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Assumptions

Given a probability transition matrix P = (pij):

pij ≥ 0,
∑

j

pij = 1.

Assume that P is ergodic:

P is irreducible: ∀i, j, ∃n, p
(n)
ij > 0;

P is aperiodic: d = gcd
{
n : p

(n)
ii > 0

}
= 1;

P has a stationary distribution: ∃ a probability
π = (πj) s.t. π = πP ⇐⇒ lim

n→∞
p
(n)
ij = πj , ∀i, j.

Assume further:

P is reversible w.r.t. π : πipij = πjpji.
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Problem

A basic problem is to study the convergence rate of
∑

j∈E

∣∣∣p(n)ij − πj

∣∣∣ → 0.
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Setting-up

Let L2 = L2(π) be the Hilbert space, then P is a
self-adjoint operator in L2 and the spectrum of P

σ(P ) ⊂ [−1, 1]. By using the spectral mapping theorem,
we have

||P n − π||L2→L2 ≤ rn,

where r = r1 ∨ r−1,

r1 := sup {x < 1 : x ∈ σ(P )} ,

and

r−1 := − inf {x : x ∈ σ(P )} .
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Setting-up

Let P̃t or (X̃t) be a Markov jump process associated with
Q = P − I. Define Dirichlet form:

D(f) =
1

2

∑

i,j

πiqij(fj − fi)
2 =

1

2

∑

i,j

πipij(fj − fi)
2

and Poincaré variational formula:

λ1 = inf
{
D(f) : π(f) = 0, π(f 2) = 1

}
.

Then
||P̃t − π||L2→L2 ≤ e−λ1t .
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Question & “Answer”

A good relationship between λ1 and r1:

r1 + λ1 = 1.

Q: if r1 < 1 (or λ1 > 0), then r < 1 or r−1 < 1?

A: This is true under our assumptions!
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Main theorem

Theorem 1

If r1 < 1, then

r1 ≤ r ≤

(
aδ + b

a+ b

) 1

2

∨

(
4ξ

1 + 3ξ

)
,

where

a := (3 + 5ξ)(1− ξ2), b := 2(2ξ − r1)(1 + 3ξ)2,

ξ := 1− π0(1− r1) < 1, δ :=
∑

n≥1

f
(2n)
00 < 1.

δ is the probability that the chain comes back to state 0 firstly in

even steps, starting from state 0.
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Idea of the proof

The basic idea of the proof is based on the following theorem.

Theorem 2 (Mao.2010)

If there exists λ > 1 such that

E0λ
τ+
0 ≤M <∞, (1)

and let

ρ = sup

{
s ≤ λ :

∞∑

n=1

s2nf
(2n)
00 < 1

}
, (2)

then we have

r ≤ ρ−1 < 1.
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Idea of the proof

Find a function of λ1, say φ(λ1), such that for any
1 < λ < φ(λ1),

E0λ
τ+0 ≤M <∞.

Solve the inequality
∑∞

n=1 s
2nf

(2n)
00 < 1. Then we can

find a function of λ, say ψ(λ), such that

r ≤ ψ(λ).

Combine the above two estimations, we have

r ≤ inf{ψ(λ) : 1 < λ < φ(λ1)}.

Yan-Hong Song (Beijing Normal University) ()Convergence rate for Markov transition matrices July 22, 2010 10 / 28



Idea of the proof

Find a function of λ1, say φ(λ1), such that for any
1 < λ < φ(λ1),

E0λ
τ+0 ≤M <∞.

Solve the inequality
∑∞

n=1 s
2nf

(2n)
00 < 1. Then we can

find a function of λ, say ψ(λ), such that

r ≤ ψ(λ).

Combine the above two estimations, we have

r ≤ inf{ψ(λ) : 1 < λ < φ(λ1)}.

Yan-Hong Song (Beijing Normal University) ()Convergence rate for Markov transition matrices July 22, 2010 10 / 28



Idea of the proof

Find a function of λ1, say φ(λ1), such that for any
1 < λ < φ(λ1),

E0λ
τ+0 ≤M <∞.

Solve the inequality
∑∞

n=1 s
2nf

(2n)
00 < 1. Then we can

find a function of λ, say ψ(λ), such that

r ≤ ψ(λ).

