Convergence rate for Markov transition matrices

Yan-Hong Song

Beijing Normal University

(based on a joint work with Yong-Hua Mao)

July 22, 2010

Yan-Hong Song (Beijing Normal University) Convergence rate for Markov transition mat

July 22, 2010 1 / 28

Assumptions

Given a probability transition matrix $P = (p_{ij})$:

$$p_{ij} \ge 0, \quad \sum_{j} p_{ij} = 1.$$

Assume that P is ergodic:

- P is irreducible: $\forall i, j, \exists n, p_{ij}^{(n)} > 0$;
- P is aperiodic: $d = \gcd\left\{n: p_{ii}^{(n)} > 0\right\} = 1;$
- P has a stationary distribution: \exists a probability $\pi = (\pi_j)$ s.t. $\pi = \pi P \iff \lim_{n \to \infty} p_{ij}^{(n)} = \pi_j, \forall i, j.$

Assume further:

• P is reversible w.r.t. $\pi : \pi_i p_{ij} = \pi_j p_{ji}$.

A basic problem is to study the convergence rate of

$$\sum_{j\in E} \left| p_{ij}^{(n)} - \pi_j \right| \to 0.$$

Let $L^2 = L^2(\pi)$ be the Hilbert space, then P is a self-adjoint operator in L^2 and the spectrum of P $\sigma(P) \subset [-1,1]$. By using the spectral mapping theorem, we have

$$|P^n - \pi||_{L^2 \to L^2} \le r^n,$$

where $r = r_1 \vee r_{-1}$,

$$r_1 := \sup \{x < 1 : x \in \sigma(P)\},\$$

and

$$r_{-1} := -\inf \left\{ x : x \in \sigma(P) \right\}.$$

Setting-up

Let \widetilde{P}_t or (\widetilde{X}_t) be a Markov jump process associated with Q = P - I. Define Dirichlet form:

$$D(f) = \frac{1}{2} \sum_{i,j} \pi_i q_{ij} (f_j - f_i)^2 = \frac{1}{2} \sum_{i,j} \pi_i p_{ij} (f_j - f_i)^2$$

and Poincaré variational formula:

$$\lambda_1 = \inf \left\{ D(f) : \pi(f) = 0, \pi(f^2) = 1 \right\}.$$

Then

$$||\widetilde{P}_t - \pi||_{L^2 \to L^2} \le e^{-\lambda_1 t}.$$

• A good relationship between λ_1 and r_1 :

$r_1 + \lambda_1 = 1.$

• Q: if $r_1 < 1$ (or $\lambda_1 > 0$), then r < 1 or $r_{-1} < 1$?

• A: This is true under our assumptions!

• A good relationship between λ_1 and r_1 :

$r_1 + \lambda_1 = 1.$

• Q: if $r_1 < 1$ (or $\lambda_1 > 0$), then r < 1 or $r_{-1} < 1$?

• A: This is true under our assumptions!

• A good relationship between λ_1 and r_1 :

$$r_1 + \lambda_1 = 1.$$

- Q: if $r_1 < 1$ (or $\lambda_1 > 0$), then r < 1 or $r_{-1} < 1$?
- A: This is true under our assumptions!

• L^2 -spectral gap and L^2 -convergence rate

Onvergence rate for strongly ergodic matrices

The spectrum for transient matrices

References

Main theorem

Theorem 1

If $r_1 < 1$, then

$$r_1 \le r \le \left(\frac{a\delta+b}{a+b}\right)^{\frac{1}{2}} \lor \left(\frac{4\xi}{1+3\xi}\right),$$

where

$$a := (3+5\xi)(1-\xi^2), \qquad b := 2(2\xi-r_1)(1+3\xi)^2,$$

$$\xi := 1 - \pi_0(1-r_1) < 1, \quad \delta := \sum_{n \ge 1} f_{00}^{(2n)} < 1.$$

 δ is the probability that the chain comes back to state 0 firstly in even steps, starting from state 0.

The basic idea of the proof is based on the following theorem.

