Decay Property of Markov Branching Processes with Immigration and Disaster

Li Junping Central South University, P R CHINA jpli@mail.csu.edu.cn

> Chen Anyue University of Liverpool, UK achen@liv.ac.uk

> > July 19, 2010

[Background](#page-2-0) [Preliminary](#page-15-0) [Conclusions](#page-18-0) [Applicatios](#page-24-0)

[Hoempage](http://192.9.200.1)

Title

JJ II

1 of 28

Return

Fullscreen

Close

Exit

 \blacktriangleright

Decay Property of Markov Branching Processes with Immigration and Disaster

- $\hat{\mathbf{P}}$ 1. Background
- $\hat{\mathbf{P}}$ 2. Preliminary
- \Leftrightarrow 3. Conclusions
- \diamondsuit 4. Applications

[Background](#page-2-0) [Preliminary](#page-15-0) [Conclusions](#page-18-0) [Applicatios](#page-24-0)

[Hoempage](http://192.9.200.1)

Title

 $\left| \right|$ \rightarrow

 \leftarrow \rightarrow

2 of 28

Return

Fullscreen

Close

1 Background

• Definition of Decay parameter

Let E be a countable set.

 $Q = (q_{ij}; i, j \in \mathbf{E})$ be a stable q-matrix.

 $(p_{ij}(t);i, j \in \mathbf{E}$ is the Feller minimal Q-process.

 C is a communicating class of E and

$$
\lim_{t \to \infty} p_{ij}(t) = 0, \quad i, j \in C.
$$

By Kingman (1936), there exists a number $\lambda_C \geq 0$ such that for all $i, j \in C$, 1 $\log p_{ij}(t) \rightarrow -\lambda_C$ as $t \rightarrow \infty$

t λ_C is called the decay parameter for C.

Background [Preliminary](#page-15-0) [Conclusions](#page-18-0) [Applicatios](#page-24-0)

[Hoempage](http://192.9.200.1)

Title

 $\left| \right|$ \rightarrow

 \blacksquare

3 of 28

Return

Fullscreen

Close

[Hoempage](http://192.9.200.1)

Title

 $\left| \right|$ \rightarrow

 \leftarrow \rightarrow

4 of 28

Return

Fullscreen

Close

Exit

On the other hand, let

$$
\mu_{ij} = \inf \{ \lambda \ge 0 : \int_0^\infty e^{\lambda t} p_{ij}(t) dt = \infty \}
$$

= $\sup \{ \lambda \ge 0 : \int_0^\infty e^{\lambda t} p_{ij}(t) dt < \infty \}.$

It is easily seen that μ_{ij} does not depend on $i, j \in C$, the common value is denoted by μ . Moreover,

$$
\lambda_C=\mu.
$$

(see, for example, Pollett (2006)).

• Definition of λ_C -recurrence

 λ_C -recurrent: \int_0^∞ $e^{\lambda_C t} p_{ii}(t)dt = +\infty, \ \forall i \in C$

 λ_C -transient: \int_0^∞ $e^{\lambda_C t} p_{ii}(t)dt < +\infty$, $\forall i \in C$

Positively λ_C -recurrent: $\lim_{t\to\infty} e^{\lambda_C t} p_{ii}(t) dt > 0$, $\forall i \in C$

[Background](#page-2-0) [Preliminary](#page-15-0) [Conclusions](#page-18-0) [Applicatios](#page-24-0)

[Hoempage](http://192.9.200.1)

Title

 $\left| \cdot \right|$

 \leftarrow \rightarrow

5 of 28

Return

Fullscreen

Close

[Hoempage](http://192.9.200.1) Title $\left| \right|$ \rightarrow \blacktriangleleft *6 of 28 Return Fullscreen Close Exit*

 λ_C -subinvariant measure $(m_k; k \in C)$ for Q:

$$
\sum_{k \in C} m_k q_{kj} \le -\lambda_C m_j, \ m_j > 0 \ \forall j \in C.
$$

It is called λ_C -invariant if the equality holds. λ_C -subinvariant vector $(x_k; k \in C)$ for Q:

$$
\sum_{j \in C} q_{ij} x_j \le -\lambda_C x_i, \ x_i > 0, \ \forall i \in C.
$$

It is called λ_C -invariant if the equality holds. Similarly, one can define λ_C -(sub)invariant measure/vector for $P(t)$.

