[introduction](#page-2-0) W_1 *I* for $M/M/\infty$
 W_1 *I* [for Continuum Gibbs measure](#page-31-0) *I* **for** *M*/*M*/[∞](#page-21-0) *W*1 *I* **[for discrete spin system](#page-38-0)**

Transportation-information inequalities for continuum Gibbs measures

Yutao Ma, Beijing Normal University

Joint work with Ran Wang and Liming Wu

The 7th workshop on Markov Processes and Related Topics July 19-23 2010, Beijing

4 D F

Outline

- [Discrete spin system](#page-38-0)
- *W*1*I* [for discrete spin system](#page-45-0)

4 D F

*W*1 *I* **for** *M*/*M*/[∞](#page-21-0) *W*1 *I* **[for Continuum Gibbs measure](#page-31-0)** *W*1 *I* **[for discrete spin system](#page-38-0)** **[Transportation-information inequality](#page-5-0) [Gibbs measure and generator of the Glauber dynamic](#page-10-0)**

L p -Wasserstein distance

(X, \mathcal{B}) a Polish space, *d* a lower semi-continuous metric on $\mathcal{X} \times \mathcal{X}$.

 $\mathcal{M}^p_1(\mathcal{X},\textbf{d}) := \{ \nu \in \mathcal{M}_1(\mathcal{X}) ; \hspace{0.5em} \int \textbf{d}^p(x,x_0) \textbf{d} \nu < +\infty \},$ where x_0 is

イロト イ母 トイヨ トイヨ ト

*W*1 *I* **for** *M*/*M*/[∞](#page-21-0) *W*1 *I* **[for Continuum Gibbs measure](#page-31-0)** *W*1 *I* **[for discrete spin system](#page-38-0)** **[Transportation-information inequality](#page-5-0) [Gibbs measure and generator of the Glauber dynamic](#page-10-0)**

L p -Wasserstein distance

 (X, \mathcal{B}) a Polish space, *d* a lower semi-continuous metric on $\mathcal{X} \times \mathcal{X}$.

$\mathcal{M}_1(\mathcal{X})$ the space of all probability measures on \mathcal{X} .

 $\mathcal{M}^p_1(\mathcal{X},\textbf{d}) := \{ \nu \in \mathcal{M}_1(\mathcal{X}) ; \hspace{0.5em} \int \textbf{d}^p(x,x_0) \textbf{d} \nu < +\infty \},$ where x_0 is

Given $p \ge 1$ and two probability measures μ and ν on X, we

∢ ロ ▶ ∢ 倒 ▶ ∢ ヨ ▶ ∢ ヨ ▶

*W*1 *I* **for** *M*/*M*/[∞](#page-21-0) *W*1 *I* **[for Continuum Gibbs measure](#page-31-0)** *W*1 *I* **[for discrete spin system](#page-38-0)** **[Transportation-information inequality](#page-5-0) [Gibbs measure and generator of the Glauber dynamic](#page-10-0)**

◂**◻▸ ◂ਗ਼▸**

IK BIX K B

L p -Wasserstein distance

 (X, \mathcal{B}) a Polish space, *d* a lower semi-continuous metric on $\mathcal{X} \times \mathcal{X}$.

 $\mathcal{M}_1(\mathcal{X})$ the space of all probability measures on \mathcal{X} .

 $\mathcal{M}_1^p(\mathcal{X}, d) := \{ \nu \in \mathcal{M}_1(\mathcal{X}); \ \int d^p(x, x_0) d\nu < +\infty \}, \text{ where } x_0 \text{ is }$ some fixed point of X .

Given $p \geq 1$ and two probability measures μ and ν on X, we

$$
W_{p,d}(\mu,\nu)=\inf\bigg(\int\int d(x,y)^p d\pi(x,y)\bigg)^{1/p}.
$$

*W*1 *I* **for** *M*/*M*/[∞](#page-21-0) *W*1 *I* **[for Continuum Gibbs measure](#page-31-0)** *W*1 *I* **[for discrete spin system](#page-38-0)** **[Transportation-information inequality](#page-2-0) [Gibbs measure and generator of the Glauber dynamic](#page-10-0)**

∢ □ ▶ ⊣ *f*⁰

L p -Wasserstein distance

 (X, \mathcal{B}) a Polish space, *d* a lower semi-continuous metric on $\mathcal{X} \times \mathcal{X}$.

 $\mathcal{M}_1(\mathcal{X})$ the space of all probability measures on \mathcal{X} .

 $\mathcal{M}_1^p(\mathcal{X}, d) := \{ \nu \in \mathcal{M}_1(\mathcal{X}); \ \int d^p(x, x_0) d\nu < +\infty \}, \text{ where } x_0 \text{ is }$ some fixed point of X .

Given $p \geq 1$ and two probability measures μ and ν on \mathcal{X} , we define the quantity

$$
W_{p,d}(\mu,\nu)=\inf\bigg(\iint d(x,y)^p d\pi(x,y)\bigg)^{1/p}.
$$

*W*1 *I* **for** *M*/*M*/[∞](#page-21-0) *W*1 *I* **[for Continuum Gibbs measure](#page-31-0)** *W*1 *I* **[for discrete spin system](#page-38-0)** **[Transportation-information inequality](#page-2-0) [Gibbs measure and generator of the Glauber dynamic](#page-10-0)**

∢ □ ▶ ⊣ *f*⁰

Fisher-Donsker-Varadhan information

Given a Dirichlet form $\mathcal E$ on $\mathsf{L}^2(\mu):=\mathsf{L}^2(\mathcal X,\mu)$ with domain $\mathcal D(\mathcal E),$ the Fisher-Donsker-Varadhan information of ν with respect to μ is given as:

$$
I(\nu|\mu) = \begin{cases} \mathcal{E}(\sqrt{f}, \sqrt{f}) & \text{if } \nu = f\mu, \sqrt{f} \in \mathcal{D}(\mathcal{E})\\ +\infty & \text{otherwise} \end{cases}
$$

*W*1 *I* **for** *M*/*M*/[∞](#page-21-0) *W*1 *I* **[for Continuum Gibbs measure](#page-31-0)** *W*1 *I* **[for discrete spin system](#page-38-0)** **[Transportation-information inequality](#page-2-0) [Gibbs measure and generator of the Glauber dynamic](#page-10-0)**

Transportation-information inequality

α a nondecreasing left-continuous function on $\mathbb{R}^+=[\mathsf{0},+\infty)$ which vanishes at 0.