Theorem 2 (Mao.2010)

If there exists $\lambda > 1$ such that

$$\mathbb{E}_0 \lambda^{\tau_0^+} \le M < \infty, \tag{1}$$

and let

$$\rho = \sup\left\{s \le \lambda : \sum_{n=1}^{\infty} s^{2n} f_{00}^{(2n)} < 1\right\},$$
(2)

then we have

$$r \le \rho^{-1} < 1.$$

• Find a function of λ_1 , say $\phi(\lambda_1)$, such that for any $1 < \lambda < \phi(\lambda_1)$,

 $\mathbb{E}_0 \lambda^{\tau_0^+} \le M < \infty.$

• Solve the inequality $\sum_{n=1}^{\infty} s^{2n} f_{00}^{(2n)} < 1$. Then we can find a function of λ , say $\psi(\lambda)$, such that

$$r \le \psi(\lambda).$$

• Combine the above two estimations, we have

$$r \le \inf\{\psi(\lambda) : 1 < \lambda < \phi(\lambda_1)\}.$$

• Find a function of λ_1 , say $\phi(\lambda_1)$, such that for any $1 < \lambda < \phi(\lambda_1)$,

$$\mathbb{E}_0 \lambda^{\tau_0^+} \le M < \infty.$$

• Solve the inequality $\sum_{n=1}^{\infty} s^{2n} f_{00}^{(2n)} < 1$. Then we can find a function of λ , say $\psi(\lambda)$, such that

 $r \leq \psi(\lambda).$

Combine the above two estimations, we have

$$r \le \inf\{\psi(\lambda) : 1 < \lambda < \phi(\lambda_1)\}.$$

• Find a function of λ_1 , say $\phi(\lambda_1)$, such that for any $1 < \lambda < \phi(\lambda_1)$,

$$\mathbb{E}_0 \lambda^{\tau_0^+} \le M < \infty.$$

• Solve the inequality $\sum_{n=1}^{\infty} s^{2n} f_{00}^{(2n)} < 1$. Then we can find a function of λ , say $\psi(\lambda)$, such that

$$r \le \psi(\lambda).$$

• Combine the above two estimations, we have

$$r \le \inf\{\psi(\lambda) : 1 < \lambda < \phi(\lambda_1)\}.$$

• $\lambda_1 \ge \lambda_0 \ge \pi_0 \lambda_1$, where Dirichlet spectral gap: $\lambda_0 = \inf \left\{ D(f) : f_0 = 0, \pi(f^2) = 1 \right\}.$

Thus we have

 $\lambda_0 \ge \pi_0(1-r_1) > 0.$

Yan-Hong Song (Beijing Normal University) Convergence rate for Markov transition mat

July 22, 2010 11 / 28

 $||\widehat{P}_t||_{L^2 \to L^2} < e^{-\lambda_0 t},$

where

۵

$$\widetilde{\tau}_0 = \inf\left\{t \ge 0 : \widetilde{X}_t = 0\right\}, \widehat{p}_{ij}(t) = \mathbb{P}_i[\widetilde{X}_t = j, t < \widetilde{\tau}_0].$$

From this we have for any $\lambda < \lambda_0$ and $i \ge 1$,

$$\mathbb{E}_i e^{\lambda \widetilde{\tau}_0} \leq \frac{\lambda_0 (1 - \pi_0)}{\pi_i (\lambda_0 - \lambda)} < \infty.$$

Thus the above inequality holds for $\lambda < \pi_0(1 - r_1)$.

Passing to moments in discrete time

• Let $\tau_0^+ = \inf \{n \ge 1 : X_n = 0\}$ be the return time, then

$$\mathbb{E}_i \left(\frac{1}{1-\lambda}\right)^{\tau_0^+} = \mathbb{E}_i e^{\lambda \widetilde{\tau}_0}, \quad \forall i \neq 0.$$

• By a theorem due to Cogburn(1975), we have for any $\lambda < rac{1}{1-\pi_0\lambda_1}$,

$$\mathbb{E}_0 \lambda^{\tau_0^+} \le \lambda + (1 - \pi_0) \frac{\lambda_1 \lambda (\lambda - 1)}{1 - \lambda (1 - \pi_0 \lambda_1)}$$

