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Description of BPRE

Branching Process in a Random Environment (BPRE)

X=X1 2

φ
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ξ = (ξn)(n≥0) i.i.d.

the population size
of nth generation 

Zn = �{u : |u| = n}

|u| = n, Pξ(Xu = k) = pk(ξn)
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Zn – the population size of the nth generation,

Xu– the number of offspring of u.

By definition,

Z0 = 1, Zn+1 =
∑
|u|=n

Xu, (n ≥ 0).

where given ξ , {Xu : |u| = n} are conditionally
independent of each other and have a common distribution
p(ξn) = {pk (ξn) : k ≥ 0}.
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Quenched and annealed laws
Let (Γ,Pξ) be the probability space under which the process is
defined when the environment ξ is fixed. As usual, Pξ is called
quenched law.
The total probability space can be formulated as the product
space (ΘN × Γ,P), where P = Pξ ⊗ τ in the sense that for all
measurable and positive g, we have∫

gdP =

∫ ∫
g(ξ, y)dPξ(y)dτ(ξ),

where τ is the law of the environment ξ. P is called annealed
law. Pξ may be considered to be the conditional probability of P
given ξ.
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The martingale in BPRE
Denote

mn =
∑

k

kpk (ξn)

P0 = 1, Pn = m0 · · ·mn−1 for n ≥ 1.

Then the normalized population size

Wn =
Zn

Pn

is a nonnegative martingale and converges a.s. to a
nonnegative random variable:

W = lim
n→∞

Wn a.s.

with EW ≤ 1.
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Supercritical BRPE
We consider the supercritical case where

E log m0 ∈ (0,∞) and E
Z1

m0
log+ Z1 <∞.

For simplicity, let pk = pk (ξ0) and assume that

p0 = 0 a.s.,

Therefore
W > 0 and Zn →∞ a.s..
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Description of BPRE

Law of large numbers
It is well known (Tanny(1977)) that

lim
n→∞

log Zn

n
= E log m0 a.s. (on {Zn →∞}).

We are interested in the asymptotic properties of the
corresponding deviation probabilities.
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Central Limit Theorem
We first remark that log Zn satisfies the same central limit
theorem as log Pn = log m0 + ...+ log mn−1:

Theorem 1 (Central Limit Theorem)

Assume that E(log m0)2 ∈ (0,∞) and let σ2 = var(log m0).
Then

log Zn − nE log m0√
nσ

→ N(0,1) in law.
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Large Deviations

The central limit theorem suggests that log Zn and log Pn
would satisfy the same large deviation principle. We shall
prove this.

Rate function
Let

Λ(t) = log Emt
0,

and
Λ∗(x) = sup

t∈R
{xt − Λ(t)}

be the Fenchel-Legendre transform of Λ.
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Large Deviations

We will use the following assumption:

Assumption (H)
There exist constants δ > 0 and A > A1 > 1 such that a.s.

A1 ≤ EξZ1, EξZ 1+δ
1 ≤ A1+δ.
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Large Deviations

Large Deviation Principle

Theorem 2 (Large Deviation Principle)

Assume (H). If EZ s
1 <∞ for all s > 1 and p1 = 0 a.s., then for

any measurable subset B of R,

− inf
x∈Bo

Λ∗(x) ≤ lim inf
n→∞

1
n

log P
(

log Zn

n
∈ B

)
≤ lim sup

n→∞

1
n

log P
(

log Zn

n
∈ B

)
≤ − inf

x∈B̄
Λ∗(x).
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Large Deviations

Tail probabilities
From Theorem 2, we obtain the following corollary:

Corollary ( Bansaye and Berestycki (2009))
Under the conditions of Theorem 2, we have

lim
n→∞

1
n

log P
(

log Zn

n
≤ x

)
= −Λ∗(x) for x < E log m0,

lim
n→∞

1
n

log P
(

log Zn

n
≥ x

)
= −Λ∗(x) for x > E log m0.

This result has been obtained by Bansaye and Berestycki in
2009. Our approach is different.

Quansheng LIU Branching Process in Random Environment



Introduction
Main results

Proofs

Moderate Deviations

Moderate Deviation Principle

Large deviation: log Zn−nE log m0
n

Central limit theorem: log Zn−nE log m0√
n

Moderate deviation: log Zn−nE log m0
an

Let {an} be a sequence of positive numbers satisfying

an

n
→ 0 and

an√
n
→∞, as n→∞.
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Moderate Deviations

Moderate Deviation Principle

Theorem 3 (Moderate Deviation Principle)

Assume (H) and write σ2 = var(log m0) . Then for any
measurable subset B of R,

− inf
x∈Bo

x2

2σ2 ≤ lim inf
n→∞

n
a2

n
log P

(
log Zn − nE log m0

an
∈ B

)
≤ lim sup

n→∞

n
a2

n
log P

(
log Zn − nE log m0

an
∈ B

)
≤ − inf

x∈B̄

x2

2σ2 .
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Proof of Theorem 2 (LDP)
Notice that the Laplace transform of log Zn is

Eet log Zn = EZ t
n.

Theorem 2 is a consequence of the Gärtner-Ellis theorem
and the following result.

Theorem 4 (Moments of Zn)
Under certain moment conditions ( e.g. the conditions of
Theorem 2), we have

lim
n→∞

EZ t
n

(Emt
0)n = C(t) ∈ (0,∞), ∀t ∈ R.