イロト イ母 トイヨ トイヨ

*W*1 *I* **for** *M*/*M*/[∞](#page-21-0) *W*1 *I* **[for Continuum Gibbs measure](#page-31-0)** *W*1 *I* **[for discrete spin system](#page-38-0)** **[Transportation-information inequality](#page-2-0) [Gibbs measure and generator of the Glauber dynamic](#page-10-0)**

◂**◻▸ ◂ਗ਼▸**

3 D F 3 D

Transportation-information inequality

 α a nondecreasing left-continuous function on $\mathbb{R}^+=[\mathsf{0},+\infty)$ which vanishes at 0.

Probability measure μ satisfies a transportation-information inequality *W*1*I* if

 $\alpha(W_{1,d}(\nu,\mu)) \leq l(\nu|\mu), \ \forall \nu \in M_1(\mathcal{X}),$

*W*1 *I* **for** *M*/*M*/[∞](#page-21-0) *W*1 *I* **[for Continuum Gibbs measure](#page-31-0)** *W*1 *I* **[for discrete spin system](#page-38-0)** **[Transportation-information inequality](#page-2-0) [Gibbs measure and generator of the Glauber dynamic](#page-10-0)**

4 D.K.

GLWY's equivalence for *W*1*I*-inequality

The following properties are equivalent:

- (*a*) The transportation-information inequality holds.
- (b) The following concentration inequality holds for each $g \in b\mathcal{B}$ with $||g||_{\text{Lip}(d)} \leq 1$ and any initial distribution $\nu \ll \mu$,

$$
\mathbb{P}_{\nu}\left(\frac{1}{t}\int_0^t g(X_s)ds>\mu(g)+r\right)\leq \|\frac{d\nu}{d\mu}\|_2e^{-t\alpha(r)},\ \forall\, t,\,r>0,
$$

where $\|\cdot\|_2$ is the norm of $L^2(\mu).$

つひひ

*W*1 *I* **for** *M*/*M*/[∞](#page-21-0) *W*1 *I* **[for Continuum Gibbs measure](#page-31-0)** *W*1 *I* **[for discrete spin system](#page-38-0)** **[Transportation-information inequality](#page-2-0) [Gibbs measure and generator of the Glauber dynamic](#page-14-0)**

Configuration space

 $Ω$ the space of all point measures $\sum_i \delta_{x_i}$ (finite or countable) with x_i different in \mathbb{R}^d ;

$$
\mathcal{F}_A = \sigma\Big(\,\omega(B) : B(\text{Borelian}) \subset A\,\Big) \text{ for each } A \in \mathcal{B}_b(\mathbb{R}^d)
$$

∢ ロ ▶ -(何 ▶ -(ヨ ▶ -(ヨ ▶

*W*1 *I* **for** *M*/*M*/[∞](#page-21-0) *W*1 *I* **[for Continuum Gibbs measure](#page-31-0)** *W*1 *I* **[for discrete spin system](#page-38-0)** **[Transportation-information inequality](#page-2-0) [Gibbs measure and generator of the Glauber dynamic](#page-14-0)**

Configuration space

 $Ω$ the space of all point measures $\sum_i \delta_{x_i}$ (finite or countable) with x_i different in \mathbb{R}^d ;

$$
\mathcal{F}_\mathcal{A} = \sigma\bigg(\omega(\mathcal{B}) : \mathcal{B}(\mathsf{Borelian}) \subset \mathcal{A}\bigg) \text{ for each } \mathcal{A} \in \mathcal{B}_b(\mathbb{R}^d)
$$

イロト イ母 トイヨ トイヨ

*W*1 *I* **for** *M*/*M*/[∞](#page-21-0) *W*1 *I* **[for Continuum Gibbs measure](#page-31-0)** *W*1 *I* **[for discrete spin system](#page-38-0)** **[Transportation-information inequality](#page-2-0) [Gibbs measure and generator of the Glauber dynamic](#page-14-0)**

Configuration space

 $Ω$ the space of all point measures $\sum_i \delta_{x_i}$ (finite or countable) with x_i different in \mathbb{R}^d ;

$$
\mathcal{F}_A = \sigma\bigg(\omega(B) : B(\text{Borelian}) \subset A\bigg) \text{ for each } A \in \mathcal{B}_b(\mathbb{R}^d)
$$

Borel σ field on \mathbb{R}^d is $\mathcal{F} = \mathcal{F}_{\mathbb{R}^d}$

∢ ロ ▶ -(何 ▶ -(ヨ ▶ -(ヨ ▶

*W*1 *I* **for** *M*/*M*/[∞](#page-21-0) *W*1 *I* **[for Continuum Gibbs measure](#page-31-0)** *W*1 *I* **[for discrete spin system](#page-38-0)** **[Transportation-information inequality](#page-2-0) [Gibbs measure and generator of the Glauber dynamic](#page-14-0)**