Passing to moments in discrete time

• Let $\tau_0^+ = \inf \{n \ge 1 : X_n = 0\}$ be the return time, then

$$\mathbb{E}_i \left(\frac{1}{1-\lambda}\right)^{\tau_0^+} = \mathbb{E}_i e^{\lambda \widetilde{\tau}_0}, \quad \forall i \neq 0.$$

• By a theorem due to Cogburn(1975), we have for any $\lambda < rac{1}{1-\pi_0\lambda_1}$,

$$\mathbb{E}_0 \lambda^{\tau_0^+} \leq \lambda + (1 - \pi_0) \frac{\lambda_1 \lambda (\lambda - 1)}{1 - \lambda (1 - \pi_0 \lambda_1)}.$$

Solve inequality

Let
$$a_n := \sum_{k=n}^{\infty} \mathbb{P}_0[\tau_0^+ = 2k].$$

$$\begin{split} F_{00}^{(0)}(s) &= \sum_{n=1}^{\infty} s^{2n} f_{00}^{(2n)} = s^2 a_1 + \left(1 - \frac{1}{s^2}\right) \sum_{n=2}^{\infty} s^{2n} a_n \\ &\leq s^2 \delta + \left(1 - \frac{1}{s^2}\right) \sum_{n=2}^{\infty} s^{2n} \mathbb{P}_0[\tau_0^+ \ge 2n] \\ &\leq s^2 \delta + \left(1 - \frac{1}{s^2}\right) \mathbb{E}_0 \lambda^{\tau_0^+} \sum_{n=2}^{\infty} s^{2n} \lambda^{-2n} \\ &= s^2 \delta + \frac{(\lambda + 1)^2 (s^2 - 1)}{\lambda^2 (\lambda - 1) (3\lambda + 1)} M \\ &< 1 \; . \end{split}$$

Solving this inequality, we can prove theorem 1_{a}

Yan-Hong Song (Beijing Normal University) Convergence rate for Markov transition mat

■ ▲ ■ ▶ ■ 夕々で July 22, 2010 14 / 28

- Let $P = (p_{ij})$ on state space $E = \mathbb{Z}_+$ with $p_{i,i+1} = b_i > 0 (i \ge 0)$, $p_{ii} = c_i \ge 0 (i \ge 0)$, $p_{i,i-1} = a_i > 0 (i \ge 1)$.
- *P* is aperiodic iff $c_0 > 0$ (say), and it is ergodic iff $\mu := \sum_{n=0}^{\infty} \mu_n < \infty$, where $\mu_0 = 1$, $\mu_n = b_0 b_1 \cdots b_{n-1} / a_1 a_2 \cdots a_n$. Let $\pi_i = \mu_i / \mu$, $i \ge 0$.

• Let
$$P = (p_{ij})$$
 on state space $E = \mathbb{Z}_+$ with $p_{i,i+1} = b_i > 0 (i \ge 0)$, $p_{ii} = c_i \ge 0 (i \ge 0)$, $p_{i,i-1} = a_i > 0 (i \ge 1)$.

• P is aperiodic iff $c_0 > 0$ (say), and it is ergodic iff $\mu := \sum_{n=0}^{\infty} \mu_n < \infty$, where $\mu_0 = 1$, $\mu_n = b_0 b_1 \cdots b_{n-1} / a_1 a_2 \cdots a_n$. Let $\pi_i = \mu_i / \mu$, $i \ge 0$.

A typical example: Random walk

• It is known that $r_1 < 1(\lambda_1 > 0)$ iff $\kappa < \infty$, where

$$\kappa = \sup_{n \ge 0} \sum_{i=0}^{n-1} \frac{1}{\mu_i b_i} \sum_{i=n}^{\infty} \mu_i < \infty.$$

Precisely, we know

$$(4\kappa)^{-1} \le \lambda_1 \le \mu \kappa^{-1},$$

or

$$1 - \mu \kappa^{-1} \le r_1 \le 1 - (4\kappa)^{-1}$$

A typical example: Random walk

• It is known that $r_1 < 1(\lambda_1 > 0)$ iff $\kappa < \infty$, where

$$\kappa = \sup_{n \ge 0} \sum_{i=0}^{n-1} \frac{1}{\mu_i b_i} \sum_{i=n}^{\infty} \mu_i < \infty.$$

