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Part 1

The Entropic Measure in d =1



Riemannian Structure of Py(M) for Riemannian M

L2-Wasserstein distance
1/2
. 2 .
dw (o, p1) = inf [/M ” d*(x,y) dq(x, y)} g has marginals po, p1
JMx

induces Riemmanian structure on the " Wasserstein space” Pp(M).

Consequence:

First order calculus, gradient flows on P5(M)

The gradient flow % = —V 5(v) on Pp(M) for the relative entropy relative entropy S : Pa(M) — [— oo, o0]
with
_ [ p-logp dx, if dv = pdx
sw) = { 400, if dv & dx

is given by v¢(dx) = p¢(x)dx where p solves the heat equation %p = Apon M.

Challenge:

m  Second order calculus

= stochastic differential equations on P> (M)




Stochastic Dynamics on P»(M)

Stochastic process pt(w) on Py(M) with invariant distribution P8

dut = —B - VS(ue)dt  +  noise

Dirichlet form

)= [ 1Vul(n) P (u)
P2 (M)

where YV u denotes the gradient w.r.t. the Riemannian structure of P(M)

Canonical measure on Py (M)

4 () = — o (3 () - 42°(1)




Particular Case: d=1, say M = [0, 1]

Continuous, one-to-one correspondence:

f

distrib. function right inverse distrib. function
— — g —

between P>(M) and G = {incr., right cont. g : [0, 1] — [0, 1]}.

B _ 1 0
dQ”(g) = % exp (—B - S(g)) - dQ”(g)

with S(g) = — fol log gtl dt  if S(p) = relative entropy.

(Cf. Construction of Wiener measure with H(g) = % fol gt/zdt.)



Heuristic Derivation of the Wiener Measure

Recall heuristic construction of Wiener measure as
B L 0
dP(g) = S exp (= - Hlg)) - dP"(e)

with H(g) = 1 [ g{?dt.

Finite dimensional approximation yields

p? (gzl € dxy,...,8t, € dx,,)

1

|><,—><,—1\
—e g dxq ... d
xp( B8 2(t 50 X1 Xn

~> rigorous construction via Kolmogorov

~~> law of Brownian motion



Heuristic Derivation of the Entropic Measure

Similarly, the ansatz

8 1 0
dQ”(g) = Z exp (=B - S(g)) - dQ(g)

with S(g) = — ’01 log g/ dt leads to
L (gt1 €da,... g, € dxn)
n+1
= S exp ,Bz Iog — S(ti—ti—1) (dxl .. .dxp)
i—1
ntl . dxq . .. dx
_ H (X: — %1 Bti— t,l) 1 n
77 x1-(0—x1) ... (L —xn)

~> consistent family, projective limit
~ (gt)o<t<1 is Dirichlet-Ferguson process (normalized Gamma process), i.e.

(@) Xgt
. = 2L
Xg



Part 2

The Entropic Measure on Multidimensional
Spaces



General Case: M compact Riemannian, m=vol

Correspondence:
distrib. function right inverse distrib . function
— f — — v
should be re-interpreted in terms of Brenier maps:
W= gxm, fom=v.
They are given as
g = exp(Ve), f = exp(Vy)

where ¢ and ) are conjugate d? /2-convex functions. That is,

(== int Cdeeon+vm],  w0) = inf [Zd00) + o)

X) = — in = X = — in = X x)| .

P vem |2 Y Y y xem |2 s Y »
If p < m then
f= g_l.

Theorem. The conjugation map ¢ : ;o +— v is continuous and involutive on P(M).



Entropic Measure on Multidimensional Spaces: Heuristics

Ansatz for distribution of
1
dPF () = — exp (=0 - But(ulm)) - dP (1)

leads to ansatz for distribution of v = u©

a0 (v) = 2 0
Q) = 5 e (~6 - But(m]v)) - d2'()

since Ent(p|m) = Ent(m|p©).
4

Given a partition M = vazl M;, replace the conditional expectation of Ent(m | - ) under the constraint

v(My) = x1, ..., v(My) = xp by the minimum of v +— Ent(m | v) under the constraint
v(My) = xq, ..., v(My) = xy.
Obviously, this minimum is attained at a measure with constant density on each of the sets M; of the partition.
Hence,
- m(M B-m(M,
Q% (M), -+, v(M)) € de) = c - 5™ LB mMND g g,

. dxq...d . - . . T
Choosing qp(dx) = ¢y - J{EN xim1} XXXy )22 X')‘(’N yields the finite dimensional distributions of the
=1 %=

Dirichlet-Ferguson process.