Configuration space

 $Ω$ the space of all point measures $\sum_i \delta_{x_i}$ (finite or countable) with x_i different in \mathbb{R}^d ;

$$
\mathcal{F}_A = \sigma\bigg(\omega(B) : B(\text{Borelian}) \subset A\bigg) \text{ for each } A \in \mathcal{B}_b(\mathbb{R}^d)
$$

Borel σ field on \mathbb{R}^d is $\mathcal{F} = \mathcal{F}_{\mathbb{R}^d}$

Given a bounded open subset Λ of \mathbb{R}^d and $\omega \in \Omega$, $\omega_{\mathsf{\Lambda}} = \sum_{\mathsf{x}_i \in \mathsf{\Lambda} \cap \mathsf{supp}(\omega)} \delta_{\mathsf{x}_i}.$

∢ ロ ▶ -(何 ▶ -(ヨ ▶ -(ヨ ▶

*W*1 *I* **for** *M*/*M*/[∞](#page-21-0) *W*1 *I* **[for Continuum Gibbs measure](#page-31-0)** *W*1 *I* **[for discrete spin system](#page-38-0)** **[Transportation-information inequality](#page-2-0) [Gibbs measure and generator of the Glauber dynamic](#page-10-0)**

◂**◻▸ ◂ਗ਼▸**

3 D F 3 D

Configuration space

 $Ω$ the space of all point measures $\sum_i \delta_{x_i}$ (finite or countable) with x_i different in \mathbb{R}^d ;

$$
\mathcal{F}_A = \sigma\bigg(\omega(B) : B(\text{Borelian}) \subset A\bigg) \text{ for each } A \in \mathcal{B}_b(\mathbb{R}^d)
$$

Borel σ field on \mathbb{R}^d is $\mathcal{F} = \mathcal{F}_{\mathbb{R}^d}$

Given a bounded open subset Λ of \mathbb{R}^d and $\omega \in \Omega$, $\omega_{\mathsf{\Lambda}} = \sum_{\mathsf{x}_i \in \mathsf{\Lambda} \cap \mathsf{supp}(\omega)} \delta_{\mathsf{x}_i}.$ $\Omega_{\Lambda} = {\omega_{\Lambda} : \omega \in \Omega}.$

*W*1 *I* **for** *M*/*M*/[∞](#page-21-0) *W*1 *I* **[for Continuum Gibbs measure](#page-31-0)** *W*1 *I* **[for discrete spin system](#page-38-0)** **[Transportation-information inequality](#page-2-0) [Gibbs measure and generator of the Glauber dynamic](#page-10-0)**

◂**◻▸ ◂ਗ਼▸**

Poisson point measures

Give the activity $z > 0$, let P be the law of Poisson point process on R *^d* with intensity measure *zdx*.

*W*1 *I* **for** *M*/*M*/[∞](#page-21-0) *W*1 *I* **[for Continuum Gibbs measure](#page-31-0)** *W*1 *I* **[for discrete spin system](#page-38-0)** **[Transportation-information inequality](#page-2-0) [Gibbs measure and generator of the Glauber dynamic](#page-10-0)**

4 D.K.

Poisson point measures

Give the activity *z* > 0, let *P* be the law of Poisson point process on R *^d* with intensity measure *zdx*.

The image measure P_{Λ} of P by $\omega \rightarrow \omega_{\Lambda}$ is the law of Poisson point process on Λ with intensity measure *zdx*.

*W*1 *I* **for** *M*/*M*/[∞](#page-21-0) *W*1 *I* **[for Continuum Gibbs measure](#page-31-0)** *W*1 *I* **[for discrete spin system](#page-38-0)** **[Transportation-information inequality](#page-2-0) [Gibbs measure and generator of the Glauber dynamic](#page-10-0)**

4 0 3 4

The Gibbs measure

The Gibbs measure for a given boundary condition $\eta \in \Omega$ on Λ^c is a probability given by

 $\mu_\Lambda^\eta(d\omega_\Lambda) := (Z_\Lambda^\eta)^{-1} \exp \left\{ - \beta H_\Lambda^\eta(\omega_\Lambda) \right\} P_\Lambda(d\omega_\Lambda)$

where Z_{Λ}^{η} is the normalization constant, and

$$
H_\Lambda^\eta(\omega_\Lambda):=\frac{1}{2}\iint_{\Lambda^2}\phi(x-y)\omega_\Lambda(dx)\omega_\Lambda(dy)+\int_{\Lambda}\omega_\Lambda(dx)\int_{\Lambda^c}\phi(x-y)\eta(dy)
$$

is the Hamiltonian.

3 D F 3 D

*W*1 *I* **for** *M*/*M*/[∞](#page-21-0) *W*1 *I* **[for Continuum Gibbs measure](#page-31-0)** *W*1 *I* **[for discrete spin system](#page-38-0)** **[Transportation-information inequality](#page-2-0) [Gibbs measure and generator of the Glauber dynamic](#page-10-0)**

∢ □ ▶ ∢ [⊖]

∃ »

Difference operator

For a real F−measurable function *f*, consider the difference operators

$$
D_{x}^{+} f(\omega) := f(\omega + \delta_{x}) - f(\omega), \quad \omega \in \Omega_{\Lambda}, x \in \Lambda;
$$

$$
D_{x}^{-} f(\omega) := f(\omega - \delta_{x}) - f(\omega), \quad \omega \in \Omega_{\Lambda}, x \in \text{supp }\omega.
$$

*W*1 *I* **for** *M*/*M*/[∞](#page-21-0) *W*1 *I* **[for Continuum Gibbs measure](#page-31-0)** *W*1 *I* **[for discrete spin system](#page-38-0)** **[Transportation-information inequality](#page-2-0) [Gibbs measure and generator of the Glauber dynamic](#page-10-0)**