Precisely, we know

$$(4\kappa)^{-1} \le \lambda_1 \le \mu \kappa^{-1},$$

or

$$1 - \mu \kappa^{-1} \le r_1 \le 1 - (4\kappa)^{-1}.$$

Convergence rate for RW

 $r \ge 1 - \mu \kappa^{-1}.$

$$r \le \left(\frac{a\delta + b}{a + b}\right)^{\frac{1}{2}} \lor \frac{4\xi}{1 + 3\xi},$$

where

٠

$$a = (3+5\xi)(1-\xi^2), \ b = 2(2\xi-r_1)(1+3\xi)^2,$$

anc

$$\xi := 1 - \pi_0 (1 - r_1) \le 1 - (4\mu\kappa)^{-1}, \ \delta := \sum_{n \ge 1} f_{00}^{(2n)} \le 1 - c_0.$$

Convergence rate for RW

 $r > 1 - \mu \kappa^{-1}$. $r \le \left(\frac{a\delta + b}{a + b}\right)^{\frac{1}{2}} \lor \frac{4\xi}{1 + 3\xi},$

where

٢

۵

$$a = (3+5\xi)(1-\xi^2), \ b = 2(2\xi-r_1)(1+3\xi)^2,$$

and

$$\xi := 1 - \pi_0 (1 - r_1) \le 1 - (4\mu\kappa)^{-1}, \ \delta := \sum_{n \ge 1} f_{00}^{(2n)} \le 1 - c_0.$$

伺き くまき くます

 The Markov chain (X_n) or P is strongly ergodic, if there exist γ < ∞ and α = α(γ) < 1 such that

$$\sup_{i\in E} \|P_{i\cdot}^{(n)} - \pi\|_{\operatorname{Var}} \le \gamma \alpha^n, \quad \forall n \ge 0.$$
(3)

• The Markov chain (\widetilde{X}_t) or Q = P - I is strongly ergodic, if there exist $\widetilde{\gamma} < \infty$ and $\widetilde{\alpha} = \widetilde{\alpha}(\widetilde{\gamma}) > 0$ such that

$$\sup_{i \in E} \|\widetilde{P}_{i\cdot}(t) - \pi\|_{\operatorname{Var}} \le \widetilde{\gamma} e^{-\widetilde{\alpha}t}, \quad \forall t \ge 0.$$
 (4)

• The Markov chain (X_n) or P is strongly ergodic, if there exist $\gamma < \infty$ and $\alpha = \alpha(\gamma) < 1$ such that

$$\sup_{i\in E} \|P_{i\cdot}^{(n)} - \pi\|_{\operatorname{Var}} \le \gamma \alpha^n, \quad \forall n \ge 0.$$
(3)

• The Markov chain (\widetilde{X}_t) or Q = P - I is strongly ergodic, if there exist $\widetilde{\gamma} < \infty$ and $\widetilde{\alpha} = \widetilde{\alpha}(\widetilde{\gamma}) > 0$ such that

$$\sup_{i \in E} \|\widetilde{P}_{i \cdot}(t) - \pi\|_{\operatorname{Var}} \le \widetilde{\gamma} e^{-\widetilde{\alpha}t}, \quad \forall t \ge 0.$$
 (4)

Convergence rate for discrete time

Let

$$\beta^{-1} = \sum_{n \ge 1} f_{00}^{(2n-1)}, \quad M_1 = \frac{2}{\widetilde{\alpha}} \left[\frac{1}{\pi_0} \log \frac{\widetilde{\gamma}}{\pi_0} \right],$$

and

$$M = \frac{1}{2}(\beta + M_1 + \beta M_1).$$

Theorem 3

If (\widetilde{X}_t) is strongly ergodic with convergence rate $\widetilde{\alpha}$, then there exist $C_1 < \infty$ and $C_2 = C_2(C_1, M) < \infty$ such that

$$\sup_{i \in E} \sum_{k \in E} |p_{ik}^{(n)} - \pi_k| \le e^{-\frac{n}{2M}} \left[C_2 + \frac{e^{1 - \frac{1}{2M}}}{M} n + \frac{C_1 e^{1 + \frac{1}{2M}}}{8M} n^2 \right].$$

Lemma 4

$$\sum_{k \in E} |p_{ik}^{(n)} - \pi_k| \le 2\mathbb{P}_i[\tau_0 > n] + \sum_{m=1}^n \sum_{k \in E} \left| p_{0k}^{(n-m)} - \pi_k \right| f_{i0}^{(m)}.$$

For n ≥ M := sup_i E_iτ₀, sup_i P_i[τ₀ ≥ n] ≤ en/M e^{-n/M}.
sup_i E_iτ₀ = sup_i E_iτ̃₀.