• Problems:

- $\blacktriangleright \lambda_C = ?;$
- \blacktriangleright The λ_C -recurrency of the process.
- Known progress:
- (i) Finite Markov chains.

(ii) BDP(Chen M.F.). Special BDP: $q_{i i-1} = a, q_{i i+1} = b$, then $\lambda_C = (\sqrt{a} - b)^2$ √ $\overline{b})^2.$

(iii) MBP: $q_{ij} = ib_{j-i+1}$, then $\lambda_C = -B'(q)$ where

$$
B(s) = \sum_{j=0}^{\infty} b_j s^j
$$

and q is the smallest nonnegative root of $B(s) = 0$.

[Background](#page-2-0) [Preliminary](#page-15-0) [Conclusions](#page-18-0) [Applicatios](#page-24-0)

[Hoempage](http://192.9.200.1)

Title

 $\left| \cdot \right|$

 \leftarrow \rightarrow

7 of 28

Return

Fullscreen

Close

 $q_{ij} =$ \int $\overline{\mathcal{L}}$ b_{j-i+1} , if $i \geq 1, j \geq i-1$ 0, otherwise $\lambda_C = \sup\{\lambda \geq 0 : B(s) + \lambda s = 0$ has a root in $(0, +\infty)\}$ where $B(s) = \sum_{k=0}^{\infty} b_k s^k$.

(iv) Stopped $M^X/M/1$ queue (Li and Chen, 2008):

 $\sqrt{ }$

[Hoempage](http://192.9.200.1) Title $\left| \cdot \right|$ \leftarrow \rightarrow *8 of 28 Return Fullscreen Close Exit*

(v) Controlled $M^X/M/1$ queue (Li and Chen, 2009):

 $q_{ij} =$ $\sqrt{ }$ \int $\overline{\mathcal{L}}$ h_j , if $i = 0, j \geq 0$ b_{j-i+1} , if $i \ge 1, j \ge i-1$ 0, otherwise

 λ_C $=$ sup $\{\lambda \geq 0 : B(s) + \lambda s \leq 0, \lambda + H(s) \leq 0$ has a root in $(0, 1)$ where $B(s) = \sum_{k=0}^{\infty} b_k s^k$ and $H(s) = \sum_{k=0}^{\infty} h_k s^k$.

[Applicatios](#page-24-0)

[Hoempage](http://192.9.200.1)

Title

 $\left| \cdot \right|$

 \leftarrow \rightarrow

9 of 28

Return

Fullscreen

Close

• Description of the models in this talk Let $Q = (q_{ij}; i, j \in \mathbb{Z}_+)$ be defined as follows:

$$
q_{ij} = \begin{cases} i b_{j-i+1} + a_{j-i}, & \text{if } i \ge 0, j \ge i \\ b_0, & \text{if } i \ge 1, j = (i-1) \vee 0 \\ 0, & \text{otherwise,} \end{cases}
$$
 (1)

where

$$
\begin{cases} b_j \ge 0 \ (j \ne 1), \ 0 < \sum_{j \ne 1} b_j \le -b_1 < \infty \\ a_j \ge 0 \ (j \ne 0), \ 0 < \sum_{j=1} a_j \le a_0 < \infty. \end{cases}
$$

 Q is called a BI q -matrix.