← ロ → → イ 同 →

 \sim De kirk э

Generator and Dirichlet form

Generator:

$$
\mathcal{L}_{\Lambda}^{\eta}f(\omega_{\Lambda})=\int_{\Lambda}D_{x}^{-}f(\omega_{\Lambda})\omega_{\Lambda}(dx)+z\int_{\Lambda}e^{-\beta D_{x}^{+}H_{\Lambda}^{\eta}(\omega_{\Lambda})}D_{x}^{+}f(\omega_{\Lambda})dx.
$$

$$
\mathcal{E}_{\Lambda}^{\eta}(f, g) := \langle f, -\mathcal{L}_{\Lambda}^{\eta} g \rangle_{\mu_{\Lambda}^{\eta}}
$$

=
$$
\int_{\Omega_{\Lambda}} d\mu_{\Lambda}^{\eta}(\omega_{\Lambda}) \int_{\Lambda} D_{x}^{-} f(\omega_{\Lambda}) D_{x}^{-} g(\omega_{\Lambda}) \omega_{\Lambda}(dx)
$$

=
$$
\int_{\Omega_{\Lambda}} d\mu_{\Lambda}^{\eta}(\omega_{\Lambda}) \int_{\Lambda} e^{-\beta D_{x}^{+} H_{\Lambda}^{\eta}(\omega_{\Lambda})} D_{x}^{+} f(\omega_{\Lambda}) D_{x}^{+} g(\omega_{\Lambda}) z dx.
$$

*W*1 *I* **for** *M*/*M*/[∞](#page-21-0) *W*1 *I* **[for Continuum Gibbs measure](#page-31-0)** *W*1 *I* **[for discrete spin system](#page-38-0)** **[Transportation-information inequality](#page-2-0) [Gibbs measure and generator of the Glauber dynamic](#page-10-0)**

> \sim

Generator and Dirichlet form

Generator:

$$
\mathcal{L}_{\Lambda}^{\eta}f(\omega_{\Lambda})=\int_{\Lambda}D_{x}^{-}f(\omega_{\Lambda})\omega_{\Lambda}(dx)+z\int_{\Lambda}e^{-\beta D_{x}^{+}H_{\Lambda}^{\eta}(\omega_{\Lambda})}D_{x}^{+}f(\omega_{\Lambda})dx.
$$

Dirichlet form:

$$
\mathcal{E}_{\Lambda}^{\eta}(f, g) := \langle f, -\mathcal{L}_{\Lambda}^{\eta} g \rangle_{\mu_{\Lambda}^{\eta}} \n= \int_{\Omega_{\Lambda}} d\mu_{\Lambda}^{\eta}(\omega_{\Lambda}) \int_{\Lambda} D_{x}^{-} f(\omega_{\Lambda}) D_{x}^{-} g(\omega_{\Lambda}) \omega_{\Lambda}(dx) \n= \int_{\Omega_{\Lambda}} d\mu_{\Lambda}^{\eta}(\omega_{\Lambda}) \int_{\Lambda} e^{-\beta D_{x}^{+} H_{\Lambda}^{\eta}(\omega_{\Lambda})} D_{x}^{+} f(\omega_{\Lambda}) D_{x}^{+} g(\omega_{\Lambda}) z dx.
$$

∋⊳⊣ э

M/*M*/[∞](#page-23-0) *W*₁ / **for** *M* / *M* / [∞](#page-24-0)

M/*M*/∞ queue system

Generator: $\mathcal{L}f(n) = \lambda(f_{n+1} - f_n) + n(f_{n-1} - f_n)$

∢ ロ ▶ . ∢ 母 ▶ . ∢ ヨ ▶ . ∢ ヨ

M/*M*/[∞](#page-23-0) *W*₁ / **for** *M* / *M* / [∞](#page-24-0)

M/*M*/∞ queue system

Generator: $\mathcal{L}f(n) = \lambda(f_{n+1} - f_n) + n(f_{n-1} - f_n)$ Invariant measure: $\mu_n = e^{-\lambda} \lambda^n / n!$

イロト イ母 トイヨ トイヨ

M/*M*/[∞](#page-21-0) *W*₁ / **for** *M* / *M* / [∞](#page-24-0)

M/*M*/∞ queue system

Generator: $\mathcal{L}f(n) = \lambda(f_{n+1} - f_n) + n(f_{n-1} - f_n)$ Invariant measure: $\mu_n = e^{-\lambda} \lambda^n / n!$ Dirichlet form: $\mathcal{E}(f,g) = \sum_{n=0}^{\infty} \lambda \mu_n (f_{n+1} - f_n)(g_{n+1} - g_n)$.

◂**◻▸ ◂ਗ਼▸**

14 B K 4 B

*W*₁ / **for** *M* / *M* / [∞](#page-24-0)

Optimal *W*1*I*-inequality for *M*/*M*/∞

Theorem. Consider ρ the classical Euclidean distance on N. Then

*W*_{1, ρ} $(\nu, \mu) \leq I + 2$ $\sqrt{\lambda}$ *I*, $\forall \nu \in M_1(\mathbb{N}_+),$

where $I = I(\nu/\mu)$.