Theorem 5 (Mao.2006)

If (\widetilde{X}_t) is strongly ergodic with convergence rate $\widetilde{\alpha}$, then $\sup \mathbb{E}_{\widetilde{T}_0} < \frac{2}{2} \left[\frac{1}{-\log \widetilde{\gamma}} \right]$

Lemma 4

$$\sum_{k \in E} |p_{ik}^{(n)} - \pi_k| \le 2\mathbb{P}_i[\tau_0 > n] + \sum_{m=1}^n \sum_{k \in E} \left| p_{0k}^{(n-m)} - \pi_k \right| f_{i0}^{(m)}.$$

• For $n \ge \widehat{M} := \sup_i \mathbb{E}_i \tau_0$, $\sup_i \mathbb{P}_i[\tau_0 \ge n] \le \frac{\mathrm{e}\,n}{\widehat{M}} \,\mathrm{e}^{-\frac{n}{\widehat{M}}}$. • $\sup_i \mathbb{E}_i \tau_0 = \sup_i \mathbb{E}_i \widetilde{\tau}_0$.

Theorem 5 (Mao.2006)

If (X_t) is strongly ergodic with convergence rate $\widetilde{lpha},$ then

$\sup_{i} \mathbb{E}_{i} \widetilde{\tau}_{0} \leq \frac{2}{\widetilde{\alpha}} \left[\frac{1}{\pi_{0}} \log \frac{\widetilde{\gamma}}{\pi_{0}} \right]$

Lemma 4

$$\sum_{k \in E} |p_{ik}^{(n)} - \pi_k| \le 2\mathbb{P}_i[\tau_0 > n] + \sum_{m=1}^n \sum_{k \in E} \left| p_{0k}^{(n-m)} - \pi_k \right| f_{i0}^{(m)}.$$

• For
$$n \ge \widehat{M} := \sup_i \mathbb{E}_i \tau_0$$
, $\sup_i \mathbb{P}_i[\tau_0 \ge n] \le \frac{\mathrm{e}\,n}{\widehat{M}} \,\mathrm{e}^{-\frac{n}{\widehat{M}}}$.
• $\sup_i \mathbb{E}_i \tau_0 = \sup_i \mathbb{E}_i \widetilde{\tau}_0$.

Theorem 5 (Mao.2006)

If (\widetilde{X}_t) is strongly ergodic with convergence rate $\widetilde{lpha},$ then

$$\sup_{i} \mathbb{E}_{i} \widetilde{\tau}_{0} \leq \frac{2}{\widetilde{\alpha}} \left[\frac{1}{\pi_{0}} \log \frac{\widetilde{\gamma}}{\pi_{0}} \right]$$

Lemma 4

$$\sum_{k \in E} |p_{ik}^{(n)} - \pi_k| \le 2\mathbb{P}_i[\tau_0 > n] + \sum_{m=1}^n \sum_{k \in E} \left| p_{0k}^{(n-m)} - \pi_k \right| f_{i0}^{(m)}.$$

• For
$$n \ge \widehat{M} := \sup_i \mathbb{E}_i \tau_0$$
, $\sup_i \mathbb{P}_i[\tau_0 \ge n] \le \frac{en}{\widehat{M}} e^{-\frac{n}{\widehat{M}}}$.
• $\sup_i \mathbb{E}_i \tau_0 = \sup_i \mathbb{E}_i \widetilde{\tau}_0$.