[Background](#page-2-0) [Preliminary](#page-15-0) [Conclusions](#page-18-0) [Applicatios](#page-24-0)

[Hoempage](http://192.9.200.1)

Title

 $\left| \cdot \right|$

 \leftarrow \rightarrow

(2)

10 of 28

Return

Fullscreen

Close

Definition 1. A Markov branching process with immigration *(MBPI) is a continuous Markov chain on the state space* \mathbb{Z}_+ *whose transition function* $P(t) = (p_{ij}(t); i, j \in \mathbb{Z}_+)$ *satisfies*

 $P'(t) = P(t)Q$ (3)

where Q *is a BI* q-matrix defined in $(1)–(2)$ $(1)–(2)$ $(1)–(2)$ *.*

Define

$$
A(s) = \sum_{k=0}^{\infty} a_k s^k \text{ and } B(s) = \sum_{k=0}^{\infty} b_k s^k.
$$
 (4)

[Background](#page-2-0) [Preliminary](#page-15-0) [Conclusions](#page-18-0) [Applicatios](#page-24-0)

[Hoempage](http://192.9.200.1)

Title

 $\left| \cdot \right|$

 \leftarrow \rightarrow

11 of 28

Return

Fullscreen

Close

Proposition 1. (i) $A(s) < 0$ for all $s \in [-1, 1)$ and $A(s) \uparrow \uparrow A(1) \leq 0$ as $s \uparrow 1$.

(ii) $B(s)$ is convex on [0, 1] and $B(s) = 0$ possesses a smallest nonnegative root ρ . Moreover, $\rho = 1$ iff $B(1) = 0$ and $B'(1) \le 0$.

The recurrence and hitting time properties, Sevast'yanov(1957), Zubkov(1972) and Vatutin(1977).

Li and Chen(2006) considered a more general model in which $q_{0j} = a_j$ ($j \ge 0$) are replaced by arbitrary rates h_j ($j \ge 0$).

It is clear that Q is conservative iff $B(1) = A(1) = 0$.

For Q being conservative case:

Proposition 2*.(Li & Chen 2006) Suppose that* $A(1) = B(1) = 0$ *. Then*

(i) Q is regular iff either $B'(1) < \infty$ or $B'(1) = \infty$ together with \int_{0}^{1} ε $\frac{ds}{-B(s)} = \infty$ for some (equivalently for all) $\varepsilon \in (\rho, 1)$ where ρ ≤ 1 *is the smallest nonnegative root of* $B(s) = 0$ *.*

(ii) The MBPI is recurrent iff $B'(1) \leq 0$ and $J = +\infty$ where

$$
J := \int_0^1 \frac{1}{B(y)} \cdot e^{\int_0^y \frac{A(x)}{B(x)} dx} dy.
$$
 (5)

Moreover, the MBPI is positive recurrent iff $B'(1) \leq 0$ and

$$
\int_0^1 \frac{-A(s)}{B(s)} ds < \infty. \tag{6}
$$

[Background](#page-2-0) [Preliminary](#page-15-0) [Conclusions](#page-18-0) [Applicatios](#page-24-0)

[Hoempage](http://192.9.200.1)

Title

 $\left| \cdot \right|$

 \blacksquare

14 of 28

Return

Fullscreen

Close

If $B(1) < 0$ or $A(1) < 0$, then we can consider another q-matrix $\widetilde{Q} = (\widetilde{q}_{ij}; i, j \in \mathbf{Z}_{+} \cup {\{\Delta\}})$ (where Δ is an added state):

$$
\widetilde{q}_{ij} = \begin{cases}\n0, & \text{if } i = \Delta, j \in \mathbf{Z}_{+} \cup \{\Delta\} \\
-iB(1) - A(1), & \text{if } i \ge 0, j = \Delta \\
ib_{j-i+1} + a_{j-i}, & \text{if } i \ge 0, j \ge i \\
ib_0, & \text{if } i \ge 0, j = i - 1 \\
0, & \text{otherwise}\n\end{cases} (7)
$$

 Q is called a BID q -matrix. The corresponding process is called an MBPID.

This talk is concentrated on the transiency property of Q (or) Q process.

[Background](#page-2-0) [Preliminary](#page-15-0) [Conclusions](#page-18-0) [Applicatios](#page-24-0)

[Hoempage](http://192.9.200.1)

Title

 $\left| \cdot \right|$

15 of 28

Return

Fullscreen

Close

Exit

 \blacktriangleleft

2 Preliminary

In order to find the exact value of decay parameter λ_Z and discuss the λ _Z-recurrence property, we need some preparation.