: Rigorous

Entropic Measure on Multidimensional Spaces

Q’H = distrib. of Dirichlet-Ferguson process v = Zfil At éxk

Random probability measure with finite dimensional distributions

O (M), (M) € ) = e T
T r(sm(m)

v=fom

O /
=
o

M

0
0

M

Entropic measure PP = C*@B

Almost every 1 has no density and no atoms ('Cantor like')

SsN, x=y



Part 3

The Wasserstein Diffusion



Change of Variables Formula, until now only in d =1

Change of variables formula for PP (dp) under transformation p +— hy p
ki3

Change of variables formula for Qﬁ(dg) under transformation g — ho g

" Girsanov” theorem for Dirichlet process:

Law (h(g)) = Yh(g) - Law(g)

with some explicitly known density Y}, (" Quasi-Invariance”)

vRenesse/Sturm, vRenesse/Yor/Zambotti



Quasi-Invariance

Theorem. For smooth, strictly increasing h € G:
d0” (ho g) = Y (g) - d@°(g)
with
\/ W (ge—) - 0 (gt+)

h(gt+)— h(é’t )
8t —8t—

Y,f?(g) = exp (+ﬁ /01 log h'(gr)dt) :

t€J(g)

exp (=B [S(hog) — S(g)])



onsequences of Quasi-Invariance

m Integration by parts for directional derivative
1
Dy u(p) = lim, : [u((F + t@)wp) — u(p)]
m Closability of Dirichlet form on L2(P, PP)

E(uu) = /p 1DulP (1) dP (1)

m 3 Wasserstein diffusion: reversible stoch. process (1t);>q on P2
m Laplacian on the Wasserstein space

Lu(p) = U//(A)~/a,2dp,
+ U/(.)ﬁ/a”w
TS [a"(l+)+a”(lf) _o/(ly) =)
(1)

I€gaps 2 I

for cylinder functions u(p) = U(fo1 adp), directional derivative Dyu(p) = U'(.) - [ o’ pdu



Woasserstein Diffusion

Square field operator on L2(Po(M), ]P”@)

M(u, u)(w) = IV ul?(w)

Intrinsic distance = L2-Wasserstein distance, Rademacher theorem:

m  Every 1-Lipschitz function u on the L2-Wasserstein space P belongs to the domain of the Dirichlet form
and M(u,u) < 1lae.

m  Every continuous function u in the domain of the Dirichlet form with '(u, u) < 1 a.e. is 1-Lipschitz on P5.

Gaussian short time asymptotic (Hino/Ramirez)

dw (A, B)?

lim ¢l A,B) = —
Jim tlog pe(A, B) 2

Logarithmic Sobolev inequality, Poincaré inequality with constant é

(Déring/Stannat)



Part 4

Particle Approximation



The Particle System

Consider the interacting system of stochastic differential equations

;. dlogpl? ;
axi = 8Pk (xydt+ VIdW,  i=1,....k
Xi
on the simplex Ty := {(x1, .-, x¢) : 0 < x; < ... < x¢ <1} C R¥ with some k-dimensional Brownian

motion (W;);>o and with the weight

PR, x) =

X X 1 x—y B/k=1 )
_ / « / 1] / (x, Yie1 z,-> Lz (1 )~ UmmB
X X G 0o \yi—vyi-1

k—1 i=1 +

(i —yin) PR <COS(7TZ;B/1<) — 2 sin(rzip/K) - log ) dz,-] dyr ... dy,_1
- ;

(where yg := 0, y, := 1). Then for k = 2" — oo the empirical distributions

K 1 &
pe(w) = ;Z

i=1 5X”;t(u)

converge to the Wasserstein diffusion (14¢):>0 on P([0, 1]).



