRE

Theorem 1 (Branching structure for (I-1) RWRE)

Suppose that limsup,, ., X, = oco. Let 9 = (2,1,...,1). Fix n > 0.
Then

( ) n*n+Zz——oo|Un|+Z1,——oo ’L]. _n+Zz——oo UZL$O7

(b) For 1 <k <n-—1, U"(k, *) is a nonhomogeneous multitype branch-
ing process starting at time £, with branching mechanism

Pw(Un(kvl - 1) = (ula auL)|Un(k77’) = 61)

(U1+"'—|—UL)! “ w
=l an DT e L) (1),

and for 2 <[ < L,
Py, (U™ (kyi—1) = (u1, .0, 1+ wim1, oy ug) [U™ (k) = &)

(’LL1+"'+’U,L)! u w
Wwi(*l) berwi (= L) wi(1).




Branching structure

Theorem 1 (Continued))

further, conditioned on w, U"(k,*), k = 0,1,...,n — 1 are i.i.d. and
particles of U™ (k, ) have independent lines of offspring.

U = 0,0y U UG, (Note: UF = 3 D)
k=(i+1)V

are the first n generations of a multitype branching process with a
type-1 immigration in each generation in random environment.
(c)
n _ n n n
Un71 - 07Un72a T aUl aUO

shares the same distribution with the first n generations of a MBPIRE
{Z_,}n>0, where the branching mechanism of {Z_,},,>¢ will be given
in (8) and (9).

v




Multitype branching process with immigration in

random environment

For k € Z define Z(k, m) to be an L-type branching process starting
at time k in random environment w. That is, given w,

P,(Z(k,m)=0) =1, if m >k,
Pu(Z(k, k) = e1) =1,

and for m < k

P, (Z(k,m) = (u1, ...,ur)| Z(k,m + 1) = e1)
(u1 + - +ug)! (8)

= atoagn et CDE e ena (DB ena(l),

P, (Z(k,m) = (u, ..., wi—2,w—1 + 1,1, ...,uL)|Z(k,m +1)=¢)

(ug +ug+---+ur)!
- wy! g W1 (=1)" - w1 (L) P wmia (1), (9)

1=23,..L.




Multitype branching process with immigration in

random environment

Let
Z_n=> Z(-k,—n), n>0. (10)

{Z_,}n>0 is called Multitype Branching Process with Immigration in
Random Environment (MBPIRE).

Given w, let M_; be such a matrix whose /-th row is the expected value
of particles born to a type-l particle at time —i. Then

b—i(1) -+ by(L—1) by(L)
14+boy(1) - bi(L—1) bi(L)
: , : : : (11)

bos(l) - 14bi(L—1)bi(L)

where b;(1) = 40 1 << L.



Ideas of the construction

Remark 1 (Ideas for the branching structure)

for (L-1) RWRE, the case becomes much more complicated because
there are overlaps between different jumps. So to construct the branch-
ing structure, we use the following new ideas:

1) We treat the jumps reaching or crossing ¢ downward from above i
as the particles of 4;

2) The types are determined by the position that the jumps reach.
That is, if a jump crosses @ downward from above ¢ and reaches i — [+ 1
at last, the jump is a type-l particle of i;

3) We decompose the random walk path before 7}, into n independent
and non-intersection pieces and every piece corresponds to an immigra-
tion structure.

.




The first simple application

One follows from the branching structure immediately the following
interesting result.

That is, for transient walk (X,, — o), the tail of the mini-
mum of the walk before hitting the positive real line decays
faster than exponential rate.

Corollary 1

Suppose that v, < 0, and there is ¢ > 0 such that E||M||? <
0o. Then for ¢t > 0, one has that

P ( min X, < —t) < ke ket

0<n<T}

where ki and ks are positive constants.




Testing of the branching structure

Consider a special (2-1) random walk. Fix w := (..., wp, wp,wp, -..) € Q,

wo = (q1,42,p), where p,q1,q2 > 0, p+q1 + g2 = 1.
Suppose {X,, }n>0 is a random walk with Xy = 0 and transition prob-

abilities
p if j=i+1,
Pw(Xn+1 :]|Xn:Z): q1 lfj:Z—l,

Theorem 2 (The mean of T7)

Suppose that p > ¢; + 2¢2. Then P,-a.s., T} < oo and
Ew(Tl) — L

T op—@1—2g2°

Proof. (Method 1: By Ward equation)
1=E,(X7) = Eu(T1)Eu(X1) = (p — @1 — 2¢2) Eu (T1).

(Method 2: Using branching structure) T) = 1+ S0 U2, 1)T.

1=—00



Stable Law for (L-1) RWRE

Let p = —1;‘:(01()1).

Condition (C)

(C1) E (log+ p) < oo, where log™ z :=0Vlogzx.
(C2) P(p>1)>0.

Under (C2), there exsits ko > 2 such that

[( min {ZMO i,7) ) O] =E(p™) > 1.

1<:i<L

Fixing k¢ in (12), we give a new condition
(C3) E(p log™ p) < 0.
Let o be the greatest eigenvalue of M. Then o > 0.

(C4) The group generated by supp[log g], is dense in R.

(12)

O

Kesten 1973 proved that if v, < 0, then there is unique « € (0, ko] such

that

1
logp(h) = nhl»%o E 10gE (H Afo]\f_l cet Af—n-ﬁ—l ||K) =

(13)



A Stable Law for (L-1) RWRE

Theorem 3 (Stable law for (L-1) RWRE)

Suppose that Condition (C) holds and v;, < 0. Fix & in (13).