∢ ロ ▶ -(何 ▶ -(ヨ ▶ -(ヨ ▶

*W*₁ / **for** *M* / *M* / [∞](#page-24-0)

The inequality is optimal since

- \blacktriangleright Gao, Guilllin and Wu proved that $\nu(g_0) \mu(g_0) \leq 2$ √ λ *I* + *I* for $g_0(n) = n - \lambda$ is optimal (motivation).
- ► Take ν a Poisson distribution with parameter $a\lambda$, $a > 1$. Then

イロト イ母 トイヨ トイヨ

*W*₁ / **for** *M* / *M* / [∞](#page-24-0)

The inequality is optimal since

- \blacktriangleright Gao, Guilllin and Wu proved that $\nu(g_0) \mu(g_0) \leq 2$ √ λ *I* + *I* for $g_0(n) = n - \lambda$ is optimal (motivation).
- ► Take ν a Poisson distribution with parameter $a\lambda$, $a > 1$. Then Take *V* a Poisson distribution with particle *W*_{1,*p*} $(\nu, \mu) = 2\sqrt{\lambda}l + l = \lambda(\sqrt{a}-1)^2$.

◂**◻▸ ◂ਗ਼▸**

14 B K 4 B

*W*₁ / **for** *M* / *M* / [∞](#page-24-0)

Some key points

- ► Lipschitzian spectral gap: $||(-\mathcal{L})^{-1}||_{\text{Lip}(\rho)}=1$
- **Example 1** Lyapunov test function: take $V_n = \kappa^n (\kappa > 1)$, s.t.

$$
(1+\delta)n + (1+\frac{1}{\delta})\lambda \leq -a\frac{\mathcal{L}V}{V}(n) + b
$$

with $a = (1 + \delta)\kappa/(\kappa - 1)$ and $b = \left((1 + \delta)\kappa + (1 + \frac{1}{\delta})\right)\lambda$

+ for any function $V \geq 1$, if $-\frac{\mathcal{L}V}{V}$ is lower bounded, then

$$
\int -\frac{\mathcal{L}V}{V}d\nu \leq l(\nu|\mu), \ \forall \nu.
$$

◂**◻▸ ◂ਗ਼▸**

3 D F 3 D

*W*₁ / **for** *M* / *M* / [∞](#page-24-0)

Some key points

- ► Lipschitzian spectral gap: $||(-\mathcal{L})^{-1}||_{\text{Lip}(\rho)}=1$
- **Exercise** Lyapunov test function: take $V_n = \kappa^n (\kappa > 1)$, s.t.

$$
(1+\delta)n + (1+\frac{1}{\delta})\lambda \leq -a\frac{\mathcal{L}V}{V}(n) + b
$$

with $\bm{a} = (1+\delta)\kappa/(\kappa-1)$ and $\bm{b} = \left((1+\delta)\kappa + (1+\frac{1}{\delta})\right)\lambda$

+ for any function $V \geq 1$, if $-\frac{\mathcal{L}V}{V}$ is lower bounded, then

$$
\int -\frac{\mathcal{L}V}{V}d\nu \leq l(\nu|\mu),\; \forall \nu.
$$

◂**◻▸ ◂ਗ਼▸**

i katika te

*W*₁ / **for** *M* / *M* / [∞](#page-24-0)

Some key points

- ► Lipschitzian spectral gap: $||(-\mathcal{L})^{-1}||_{\text{Lip}(\rho)}=1$
- **Exercise** Lyapunov test function: take $V_n = \kappa^n (\kappa > 1)$, s.t.

$$
(1+\delta)n + (1+\frac{1}{\delta})\lambda \leq -a\frac{\mathcal{L}V}{V}(n) + b
$$

with $\bm{a} = (1+\delta)\kappa/(\kappa-1)$ and $\bm{b} = \left((1+\delta)\kappa + (1+\frac{1}{\delta})\right)\lambda$

+ for any function $V \geq 1$, if $-\frac{\mathcal{L}V}{V}$ is lower bounded, then

$$
\int -\frac{\mathcal{L}V}{V}d\nu \leq l(\nu|\mu), \ \forall \nu.
$$

イロト イ母 トイヨ トイヨ

*W*₁ / **for** *M* / *M* / [∞](#page-24-0)

Sketch of the Proof

Given any function *g* on N with $\mu(g) = 0$, $||g||_{\text{Lip}(\rho)} = 1$, *G* satisfies $-\mathcal{L}G = g$ with $\mu(G) = 0$. For any $\delta > 0$, we have

$$
\nu(g) - \mu(g) = \langle g, f \rangle_{\mu} = \mathcal{E}(G, f) = \sum_{n=0}^{\infty} \lambda \mu_n (G_{n+1} - G_n)(f_{n+1} - f_n)
$$
\n
$$
\leq \sqrt{\sum_{n=0}^{\infty} \lambda \mu_n (\sqrt{f_{n+1}} - \sqrt{f_n})^2} \cdot \sqrt{\sum_{n=0}^{\infty} \lambda \mu_n (G_{n+1} - G_n)^2 (\sqrt{f_{n+1}} + \sqrt{f_n})^2}
$$
\n
$$
\leq \sqrt{I \sum_{n=0}^{\infty} \lambda \mu_n \left((1 + \delta) f_{n+1} + (1 + \frac{1}{\delta}) f_n \right)} = \sqrt{I \sum_{n=0}^{\infty} \mu_n f_n \left((1 + \delta) n + (1 + \frac{1}{\delta}) \lambda \right)}
$$
\n
$$
\leq \sqrt{I \sum_{n=0}^{\infty} \mu_n f_n \left(-a \frac{\mathcal{L}V}{V}(n) + b \right)} \leq \sqrt{I(aI + b)}.
$$

∢ ロ ▶ . ∢ 母 ▶ . ∢ ヨ ▶ . ∢ ヨ

[Lipschitzian norm of](#page-33-0) $(-\mathcal{L}_{\Lambda}^{\eta})^{-1}$

Lipschitzian space

The metric *d* on Ω_{Λ} : for any $\omega, \omega' \in \Omega_{\Lambda}$,

 $\boldsymbol{d}(\omega,\omega') = \|\omega - \omega'\|_{\text{TV}}.$

$$
\|F\|_{\mathrm{Lip}(d)}:=\sup_{\omega\neq\omega'}\frac{|F(\omega)-F(\omega)|}{d(\omega,\omega')}<\infty
$$

$$
\Longleftrightarrow ||F||_{\text{Lip}(d)} = \sup_{x \in \Lambda, \omega_{\Lambda} \in \Omega_{\Lambda}} |D_x^+ F(\omega_{\Lambda})| < \infty.
$$