Theorem 5 (Mao.2006)

If (\widetilde{X}_t) is strongly ergodic with convergence rate $\widetilde{\alpha}$, then $\sup_i \mathbb{E}_i \widetilde{\tau}_0 \leq \frac{2}{\widetilde{\alpha}} \left[\frac{1}{\pi_0} \log \frac{\widetilde{\gamma}}{\pi_0} \right].$

Let

$$C_0 = (\pi_0^{-1} - 1)^{\frac{1}{2}}, \quad M_0 = \frac{2\log\frac{\pi_0}{\gamma}}{\pi_0\log\alpha}.$$

Theorem 6

If (X_n) is strongly ergodic with convergence rate α , then there exists $C_0 < \infty$ such that

$$\sup_{i \in E} \sum_{k \in E} |p_{ik}(t) - \pi_k| \le e^{-\frac{t}{M_0}} \left[\frac{C_0 e}{2} + \frac{(2 - C_0)^+ e}{M_0} t + \frac{C_0 e}{2M_0^2} t^2 \right].$$

Lemma 7

$$\sum_{k \in E} |p_{ik}(t) - \pi_k| \le 2\mathbb{P}_i[\widetilde{\tau}_0 > t] + \int_0^t \sum_{k \in E} |p_{0k}(t-s) - \pi_k| \, \mathrm{d}\mathbb{P}_i(\widetilde{\tau}_0 \le s).$$

For t ≥ M
:= sup_i E_iτ̃₀, sup_i P_i[τ̃₀ ≥ t] ≤ et/M
i e^{-t}/M
.
sup_i E_iτ̃₀ = sup_i E_iτ₀.

Theorem 8

If (X_n) is strongly ergodic with convergence rate lpha, then

$\sup_{i} \mathbb{E}_{i} \tau_{0} \leq \frac{2 \log \frac{\pi_{0}}{\gamma}}{\pi_{0} \log \alpha}.$

Yan-Hong Song (Beijing Normal University) Convergence rate for Markov transition mat

イロト イヨト イヨト イヨト

Lemma 7

$$\sum_{k \in E} |p_{ik}(t) - \pi_k| \le 2\mathbb{P}_i[\widetilde{\tau}_0 > t] + \int_0^t \sum_{k \in E} |p_{0k}(t-s) - \pi_k| \, \mathrm{d}\mathbb{P}_i(\widetilde{\tau}_0 \le s).$$

• For
$$t \ge \widehat{M} := \sup_i \mathbb{E}_i \widetilde{\tau}_0$$
, $\sup_i \mathbb{P}_i [\widetilde{\tau}_0 \ge t] \le \frac{\mathrm{e}t}{\overline{M}} \mathrm{e}^{-\frac{t}{\overline{M}}}$
• $\sup_i \mathbb{E}_i \widetilde{\tau}_0 = \sup_i \mathbb{E}_i \tau_0$.

Theorem 8

If (X_n) is strongly ergodic with convergence rate lpha, then

$$\sup_{i} \mathbb{E}_{i} \tau_{0} \leq \frac{2 \log \frac{\pi_{0}}{\gamma}}{\pi_{0} \log \alpha}.$$

Yan-Hong Song (Beijing Normal University) Convergence rate for Markov transition mat

<ロト </p>

Lemma 7

$$\sum_{k \in E} |p_{ik}(t) - \pi_k| \le 2\mathbb{P}_i[\widetilde{\tau}_0 > t] + \int_0^t \sum_{k \in E} |p_{0k}(t-s) - \pi_k| \, \mathrm{d}\mathbb{P}_i(\widetilde{\tau}_0 \le s).$$

• For
$$t \ge \widehat{M} := \sup_i \mathbb{E}_i \widetilde{\tau}_0$$
, $\sup_i \mathbb{P}_i [\widetilde{\tau}_0 \ge t] \le \frac{\mathrm{e}t}{\widehat{M}} \mathrm{e}^{-\frac{t}{\widehat{M}}}$.
• $\sup_i \mathbb{E}_i \widetilde{\tau}_0 = \sup_i \mathbb{E}_i \tau_0$.