Lemma 1 *. There always exists only one MBPID which satisfies the Kolmogorov forward equations.*

Lemma 2*. Let* Q *be defined in* [\(1\)](#page-9-0) – [\(2\)](#page-9-0) *and* $P(t) = (p_{ij}(t); i, j \geq 1)$ 0) *be the Feller minimal Q-process. Then for any* $i \geq 0$ *and* $|s| <$ 1*,*

$$
\sum_{j=0}^{\infty} p'_{ij}(t)s^j = B(s) \sum_{j=1}^{\infty} p_{ij}(t)js^{j-1} + A(s) \sum_{j=0}^{\infty} p_{ij}(t)s^j.
$$
 (8)

[Background](#page-2-0) Preliminary [Conclusions](#page-18-0) [Applicatios](#page-24-0)

[Hoempage](http://192.9.200.1)

Title

 $\left| \cdot \right|$

 \leftarrow \rightarrow

16 of 28

Return

Fullscreen

Close

Lemma 3*. Let* $P(t) = (p_{ij}(t); i, j \ge 0)$ *be a transition function. Then the following two statements are equivalent.* (i) P(t) *is the Feller minimal* Q*-function, where* Q *takes the form* $of(1)-(2)$ $of(1)-(2)$ $of(1)-(2)$ $of(1)-(2)$.

(ii) *For any* $i \ge 0$, $t \ge 0$, $s \in [-1, 1]$ *, we have*

$$
F_i(t,s) = F_0(t,s) \cdot \sum_{j=0}^{\infty} p_{ij}^*(t)s^j
$$
 (9)

 $where F_i(t, s) = \sum_{j=0}^{\infty} p_{ij}(t) \cdot s^j \ \ (i \geq 0, s \in [-1, 1])$ and $P^*(t) =$ $p_{ij}^*(t)$; $i, j \geq 0$) is a Markov branching process whose q-matrix Q^* (*may not be conservative*) *is given by*

$$
q_{ij}^* = \begin{cases} i b_{j-i+1}, & \text{if } i \ge 0, j \ge i-1 \\ 0, & \text{otherwise} \end{cases} \tag{10}
$$

where $\{b_j; j \geq 0\}$ *is the same as given in* (2) *.*

[Background](#page-2-0) [Preliminary](#page-15-0) [Conclusions](#page-18-0) [Applicatios](#page-24-0)

[Hoempage](http://192.9.200.1)

Title

 $\left| \cdot \right|$

17 of 28

Return

Fullscreen

Close

Exit

 \blacktriangleleft

Sketch of the proof. $(i) \Rightarrow (ii)$. By Lemma [2,](#page-15-0)

$$
\frac{\partial F_i(t,s)}{\partial t} = B(s) \cdot \frac{\partial F_i(t,s)}{\partial s} + A(s)F_i(t,s)
$$
(11)

where $F_i(t, s) = \sum_{j=0}^{\infty} p_{ij}(t) s^j$. Let Q^* be given by [\(10\)](#page-16-0) and $P^*(t) = (p^*_{ij}(t); i, j \ge 0)$ be the minimal Q^{*}-function and define $\hat{P}(t)$ by $\hat{p}_{ij}(t) = \sum_{k=0}^{j} p_{0k}(t) p_{kj}^*(t)$. Then $\hat{P}'(t) = \hat{P}(t)Q$. By Lemma [1,](#page-15-0) we must have $\hat{P}(t) = P(t)$.

(ii) \Rightarrow (i). Note that for any $i, j \ge 0$ and $0 < s < 1$,

$$
p_{ij}(t)s^{j} \leq F_0(t,s)(\sum_{k=0}^{\infty} p_{1k}^*(t)s^k)^{i}.
$$

which leads $\lim_{i\to\infty} p_{ij}(t) = 0$. Therefore, by Reuter and Riley [\[7\]](#page-26-0) or Anderson [\[1\]](#page-26-0), $P(t)$ is the Feller minimal Q-function.