イロト イ母 トイヨ トイヨ

[Lipschitzian norm of](#page-33-0) $(-\mathcal{L}_{\Lambda}^{\eta})^{-1}$

◂**◻▸ ◂ਗ਼▸**

14 B K 4 B

Lipschitzian space

The metric *d* on Ω_{Λ} : for any $\omega, \omega' \in \Omega_{\Lambda}$,

 $\boldsymbol{d}(\omega,\omega') = \|\omega - \omega'\|_{\text{TV}}.$

Given any functional $F \in rF_{\Lambda}$, *F* is Lipschitzian with respect to *d* if \overline{I}

$$
\|F\|_{\mathrm{Lip}(d)}:=\sup_{\omega\neq\omega'}\frac{|F(\omega)-F(\omega')|}{d(\omega,\omega')}<\infty
$$

$$
\Longleftrightarrow ||F||_{\text{Lip}(d)} = \sup_{x \in \Lambda, \omega_{\Lambda} \in \Omega_{\Lambda}} |D_x^+ F(\omega_{\Lambda})| < \infty.
$$

[Lipschitzian norm of](#page-31-0) $(-\mathcal{L}_{\Lambda}^{\eta})^{-1}$

Lipschitzian space

The metric *d* on Ω_{Λ} : for any $\omega, \omega' \in \Omega_{\Lambda}$,

 $\boldsymbol{d}(\omega,\omega') = \|\omega - \omega'\|_{\text{TV}}.$

Given any functional $F \in rF_{\Lambda}$, *F* is Lipschitzian with respect to *d* if

$$
\|F\|_{\mathrm{Lip}(d)}:=\sup_{\omega\neq\omega'}\frac{|F(\omega)-F(\omega')|}{d(\omega,\omega')}<\infty
$$

$$
\Longleftrightarrow ||F||_{\text{Lip}(d)} = \sup_{x \in \Lambda, \omega_{\Lambda} \in \Omega_{\Lambda}} |D_x^+ F(\omega_{\Lambda})| < \infty.
$$

◂**◻▸ ◂ਗ਼▸**

14 B K 4 B

[Lipschitzian norm of](#page-31-0) $(-\mathcal{L}_{\Lambda}^{\eta})^{-1}$

∢ □ ▶ ⊣ *f*⁰

Upper bound of $||(-\mathcal{L}_{\Lambda}^{\eta})^{-1}||_{\mathrm{Lip}(d)}$

Lemma. Suppose that the Dobrushin's uniqueness condition holds, i.e.,

$$
D=z\int_{\mathbb{R}^d}(1-e^{-\beta\varphi(x)})dx<1.
$$

We have

$$
\|(-\mathcal{L}_{\Lambda}^{\eta})^{-1}\|_{\mathrm{Lip}(\sigma)}\leq \frac{1}{1-D}.
$$

De la Car

Lipschitzian norm of
$$
(-\mathcal{L}_{\Lambda}^{\eta})^{-1}
$$

 W_1 l-inequality for μ_{Λ}^{η}

4 ロ ▶ 4 伊 **D** \prec ∋⊳⊣ Ξ

Lyapunov test function

Lemma. Take
$$
V(\omega_{\Lambda}) = \kappa^{N_{\Lambda}(\omega_{\Lambda})}
$$
. Given any $\delta > 0$, then

$$
(1+\delta)N_{\Lambda}(\omega_{\Lambda})+(1+\frac{1}{\delta})z|\Lambda|\leq-a\frac{\mathcal{L}_{\Lambda}^{\eta}V(\omega_{\Lambda})}{V(\omega_{\Lambda})}+b,\quad\omega_{\Lambda}\in\Omega_{\Lambda}
$$

where
$$
a = (1 + \delta) \frac{\kappa}{\kappa - 1}
$$
, $b = ((1 + \delta)\kappa + (1 + \frac{1}{\delta}))Z|\Lambda|$.

[introduction](#page-2-0) W_1 *I* for $M/M/\infty$
 W_1 *I* [for Continuum Gibbs measure](#page-31-0) $for M/M/\infty$ *W*1 *I* **[for discrete spin system](#page-38-0)**

[Lipschitzian norm of](#page-31-0) $(-\mathcal{L}_{\Lambda}^{\eta})^{-1}$
M Lipervolity for η *W*₁ *I*[-inequality for](#page-35-0) $μ^η$

4 0 8 4

*W*₁*I*-inequality for μ_N^{η} Λ

Theorem. Suppose that the Dobrushin uniqueness condition holds, i.e.

$$
D=z\int_{\mathbb{R}^d}(1-e^{-\beta\varphi(x)})dx<1.
$$

The Gibbs measure μ_{Λ}^{η} satisfies the transportation-information inequality W_1 /

$$
W_{1,d}(\nu,\mu_\Lambda^\eta)\leq \frac{1}{1-D}\bigg(I+2\sqrt{z|\Lambda|}I\bigg),
$$

where $I = I(\nu/\mu_{\Lambda}^{\eta}).$

化重变 化重

Lipschitzian norm of
$$
(-\mathcal{L}_{\Lambda}^{\eta})^{-1}
$$

 W_1 l-inequality for μ_{Λ}^{η}

∢ □ ▶ ⊣ *f*⁰

Remark. The transportation-information inequality for μ_{Λ}^{η} is sharp. If $\varphi = 0$, then $D = 0$ and $N_{\Lambda}(X_t)$ is just the $M/M/\infty$ queue system with $λ = z|Λ|$.