Theorem 8

If (X_n) is strongly ergodic with convergence rate α , then

$$\sup_{i} \mathbb{E}_{i} \tau_{0} \leq \frac{2 \log \frac{\pi_{0}}{\gamma}}{\pi_{0} \log \alpha}.$$

<u>টা ব টা টা পি</u> ৭৫ July 22, 2010 22 / 28

Renewal formula

Lemma 7

$$\sum_{k \in E} |p_{ik}(t) - \pi_k| \le 2\mathbb{P}_i[\widetilde{\tau}_0 > t] + \int_0^t \sum_{k \in E} |p_{0k}(t-s) - \pi_k| \, \mathrm{d}\mathbb{P}_i(\widetilde{\tau}_0 \le s).$$

• For
$$t \ge \widehat{M} := \sup_i \mathbb{E}_i \widetilde{\tau}_0$$
, $\sup_i \mathbb{P}_i [\widetilde{\tau}_0 \ge t] \le \frac{\mathrm{e}\,t}{\widetilde{M}} \,\mathrm{e}^{-\frac{t}{\widetilde{M}}}$
• $\sup_i \mathbb{E}_i \widetilde{\tau}_0 = \sup_i \mathbb{E}_i \tau_0$.

Theorem 8

If (X_n) is strongly ergodic with convergence rate α , then

$$\sup_{i} \mathbb{E}_{i} \tau_{0} \leq \frac{2 \log \frac{\pi_{0}}{\gamma}}{\pi_{0} \log \alpha}.$$

<u>টা ব টা টা ৩</u>৭৫ July 22, 2010 22 / 28

< 🗇 🕨 < 🖃 🕨

• Recall the Dirichlet spectral gap:

$$\lambda_0 = \inf \left\{ D(f) : f_0 = 0, \pi(f^2) = 1 \right\}.$$

 Suppose state 0 is the absorbing point of (X_n). Then *P* transforms to P_D, which P_D is the matrix obtained from P by deleting the row and column corresponding to 0. Define r = r₁ ∨ r₋₁, where

$$r_1 := \sup \left\{ x : x \in \sigma(P_D) \right\},\,$$

and

$$r_{-1} := -\inf\left\{x : x \in \sigma(P_D)\right\}.$$

• From the spectral mapping theorem, $r_1 + \lambda_0 = 1$.

• Recall the Dirichlet spectral gap:

$$\lambda_0 = \inf \left\{ D(f) : f_0 = 0, \pi(f^2) = 1 \right\}.$$

Suppose state 0 is the absorbing point of (X_n). Then P transforms to P_D, which P_D is the matrix obtained from P by deleting the row and column corresponding to 0. Define r = r₁ ∨ r₋₁, where

$$r_1 := \sup \left\{ x : x \in \sigma(P_D) \right\},\$$

and

$$r_{-1} := -\inf\left\{x : x \in \sigma(P_D)\right\}.$$

• From the spectral mapping theorem, $r_1 + \lambda_0 = 1$.

• Recall the Dirichlet spectral gap:

$$\lambda_0 = \inf \left\{ D(f) : f_0 = 0, \pi(f^2) = 1 \right\}.$$

Suppose state 0 is the absorbing point of (X_n). Then P transforms to P_D, which P_D is the matrix obtained from P by deleting the row and column corresponding to 0. Define r = r₁ ∨ r₋₁, where

$$r_1 := \sup \left\{ x : x \in \sigma(P_D) \right\},\$$

and

$$r_{-1} := -\inf \left\{ x : x \in \sigma(P_D) \right\}.$$

• From the spectral mapping theorem, $r_1 + \lambda_0 = 1$.

When P is reversible with respect to π , and has an absorbing point 0, then we have $r = r_1$.

$$\mathbb{E}_i \left(\frac{1}{1-\lambda}\right)^{\tau_0^+} = \mathbb{E}_i e^{\lambda \tilde{\tau}_0}, \quad \forall i \neq 0.$$

 By re-normalizing method due to Feng-Yu Wang (2000), or a proposition of Sokal and Thomas (1989).

When P is reversible with respect to π , and has an absorbing point 0, then we have $r = r_1$.

.

$$\mathbb{E}_i \left(\frac{1}{1-\lambda}\right)^{\tau_0^+} = \mathbb{E}_i e^{\lambda \tilde{\tau}_0}, \quad \forall i \neq 0.$$

 By re-normalizing method due to Feng-Yu Wang (2000), or a proposition of Sokal and Thomas (1989).

