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Introduction

The Navier-Stokes equations in dimension 3

∂

∂t
ui +

3

∑
j=1
uj

∂

∂x j
ui = ν∆ui − ∂

∂x i
p, i = 1, 2, 3;

3

∑
j=1

∂

∂x j
uj = 0,

v > 0 is called the viscosity constant, u = (u1, u2, u3) is the velocity
vector field of a fluid, p is the pressure which maintains the
incompressibility.

In vector form

∂

∂t
u + (u · ∇)u = ν∆u −∇p ;

∇ · u = 0 .
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Boundary conditions have to be supplied — the common one is the
non-slip condition. We however consider the simplest case
(unfortunately no physical fluids), that is, x → u(x , t) is periodic, so
we consider the NS on the torus T3 of dimension 3.

There is a weak solution for the initial problem.

There is a smooth solution on T3 × [0,T ∗) (where T ∗ > 0 depending
on the initial data) as long as the initial velocity vector field is smooth.
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Geometry of the velocity vector field

The geometry determined by the velocity vector field u may be the key to
understand the dynamics of the fluid, such as the global existence.

The total derivative ∇u may be decomposed into two parts:
The vorticity of u: ω = ∇× u
The symmetric tensor of the rate-of-strain:

R ji =
1
2

(
∂

∂x i
uj +

∂

∂x j
ui
)

which is the Bakry-Emery curvature corresponding to L = ν∆− u · ∇.
The vorticity of the vorticity:

ψ = ∇×ω = −∆u.

Describe the geometry of three vector fields (u,ω,ψ), such as the
volume 〈u,ω× ψ〉.
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Energy inequality and weak solutions

Dot the NS with 2u to obtain

∂

∂t
|u|2 +

〈
u,∇|u|2

〉
= 2ν 〈u,∆u〉 − 2 〈u,∇p〉 .

Integrating the above equality over T3, and using the facts that∫
T3

〈
u,∇|u|2

〉
=

∫
T3
|u|2∇ · u = 0;∫

T3
〈u,∇p〉 =

∫
T3
p∇ · u = 0

(the non-linear terms) and that∫
T3
〈u,∆u〉 = −

∫
T3
〈u,∇×∇× u〉 = −

∫
T3
|∇ × u|2

to obtain
∂

∂t
||u||2 = −2ν||ω||2 (1)

called the energy balance equation, where ω = ∇× u the vorticity.
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It follows the energy inequality

||u(·,T )||2 + 2ν
∫ T

0
||∇u(·, t)||2dt ≤ ||u0||2 (2)

which takes exactly the same form as the heat equation.
Together with the usual Galerkin’s approximations, one shows the
existence of weak solutions.
For global strong solutions we have the following classical result:

Theorem
Let u0 ∈ C∞(T3), and {u(t) : t < T ∗} be the maximal strong solution of
the Navier-Stokes equation on T3. If supt<T ∗ supx∈T3 |u(x , t)| < ∞, then
T ∗ = ∞, so u is a global strong solution.
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The pressure and the rate-of-strain

Applying ∇· to the Navier-Stokes equations we obtain

∆p = −∇ · ((u · ∇)u) = −∑
i ,j

∂uj

∂x i
∂ui

∂x j

=
1
2
|ω|2 − |R ij |2 . (3)

Integrating the equality over T3 to obtain

||R ij || =
√
2
2
||ω||. (4)
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The vorticity equation

The Bochner identity for L = ν∆− u · ∇ takes form of the vorticity
equation.
Applying ∇× to the Navier-Stokes equations: since ∇×∇p = 0

∂

∂t
ω+∇× ((u · ∇)u) = ν∆ω.

Using the vector identity

∇× ((u · ∇)u) = (u · ∇)ω− (ω · ∇)u
to obtain the vorticity equation

∂

∂t
ω+ (u · ∇)ω = ν∆ω+ (ω · ∇)u.