The Particle System

The density pf is continuous, positive and bounded from above by

B () = € ba(@ = ?/ @7 (s = xmg) 747

s

i=2

in the interior of the simplex X and it vanishes on Rk \ k.
Replacing p by f leads to the particle system studied by S.Andres and M.-K. von Renesse

B

. 1 .
dx;, = (f —1> [Xt"*l XXX dt + V2dw]
i=1,...,k. Inthis case, however, until now the convergence
1 k
2O, T

could not be proven rigorously.

r.

A,‘ ,*‘;\b’ w 4

LV
bt

M

Particle systems for N=4 and = 1



Key argument in our approach: monotone approximation of the energy

Recall Dirichlet form on the Wasserstein space Py
E(u,u) = / 1Du() 122,y dP” ()
P (1)

for u € D(E) C L2(P,PP).

Isomorphism x : G — P, g +— g*Leb\[O’I] induces Dirichlet form on G, regarded as a convex subset of the
Hilbert space L2([0, 1], Leb):

E(u, v) = /g (Du(g), Dv(g)) d0° (g)

where Du denotes the Frechet derivative for "smooth” functions u: G — R.

Let C1(G) denote the set of all ("cylinder’) functions u : G — R which can be written as

u(g) = U({g, ¥1), - - -, (& ¥n)) withn € N, U € CY(R") and 91, . . ., ¢, € L2([0, 1], Leb). For u of this
form the gradient

Du(g) = > diU((g, ¥1)s---, (g %n)) - ¥il.)

i=1
exists in L2([0, 1], Leb) and

2

1 n
||Du(g)n2=/0 ‘Za,-U<<g,w1>,..<,<g,wn>)»w,-(s) ds.
i=1

D(E) is the closure of C1(G).



Key argument in our approach: monotone approximation of the energy

For k € N put Lpf(i)(t) i=k-1 ;1 ;. (t)and let ci(g) denote the set of all functions u : G — R which can be

x|
x|~

written as u(g) = U ((g, <p5(1)>, (g, <p£“>) with U € C}(RF).

If we define Ey on L2(G, Qﬁ) as before, — but now with domain being the closure of c;(g) then

Ey \E

For u,v € C}((g)
Ey(u,v) = k/k VU() - VV(x) dmf (x)
R

with VU denoting the usual gradient of U on RK and with me = (Jk)*QB where
1 k
di G g (et te o)
That is, the Dirichlet form E, on G is isomorphic to the Dirichlet form

Ex(U, V) = k{/]Rk VU(x) - VV(x) dmf (x)

on X, C RK.
3

It remains to identify the measure me.



Identification of the Measure mf

Put X
) 1, for t € [0, %]
oDy :={ ik,  foree[F, 4]
0, for t € [£,1].

Then integration by parts yields

10 % 0
/0 oQ(de(0) = k [ ¥, ()t = (g, o)

foralli=1,...,kandall g € G.
Recall that my! := (Jy).. @7 with Ji(g) = ( [¢ oWdg, ..., f2 ¢5(k)dg)‘
8

For k =1 the measure m;’ coincides with the distribution of the "random means” fol t dg(t) of the
Dirichlet-Ferguson process. It is absolutely continuous with density

x 1
95(x) = Be” /0 (=Pl T =y TP [COS(ﬂBy) = sin(mBy) - log —— i 5 dy

on [0, 1].



Identification of the Measure mf

In the case k > 1 note that

with
t+i—1 i—=1
e(5F) ¢ (R
&(t) = ; 1

s(k) s (F)
Now the crucial fact is that, conditioned on (g (%) sy 8 (%1)) the processes (g;(t ))re[o,l] for
i=1,...,k are independent and distributed according to Qﬁ/K
Hence,

K
8 r(B) [ x2 Xi = Yi-1 L \B/Kk=2
Pl (xt, o xk) = SEIDR / /Xl H {195//((_7) S (vi = vie1) dyy ... dyx—1

(where yo := 0, yj := 1) with 95 as above.