ヨネ イ

[Discrete spin system](#page-41-0) *W*1 *I* **[for discrete spin system](#page-45-0)**

The discrete spin system

T a finite subset of \mathbb{Z}^d

イロト イ母 トイヨ トイヨ ト

[Discrete spin system](#page-41-0) *W*1 *I* **[for discrete spin system](#page-45-0)**

The discrete spin system

T a finite subset of \mathbb{Z}^d

 $\gamma:\mathbb{Z}^d\times\mathbb{Z}^d\to\mathbb{R}^+$ a nonnegative interaction function satisfying $\gamma_{ij}=\gamma_{ji}$ and $\gamma_{ii} = 0$ for all $i, j \in \mathbb{Z}^d$.

$$
\mu_{\mathcal{T}}(dx_{\mathcal{T}}|x) = \frac{e^{-\frac{1}{2}\sum_{\{i,j\}\cap\mathcal{T}\neq\emptyset}\gamma_{ij}x_ix_j}}{Z(x_{\mathcal{T}c})}\Pi_{i\in\mathcal{T}}\sigma_{\lambda_i}(dx_i)
$$

∢ ロ ▶ . ∢ 母 ▶ . ∢ ヨ ▶ . ∢ ヨ

[Discrete spin system](#page-41-0) *W*1 *I* **[for discrete spin system](#page-45-0)**

The discrete spin system

T a finite subset of \mathbb{Z}^d

 $\gamma:\mathbb{Z}^d\times\mathbb{Z}^d\to\mathbb{R}^+$ a nonnegative interaction function satisfying $\gamma_{ij}=\gamma_{ji}$ and $\gamma_{ii} = 0$ for all $i, j \in \mathbb{Z}^d$.

The Gibbs measure on $\mathbb{N}^{\mathcal{T}}$ with boundary condition $(x_k)_{k\in\mathcal{T}^c}$ is defined by

$$
\mu_{\mathcal{T}}(dx_{\mathcal{T}}|x) = \frac{e^{-\frac{1}{2}\sum_{\{i,j\}\cap T\neq\emptyset}\gamma_{ij}x_i x_j}}{Z(x_{\mathcal{T}c})}\Pi_{i\in T}\sigma_{\lambda_i}(dx_i)
$$

where ${\{\sigma_{\lambda_i}(\cdot)\}}_{i\in\mathbb{Z}^d}$ are the given Poisson measures on ℕ with means $\{\lambda_i > 0\}_{i \in \mathbb{Z}^d}$, and $Z(x_{\mathcal{T}^c})$ is the normalization factor.

イロト イ母 トイヨ トイヨ

[Discrete spin system](#page-38-0) *W*1 *I* **[for discrete spin system](#page-45-0)**

The discrete spin system

T a finite subset of \mathbb{Z}^d

 $\gamma:\mathbb{Z}^d\times\mathbb{Z}^d\to\mathbb{R}^+$ a nonnegative interaction function satisfying $\gamma_{ij}=\gamma_{ji}$ and $\gamma_{ii} = 0$ for all $i, j \in \mathbb{Z}^d$.

The Gibbs measure on $\mathbb{N}^{\mathcal{T}}$ with boundary condition $(x_k)_{k\in\mathcal{T}^c}$ is defined by

$$
\mu_{\mathcal{T}}(dx_{\mathcal{T}}|x) = \frac{e^{-\frac{1}{2}\sum_{\{i,j\}\cap\mathcal{T}\neq\emptyset}\gamma_{ij}x_i x_j}}{Z(x_{\mathcal{T}c})}\Pi_{i\in\mathcal{T}}\sigma_{\lambda_i}(dx_i)
$$

where ${\{\sigma_{\lambda_i}(\cdot)\}}_{i\in\mathbb{Z}^d}$ are the given Poisson measures on ℕ with means $\{\lambda_i > 0\}_{i \in \mathbb{Z}^d}$, and $Z(x_{\mathcal{T}^c})$ is the normalization factor.

When $T = \{i\}, \mu_T(dx_T|x)$ noted as $\mu_i(dx_i|x)$, is the Poisson distribution with parameter $\lambda_i e^{-\sum_{j\neq i} \gamma_{ij} x_j}$.

イロト イ母 トイヨ トイヨ

[Discrete spin system](#page-38-0) *W*1 *I* **[for discrete spin system](#page-45-0)**

Dobrushin interdependence matrix

$$
C := (c_{ij})_{i,j \in T} \text{ w.r.t. } d_{i'}
$$
 on N is

$$
c_{ij} = \sup_{x = x' \text{ off } j} \frac{W_{1,\rho}\left(\mu_i(d x_i | x), \mu_i(d x_i' | x')\right)}{|x_j - x_j'|} = \lambda_i(1 - e^{-\gamma_{ij}}).
$$

 \sim N \sim 1.

$$
D:=\sup_{j\in\mathcal{T}}\sum_{i\in\mathcal{T}}c_{ij}=\sup_{j\in\mathcal{T}}\sum_{i\in\mathcal{T}}\lambda_i(1-e^{-\gamma_{ij}})<1.
$$

イロト イ母 トイヨ トイヨ

[Discrete spin system](#page-38-0) *W*1 *I* **[for discrete spin system](#page-45-0)**