When P is reversible with respect to π , and has an absorbing point 0, then we have $r = r_1$.

۲

$$\mathbb{E}_i \left(\frac{1}{1-\lambda}\right)^{\tau_0^+} = \mathbb{E}_i e^{\lambda \widetilde{\tau}_0}, \quad \forall i \neq 0.$$

 By re-normalizing method due to Feng-Yu Wang (2000), or a proposition of Sokal and Thomas (1989). When P is transient with a symmetric measure μ , define Dirichlet form:

$$D(f) := \frac{1}{2} \sum_{i,j} \mu_i p_{ij} (f_i - f_j)^2,$$

and Dirichlet spectral gap:

$$\overline{\lambda} := \inf\{D(f) : \mu(f^2) = 1, f \in \mathcal{K}\},\$$

where $\ensuremath{\mathcal{K}}$ is the set of functions with finite support. Similarly,

$$r_1 + \overline{\lambda} = 1.$$

When P is transient with a symmetric measure μ , then $r = r_1$.

• For fixed $n \in \mathbb{N}$, let P_{D_n} be the matrix obtained from P by deleting the rows and columns corresponding to the states which are larger than n. Then

$$r(P_{D_n}) = 1 - \lambda_0^{(n)},$$
 (5)

where

$$r(P_{D_n}) := \sup \{ |\lambda| : \lambda \in \sigma(P_{D_n}) \},\$$
$$\lambda_0^{(n)} := \inf \{ D(f) : \mu(f^2) = 1, f_i = 0, \forall i > n \}.$$

• It follows by letting $n \to \infty$ in (5) that $r = r_1$.

When P is transient with a symmetric measure μ , then $r = r_1$.

• For fixed $n \in \mathbb{N}$, let P_{D_n} be the matrix obtained from P by deleting the rows and columns corresponding to the states which are larger than n. Then

$$r(P_{D_n}) = 1 - \lambda_0^{(n)},$$
 (5)

where

$$r(P_{D_n}) := \sup \{ |\lambda| : \lambda \in \sigma(P_{D_n}) \},\$$
$$\lambda_0^{(n)} := \inf \{ D(f) : \mu(f^2) = 1, f_i = 0, \forall i > n \}.$$

• It follows by letting $n \to \infty$ in (5) that $r = r_1$.

When P is transient with a symmetric measure μ , then $r = r_1$.

• For fixed $n \in \mathbb{N}$, let P_{D_n} be the matrix obtained from P by deleting the rows and columns corresponding to the states which are larger than n. Then

$$r(P_{D_n}) = 1 - \lambda_0^{(n)},$$
 (5)

where

$$r(P_{D_n}) := \sup \{ |\lambda| : \lambda \in \sigma(P_{D_n}) \},\$$
$$\lambda_0^{(n)} := \inf \{ D(f) : \mu(f^2) = 1, f_i = 0, \forall i > n \}.$$

• It follows by letting $n \to \infty$ in (5) that $r = r_1$.

References

- M.-F. Chen, *Exponential* L²-convergence and L²-spectral gap for *Markov processes*, Acta Math. Sin. New. Series. 7:1, 19-37, 1997.
- R. Cogburn, A uniform theory for sums of Markov chain transition probabilities, Ann. Probab., 1975.
- Y.-H. Mao, *Convergence rates in strong ergodicity for Markov processes*, Stoch. Proc. Appl, 116, 1964-1976, 2006.
- Y.-H. Mao, Convergence rates for reversible Markov chains without the assumption of nonnegative definite matrices, Sci. China, 2010.
- F.-Y. Wang, *Functional Inequalities, semigroup properties and spectrum estimates*, Infin. Dimens. Anal. Quant. Probab. Relat. Topics 3, 263-295, 2000.
- A. D. Sokal, L. E. Thomas, *Exponential convergence to equilibrium for a class of random-walk models*, J. Statis. Phys. 54, 797-828, 1989.

Thank You

Yan-Hong Song (Beijing Normal University) Convergence rate for Markov transition mat

æ July 22, 2010 28 / 28

3

・ロト ・回ト ・ヨト