This is an extension of a result of Ney and Vidyashankar (2003)
on the Galton-Watson process.
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Harmonic moments

Harmonic moments
To prove Theorem 4, we introduce a new BPRE and need
a theorem about the harmonic moments of W :

Theorem 5 (Harmonic moments)
Assume (H).
(i) (General case) There exists a constant a > 0 such that

EW−a <∞.

(ii) (Special case) If ‖p1‖∞ := esssup p1 < 1, then ∀a > 0,

EW−a <∞ if and only if Ep1ma
0 < 1.

Quansheng LIU Branching Process in Random Environment



Introduction
Main results

Proofs

Harmonic moments

Corollary (Critical value)

Assume (H) and ‖p1‖∞ < 1. If Ep1ma0
0 = 1, then

EW−a <∞ if 0 < a < a0,
EW−a =∞ if a ≥ a0.

Remark
Hambly (1992) proved that under some assumption similar to (H), the
number α0 := − E log p1

E log m0
is the critical value for the a.s. existence of

the quenched moments EξW−a(a > 0). By Jensen’s inequality, it is
easy to see that a0 ≤ α0.
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Proof of Theorem 5 (Harmonic moments)
Set

φξ(t) = Eξe−tW and φ(t) = Eφξ(t) (t > 0).

Lemma A
Assume (H). Then there exist constants β ∈ (0,1) and K > 0
such that a.s.

φξ(t) ≤ β ∀t ≥ 1/K .

If additionally ‖p1‖∞ < 1, then for some constants a > 0 and
C > 0, a.s.

φξ(t) ≤ Ct−a ∀t ≥ 1/K .
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Proof of Theorem 5 (Harmonic moments)

(ii) Special case where ‖p1‖∞ < 1.
Necessity

W =
1

m0

Z1∑
i=1

W (1)
i a.s.,

where given ξ,
(

W (1)
i

)
i≥1

are conditionally i.i.d with

Pξ(W (1)
i ∈ ·) = PTξ(W ∈ ·). Since P(Z1 ≥ 2) > 0,

EW−a > Ema
0

(
W (1)

1

)−a
1{Z1=1} = Ep1ma

0EW−a.

Therefore Ep1ma
0 < 1.
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Proof of Theorem 5 (Harmonic moments)

Sufficiency
By Lemma A, ∀ε > 0, there exist a constant tε > 0 such that
a.s.

φξ(t) ≤ ε ∀t ≥ tε.

Notice that φξ satisfies equation

φξ(t) = f0(φTξ(
t

m0
)),

where fn(s) =
∑∞

i=0 pi (ξn)si , s ∈ [0,1]. We have a.s.

φξ(t) ≤ (p1 + (1− p1)ε)φTξ(
t

m0
) ∀t ≥ tε.
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Taking expectation, we obtain for t ≥ Atε,

φ(t) ≤ E(p1 + (1− p1)ε)φ(
t

m0
) = pεEφ(Ãεt),

where pε = E(p1 + (1− p1)ε) < 1 and Ãε is a positive
random variable whose distribution is determined by

Eg(Ãε) =
1
pε

E(p1 + (1− p1)ε)g(
1

m0
)

for all bounded and measurable function g.
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Proof of Theorem 5 (Harmonic moments)

Since Ep1ma
0 < 1, We can take a1 > a such that

Ep1ma1
0 < 1. Take ε > 0 small enough such that

pεEÃ−a1
ε = E(p1 + (1− p1)ε)ma1

0 < 1.

Then by Liu (2001),

φ(t) = O(t−a1 ), so that EW−a <∞.

(i) General case
Notice that φξ(t) ≤ β a.s. for t ≥ tβ = 1

K . It suffices to
repeat the proof of sufficiency of (ii) with β in place of ε.
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Proof of Theorem 4 (Moments of Zn)

Theorem 4 (Moments of Zn)

Under certain moment conditions ( e.g. the conditions of Theorem 2),
we have

lim
n→∞

EZ t
n

(Emt
0)n = C(t) ∈ (0,∞), ∀t ∈ R.

Proof
Denote the distribution of ξ0 by τ0. Fix t ∈ R and define a
new distribution τ̃0 as

τ̃0(dx) =
m(x)tτ0(dx)

Emt
0

,

where m(x) = E [Z1|ξ0 = x ] =
∑∞

i=0 ipi(x).

Quansheng LIU Branching Process in Random Environment



Introduction
Main results

Proofs

Proof of Theorem 4 (Moments of Zn)

Consider the new BPRE whose environment distribution is
τ̃ = τ̃⊗N0 instead of τ = τ⊗N0 . The corresp. total probability
and expectation are denoted by P̃ = Pξ ⊗ τ̃ and Ẽ .

Then
EZ t

n(
Emt

0

)n = ẼW t
n.

We distinguish three cases: t ∈ (0,1), t > 1 and t < 0.
For each case, under certain moment conditions,

lim
n→∞

ẼW t
n = ẼW t ∈ (0,∞).
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Proof of Theorem 3 (MDP)

Proof of Theorem 3 (MDP)
Similar to the proof of Theorem 2 (LDP), the proof of
Theorem 3 is a combination of the Gärtner-Ellis theorem
and the following result.

Theorem 6
Assume (H). We have

lim
n→∞

log EZ
an
n t

n

log EP
an
n t

n

= 1 ∀t 6= 0.
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