Combine the above two estimations, we have

r ≤ inf{ψ(λ) : 1 < λ < φ(λ1)}.

Yan-Hong Song (Beijing Normal University) ()Convergence rate for Markov transition matrices July 22, 2010 10 / 28



Moments in continuous time

λ1 ≥ λ0 ≥ π0λ1, where Dirichlet spectral gap:

λ0 = inf
{
D(f) : f0 = 0, π(f 2) = 1

}
.

Thus we have

λ0 ≥ π0(1− r1) > 0.
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Moments in continuous time

||P̂t||L2→L2 ≤ e−λ0t,

where

τ̃0 = inf
{
t ≥ 0 : X̃t = 0

}
, p̂ij(t) = Pi[X̃t = j, t < τ̃0].

From this we have for any λ < λ0 and i ≥ 1,

Eie
λτ̃0 ≤

λ0(1− π0)

πi(λ0 − λ)
<∞.

Thus the above inequality holds for λ < π0(1− r1).
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Passing to moments in discrete time

Let τ+0 = inf {n ≥ 1 : Xn = 0} be the return time,
then

Ei

(
1

1− λ

)τ+0

= Eie
λτ̃0 , ∀i 6= 0.

By a theorem due to Cogburn(1975), we have for any
λ < 1

1−π0λ1
,

E0λ
τ+0 ≤ λ+ (1− π0)

λ1λ(λ− 1)

1− λ(1− π0λ1)
.
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Solve inequality

Let an :=
∞∑

k=n

P0[τ
+
0 = 2k].

F
(0)
00 (s) =

∞∑

n=1

s2nf
(2n)
00 = s2a1 +

(
1−

1

s2

) ∞∑

n=2

s2nan

≤ s2δ +

(
1−

1

s2

) ∞∑

n=2

s2nP0[τ
+
0 ≥ 2n]

≤ s2δ +

(
1−

1

s2

)
E0λ

τ+
0

∞∑

n=2

s2nλ−2n

= s2δ +
(λ+ 1)2(s2 − 1)

λ2(λ− 1)(3λ+ 1)
M

< 1 .

Solving this inequality, we can prove theorem 1.
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A typical example: Random walk

Let P = (pij) on state space E = Z+ with
pi, i+1 = bi > 0(i ≥ 0), pii = ci ≥ 0(i ≥ 0),

pi, i−1 = ai > 0(i ≥ 1).

P is aperiodic iff c0 > 0(say), and it is ergodic iff

µ :=
∑∞

n=0 µn <∞, where µ0 = 1,
µn = b0b1 · · · bn−1/a1a2 · · · an. Let πi = µi/µ, i ≥ 0.
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A typical example: Random walk

It is known that r1 < 1(λ1 > 0) iff κ <∞, where

κ = sup
n≥0

n−1∑

i=0

1

µibi

∞∑

i=n

µi <∞.

Precisely, we know

(4κ)−1 ≤ λ1 ≤ µκ−1,

or

1− µκ−1 ≤ r1 ≤ 1− (4κ)−1.
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Convergence rate for RW

r ≥ 1− µκ−1.

r ≤

(
aδ + b

a+ b

) 1

2

∨
4ξ

1 + 3ξ
,

where

a = (3 + 5ξ)(1− ξ2), b = 2(2ξ − r1)(1 + 3ξ)2,

and

ξ := 1−π0(1−r1) ≤ 1−(4µκ)−1, δ :=
∑

n≥1

f
(2n)
00 ≤ 1−c0.
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Strong ergodicity

The Markov chain (Xn) or P is strongly ergodic, if
there exist γ <∞ and α = α(γ) < 1 such that

sup
i∈E

‖P
(n)
i· − π‖Var ≤ γαn, ∀n ≥ 0. (3)

The Markov chain (X̃t) or Q = P − I is strongly

ergodic, if there exist γ̃ <∞ and α̃ = α̃(γ̃) > 0 such
that

sup
i∈E

‖P̃i·(t)− π‖Var ≤ γ̃ e−α̃t, ∀t ≥ 0. (4)
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Convergence rate for discrete time

Let

β−1 =
∑

n≥1

f
(2n−1)
00 , M1 =

2

α̃

[
1

π0
log

γ̃

π0

]
,

and

M =
1

2
(β +M1 + βM1).