Let L, (x) be a k-stable law (if K < 1, L,; has support [0, c0); if k > 1,
L,; has zero mean).

(i) if 0 < k < 1, then

lim P(n*%Tn <z) = Ly(x),

n—oo

lim P(n "X, <z)=1—L.(z7*%);

(i) if x = 1, then for suitable D(n) ~ logn and 6(n) ~ (A;logn)~'n,

lim P(n~ YT, — AynD(np~Y)) < z) = Li(z),

n—oo

lim P(n~"'(logn)*(X, —d(n)) < z) =1— Li(—A%z);

n—oo




Stable Law

Theorem 3 (Stable law for (L-1) RWRE (Continued))

(ifi) if 1 < k < 2, then

lim P (n_%(Tn —Aun) < x) = L.(z),

n—oo

lim P (n_rlﬂ (Xn = j) < x) =1- LH(—;UA?-H*);

n—oo

(iv) if kK = 2, then

Tn — AQTL
lim P(—=n 220 — &(z),
nl—{go (Blw/nlogn - ) (:U)

lim P (AQgBl_l(nlogn); (Xn - n> < x> = ®(z);

n—oo




Stable Law

Theorem 3 (Stable law for (L-1) RWRE (Continued))

(v) if k > 2, then

. Tn—Bgn
L — e
IS =) =)

: $ 1 1 n
lim P <B§ B; 'n™2 (Xn - > < x) = ®o(x),
n—oo B3
where 0 < A,,B; < oo are suitable constants, and ®(z) :=

T 52
L —F
o / e 2z ds.
—00

Ideas of the proof: T,, = n + Zl_foo Ul'zo. It suffices to show that
22:01 U]z converges to L, after suitable renormalization. But

v

n/E(v)

ZU".CL'()—ZZ Lo ~ Z WkiL'o



The slowdown properties of RWRE

From (i) of Theorem 3 (Stable Law) one has the following theorem,
which tells that the walk slows down after randomizing the environ-
ment.

Theorem 4 (The slowdown properties of RWRE)
Suppose that Condition (C) holds, vz, < 0, and that 0 < k£ < 1. Then

for k < s < 1 one has that

For simple random walk(linear speed)

Snaooﬁ%—»E(gl)>0.

But Theorem 4 reveals that for (L-1) RWRE(sub-linear speed)

Z — 0, Kk <s.
n

though X,, — oo,



LLN for (L-1) RWRE

For n > 0, define @(n) = §X»w. Then {@(n)} is a Markov chain with
transition kernel

L
P(w,dw") = wo(1)du=w + ZWO(—Z)(SQ—lw:w/.
=1
Define

1 N —
F(w) Z:m <1+261M7,M16,{> 0

i=1

Let 7(w) = ]E(T;((t))). Then one has



LLN for (L-1) RWRE

Theorem 5 (LLN and Invariant Measure)

Suppose that E(m(w)) < co. Then

(i) vz <0; B
(ii) 7(w)P(dw) is invariant under kernel P(w,dw’), that is

157 (w)P(dw) = H loepP(w,dw )i (w)P(dw), B € F;

1

(iii) moreover P-a.s., lim, . == = @)

Remark 2

LLN was proved in Brémont (2002) where the author introduced a so-
called (IM) Condition, and gave the Invariant Measure by studying its
transition probability. By the branching structure we can calculate the
Quenched Mean E?°(T}) to give the explicit expression of the Invari-
ant Measure, and prove the LLN directly by a method known as “the
environment viewed from particles”.

| :x
\




The tail of the expected value of the total progeny of a

immigration

Let {Z_,,}n>0 be the MBPIRE with negative time defined in (10). Let

Yo = i Z(—k,—m).

m=k+1

Note that for m > k, one has E,(Z(—k,—m)) = M_xM_j_1 -+ - M_,,11.
Then

N_p = Z M_jo. M_piq (14)
m=k+1

the expected offspring matrix of Y_j. We prove the follow theorem:



Total progeny of an immigration

Theorem 6 (Tail of total progeny of an immigration)

Suppose that Condition (C) holds and vz < 0. Then for x in (13) and
suitable constant Ky = K3(zo) € (0,00), one has that

tlim t"P(znoxo > t) = Ko|zB|", (15)

where z € RY with all coordinates positive and |z| > 0.

Remark 3
Indeed, Kesten (1973) showed that

| \

tlim t"P(znoxo > t) = K(x,x0),
—00

where K depends on x and xy. The main contribution of Theorem
6 is that it tells how the constant K depends on z. Kj in (15) is
independent of z.

V.




Tail of the total population before regeneration

Let vy = 0, and define recursively

Vp =min{m > v, 1 : Z_,, =0}, Vn>0.
Write 11 simply as v.
v is the regeneration time of {Z_,, },>0;

From the point of view of the random walk v is {X,},>0 the first
position where the walk will never revisit after passing it.

Define

W is the total population born before regeneration time v.



Tail of the total population before regeneration

Theorem 7 (Tail of W)

Suppose that Condition (C) holds and vy, < 0. If k > 2, E((Wx)?) <
o0; if k < 2, there exists 0 < K3 < oo such that

2ShIIl t’iP(WIEO Z t) = K3.

Theorem 7 reveals that the total population of the MBPIRE before
regeneration, Wxg, belongs to the domain of attraction of a k stable
law. Moreover Theorem 7 is the key step for the proof of the stable
limit theorem (Theorem 3.).
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