Since
(ω · ∇)ui = ∑

j
R ij ω

j

so that
∂

∂t
ω+ (u · ∇)ω = ν∆ω+∑

j
R ij ω

j . (5)

If (R ij ) is bounded, then there is a unique global strong solution to
the initial problem of the Navier-Stokes equations:

d
dt
||ω||2 = −2ν||ψ||2 + 2

∫
T3
〈ω,Rω〉.
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Evolution for the Laplacian

Applying ∇× to the vorticity equation (or equivalently applying ∆ to the
Navier-Stokes equation) to obtain the evolution equation for
ψ = −∆u = ∇×ω:

∂

∂t
ψ+ u · ∇ψ = ν∆ψ− R(ψ)− 1

2
ω× ψ

+2
〈
R,∇2u

〉
+∇

(
1
2
|ω|2 − |R ij |2

)
.

It follows from this evolution equation we can deduce the following

Theorem
Let {u(t) : t < T ∗} be the maximal strong solution of the Navier-Stokes
equation on T3. Suppose that supt<T ∗ ||ω(t)|| < ∞, then T ∗ = ∞. That
is, the maximal solution is a global solution.
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Ricci flow for the NS equations

We can also devise the evolution equation for the symmetric tensor of the
rate-of-strain:

LtR
j
i = −Rki R

j
k +

1
4 ∑
a,b,k≤3

δaik δbjkωaωb −∇i∇jp (6)

where

Lt =
∂

∂t
− ν∆+ u(t) · ∇

is the heat operator associated with L = ν∆− u · ∇.
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Estimating the vorticity

Let u = {u(·, t) : t < T ∗} be the maximal solution of the Navier-Stokes
equation on T3.

Lemma

Let q ≥ 1 and ε > 0 be two constants, and Fε =
(
|ω|2 + ε

)q/2. Then

d
dt

∫
T3
Fε ≤ −

4ν (q − 1)
q

∫
T3
|∇
√
Fε|2 + q

∫
T3

Fε

|ω|2 + ε
〈ω,Rω〉 (7)

as long as t < T ∗.

Therefore

Corollary
For any q ≥ 1

d
dt
||ω||qq ≤ −

4(q − 1)
q

ν
∫

T3
|∇|ω|q/2|2 + q

∫
T3
|ω|q−1|Rω|. (8)
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Monotonicity of the vorticity

We can establish the following

Theorem
Let u(t) (t < T ∗) be the strong solution of the Navier-Stokes equations
on T3. Then

t → ||ω(t)||L1 +
√
2
4ν
||u(t)||2 (9)

is decreasing on [0,T ∗).
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Proof of Theorem. Apply (8) with q = 1 we obtain

d
dt

∫
T3
|ω| ≤

∫
T3
|R(ω)| ≤ ||ω||||R ij ||

=
1√
2
||ω||2.

Now, we use the energy balance equation

d
dt
||u||2 = −2ν||ω||2

and replace ||ω||2 by − 1
2ν

d
dt ||u||2, we thus obtain

d
dt
||ω||1 ≤ −

√
2
4ν

d
dt
||u||2

which proves the theorem.
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Global existence

Similarly we have

Theorem
Let u be a strong solution of the Navier-Stokes equation on T3. Then
there are two constants C1,C2 depending only on q > 1, such that

||ω(t)||qq ≤ eC1t ||ω0||qq + C2
∫ t

0
eC1(t−s)||ω(s)||2(2q−1)ds (10)

for all t < T ∗.

Therefore

Corollary
Let T ≤ T ∗ or T < ∞ if T ∗ = ∞. Then there is a constant K depending
only on q ≥ 1 and T , such that

sup
t∈[0,T )

||ω(t)||q ≤ K
(
||ω0||q +

∫ T

0
||ω(s)||2(2q−1)ds

)
. (11)
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As a consequence

Theorem
Let u0 ∈ C∞(T3) and {u(t) : t < T ∗} be the maximum strong solution
of the Navier-Stokes equation with initial u0. If

∫ T ∗
0 ||ω(s)||6ds < ∞, then

T ∗ = ∞.

Proof.
Suppose T ∗ < ∞. Then by applying (11) to q = 2, we can see that
supt∈[0,T ∗) ||ω(t)|| < ∞.
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