Dobrushin interdependence matrix

$$
C := (c_{ij})_{i,j \in T} \text{ w.r.t. } d_{i1} \text{ on } \mathbb{N} \text{ is}
$$

$$
c_{ij} = \sup_{x = x' \text{ off } j} \frac{W_{1,\rho}\left(\mu_i(d x_i | x), \mu_i(d x_i' | x')\right)}{|x_j - x_j'|} = \lambda_i(1 - e^{-\gamma_{ij}}).
$$

Dobrushin's uniqueness condition

$$
D:=\sup_{j\in\mathcal{T}}\sum_{i\in\mathcal{T}}c_{ij}=\sup_{j\in\mathcal{T}}\sum_{i\in\mathcal{T}}\lambda_i(1-e^{-\gamma_{ij}})<1.
$$

∢ ロ ▶ . ∢ 母 ▶ . ∢ ヨ ▶ . ∢ ヨ

[Discrete spin system](#page-38-0) *W*1 *I* **[for discrete spin system](#page-45-0)**

The Dirichlet form of \mathcal{E}_T is defined as

$$
\mathcal{E}_{\mathcal{T}}(g,g) := \int_{\mathbb{N}^T} \sum_{i \in \mathcal{T}} \mathcal{E}_i(g_i,g_i) d\mu_{\mathcal{T}}, \quad g \in \mathcal{D}(\mathcal{E}_{\mathcal{T}}) \qquad \text{with}
$$

$$
\mathcal{D}(\mathcal{E}_{\mathcal{T}}) := \left\{ g \in L^2(\mu_{\mathcal{T}}) : g_i \in \mathcal{D}(\mathcal{E}_i), \mu_{\mathcal{T}} - \text{a.e.} \hat{x}_i, \int_{\mathbb{N}^T} \sum_{i \in \mathcal{T}} \mathcal{E}_i(g_i,g_i) d\mu_{\mathcal{T}} < +\infty \right\}
$$

where $g_i(x_i) := g(x_i, \hat{x}_i)$ with $\hat{x}_i := x_{\mathcal{T} \setminus \{i\}}$ fixed.

 298

K ロトメ部 トメミトメモ

[Discrete spin system](#page-38-0) *W*1 *I* **[for discrete spin system](#page-45-0)**

Tensorization result for *W*¹

Lemma. Assume the Dobrushin's uniqueness condition

$$
D=\sup_{j\in T}\sum_{i\in T}\lambda_i(1-e^{-\gamma_{ij}})<1.
$$

Then for all $\nu_{\mathcal{T}} \in \mathcal{M}^1_1(\mathbb{N}^{\mathcal{T}})$,

$$
W_{1,d_{j1}}(\nu_T, \mu_T) \leq \frac{1}{1-D} \mathbb{E}^{\nu_T} \sum_{i \in T} W_{1,\rho}(\nu_i, \mu_i)
$$

where ν_i is the conditional distribution of x_i knowing $(x_j)_{j\neq i}$.

4 0 3 4

(Britan Britannia)

[introduction](#page-2-0) *W*₁ *l* for *M / M /* ∞
*W*₁ *l* [for Continuum Gibbs measure](#page-31-0) *I* **for** *M*/*M*/[∞](#page-21-0) *W*1 *I* **[for discrete spin system](#page-38-0)**

[Discrete spin system](#page-38-0) *W*1 *I* **[for discrete spin system](#page-45-0)**

Additivity property of the Fisher information

Let $\nu_{\mathcal{T}}, \mu_{\mathcal{T}}$ be probability measures on $\mathbb{N}^{\mathcal{T}}$ such that $I_{\mathcal{T}}(\nu_{\mathcal{T}}|\mu_{\mathcal{T}})<+\infty,$ and let μ_i, ν_i be the conditional distributions of x_i knowing \hat{x}_i under μ, ν respectively. Then

$$
I_T(\nu_T|\mu_T) = \mathbb{E}^{\nu_T} \sum_{i \in T} I_i(\nu_i|\mu_i)
$$

where $\emph{I}_{i}(\nu_{i}|\mu_{i})$ is the Fisher-Donsker-Varadhan information related to the Dirichlet form $(\mathcal{E}_i,\mathcal{D}(\mathcal{E}_i))$.

4 D.K.

[Discrete spin system](#page-38-0) *W*1 *I* **[for discrete spin system](#page-45-0)**

*W*1*I*-inequality for discrete spin system

Theorem. Assume the Dobrushin uniqueness condition

$$
D=\sup_{j\in T}\sum_{i\in T}\lambda_i(1-e^{-\gamma_{ij}})<1.
$$

Then for any $\nu_{\mathcal{T}} \in \mathcal{M}^{1}_{1}(\mathbb{N}^{\mathcal{T}},d_{\mathit{I}^1}),$ it holds that

$$
W_{1,d_{j1}}(\nu_T, \mu_T) \leq \frac{1}{1-D} \left(2\sqrt{\sum_{i \in T} \lambda_i I} + I\right)
$$

where $I = I_T(\nu_T|\mu_T)$.

4 0 3 4

化原子化原

[Discrete spin system](#page-38-0) *W*1 *I* **[for discrete spin system](#page-45-0)**

references

- \triangleright F-Q Gao, A. Guillin and L-M Wu, Berstein's type concentration inequalities for Gibbs measure. Preprint
- \triangleright F-Q Gao and L-M Wu, Transportation information inequalities for Gibbs measure. Preprint
- ▶ A. Guillin, C. Leonard, L-M Wu and N. Yao, Transportation-information inequalities for Markov processes. P.T.R.F., 144: 669-695, 2009.
- \triangleright Y-T Ma, R. Wang and Liming Wu, Transportation-information inequalities for continuum Gibbs measure. Preprint

4 D.K.

[Discrete spin system](#page-38-0) *W*1 *I* **[for discrete spin system](#page-45-0)**

Thank you for your attention

K ロトメ部 トメミトメモ