Theorem 3

If (X̃t) is strongly ergodic with convergence rate α̃, then there exist

C1 <∞ and C2 = C2(C1,M) <∞ such that

sup
i∈E

∑

k∈E

|p
(n)
ik − πk| ≤ e−

n

2M

[
C2 +

e1−
1

2M

M
n+

C1 e
1+ 1

2M

8M
n2

]
.
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Renewal formula

Lemma 4

∑

k∈E

|p
(n)
ik − πk| ≤ 2Pi[τ0 > n] +

n∑

m=1

∑

k∈E

∣∣∣p(n−m)
0k − πk

∣∣∣ f (m)
i0 .

For n ≥ M̂ := supi Eiτ0, supi Pi[τ0 ≥ n] ≤ en

M̂
e−

n

M̂ .

supi Eiτ0 = supi Eiτ̃0.

Theorem 5 (Mao.2006)

If (X̃t) is strongly ergodic with convergence rate α̃, then

sup
i

Eiτ̃0 ≤
2

α̃

[
1

π0
log

γ̃

π0

]
.
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Convergence rate for continuous time

Let

C0 = (π−1
0 − 1)

1

2 , M0 =
2 log π0

γ

π0 logα
.

Theorem 6

If (Xn) is strongly ergodic with convergence rate α, then there exists

C0 <∞ such that

sup
i∈E

∑

k∈E

|pik(t)− πk| ≤ e
− t

M0

[
C0 e

2
+

(2− C0)
+ e

M0
t +

C0 e

2M2
0

t2
]
.
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Renewal formula

Lemma 7

∑

k∈E

|pik(t)−πk| ≤ 2Pi[τ̃0 > t] +

∫ t

0

∑

k∈E

|p0k(t− s)− πk| dPi(τ̃0 ≤ s).

For t ≥ M̂ := supi Eiτ̃0, supi Pi[τ̃0 ≥ t] ≤ e t

M̂
e−

t

M̂ .

supi Eiτ̃0 = supi Eiτ0.

Theorem 8

If (Xn) is strongly ergodic with convergence rate α, then

sup
i

Eiτ0 ≤
2 log π0

γ

π0 logα
.
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Absorbing process

Recall the Dirichlet spectral gap:

λ0 = inf
{
D(f) : f0 = 0, π(f 2) = 1

}
.

Suppose state 0 is the absorbing point of (Xn). Then

P transforms to PD, which PD is the matrix obtained
from P by deleting the row and column corresponding
to 0. Define r = r1 ∨ r−1, where

r1 := sup {x : x ∈ σ(PD)} ,

and

r−1 := − inf {x : x ∈ σ(PD)} .

From the spectral mapping theorem, r1 + λ0 = 1.
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Absorbing process

Theorem 9

When P is reversible with respect to π, and has an

absorbing point 0, then we have r = r1 .

Ei

(
1

1− λ

)τ+0

= Eie
λτ̃0 , ∀i 6= 0.

By re-normalizing method due to Feng-Yu Wang

(2000), or a proposition of Sokal and Thomas (1989).
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Transient case

When P is transient with a symmetric measure µ, define
Dirichlet form:

D(f) :=
1

2

∑

i,j

µipij(fi − fj)
2,

and Dirichlet spectral gap:

λ := inf{D(f) : µ(f 2) = 1, f ∈ K},

where K is the set of functions with finite support.
Similarly,

r1 + λ = 1.
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Approximating method

Theorem 10

When P is transient with a symmetric measure µ, then r = r1.

For fixed n ∈ N, let PDn
be the matrix obtained from P by

deleting the rows and columns corresponding to the states which
are larger than n. Then

r(PDn
) = 1− λ

(n)
0 , (5)

where
r(PDn

) := sup {|λ| : λ ∈ σ(PDn
)} ,

λ
(n)
0 := inf{D(f) : µ(f 2) = 1, fi = 0, ∀i > n}.

It follows by letting n→ ∞ in (5) that r = r1.
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QED

Thank You
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