[Background](#page-2-0) [Preliminary](#page-15-0) [Conclusions](#page-18-0) [Applicatios](#page-24-0)

[Hoempage](http://192.9.200.1)

Title

 $\left| \cdot \right|$

 \blacksquare

18 of 28

Return

Fullscreen

Close

3 Conclusions

Theorem 1. *Let* Q *be defined as in* $(1) - (2)$ $(1) - (2)$ $(1) - (2)$ *and* $P(t)$ $(p_{ij}(t);i,j \geq 0)$ *be the Feller minimal Q-function. Then*

$$
\lambda_Z = -A(\rho)
$$

where ρ *is the smallest nonnegative root of* $B(s) = 0$ *. In particular,* $\lambda_Z = 0$ *if and only if* $\rho = 1$ *and* $A(1) = 0$ *, i.e., if and only if* Q *is conservative and* $B'(1) \leq 0$.

[Background](#page-2-0) [Preliminary](#page-15-0) Conclusions [Applicatios](#page-24-0)

[Hoempage](http://192.9.200.1)

Title

 $\left| \cdot \right|$

 \leftarrow \rightarrow

19 of 28

Return

Fullscreen

Close

Sketch of the proof.

(i) $\lambda_Z \geq -A(\rho)$. $(\rho^k; k \geq 0)$ is a $-A(\rho)$ -invariant vector for Q. (ii) $\lambda_Z \leq -A(\rho)$.

(a) Case 1: ρ < 1. define

$$
\bar{p}_{ij}(t) = e^{-A(\rho)t} p_{ij}(t) \rho^{j-i}, \quad i, j \ge 0, t \ge 0.
$$
 (12)

Then $P(t) = (\bar{p}_{ij}(t); i, j \ge 0)$ is a standard and honest transition function. Its q-matrix $\overline{Q} = (\overline{q}_{ij}; i, j \ge 0)$ is given by

$$
\bar{q}_{ij} = \begin{cases}\ni\bar{b}_{j-i+1} + \bar{a}_{j-i}, & \text{if } i \ge 0, j \ge i \\
i\bar{b}_0, & \text{if } i \ge 1, j = i - 1 \\
0, & \text{otherwise}\n\end{cases}
$$
\n(13)

where $\bar{a}_j = a_j \rho^j - A(\rho) \delta_{0j}$ $(j \ge 0)$ and $\bar{b}_j = b_j \rho^j$ $(j \ge 0)$. Applying Proposition [1](#page-11-0) to Q will imply the Q -process is recurrent, Hence $\lambda_Z = -A(\rho).$

[Background](#page-2-0) [Preliminary](#page-15-0) [Conclusions](#page-18-0) [Applicatios](#page-24-0)

[Hoempage](http://192.9.200.1)

Title

 $\left| \cdot \right|$

20 of 28

Return

Fullscreen

Close

Exit

 \blacktriangleleft

[Hoempage](http://192.9.200.1)

Title

 $\left| \cdot \right|$

 \blacksquare

21 of 28

Return

Fullscreen

Close

Exit

where b $\mathbf{v}_k^{(\varepsilon)} = b_k - \varepsilon \delta_{k1}$. Then $Q^{(\varepsilon)} = (q_{ij}^{(\varepsilon)})$ $i_j^{(\varepsilon)}$; $i, j \geq 0$) is a nonconservative BID q-matrix. Let $P^{(\varepsilon)}(t) = (p$ (ε) $i_j^{(\varepsilon)}(t);i,j \geq 0)$ be the minimal $Q^{(\varepsilon)}$ -function. It can be proved that p (ε) $i_j^{(\varepsilon)}(t) \leq p_{ij}(t)$. However, $P^{(\varepsilon)}(t)$ has the decay parameter λ (ε) $Z^{(\varepsilon)} = -A(\rho_{\varepsilon})$ and hence $\lambda_Z \leq \lambda$ (ε) $Z_Z^{(\varepsilon)} = -A(\rho_{\varepsilon})$. Now, letting $\varepsilon \downarrow 0$ yields that $\lambda_Z \leq -A(1)$.

 $ib_{j-i+1}^{(\varepsilon)}+a_{j-i},\quad\text{ if }\; i\geq0, j\geq i$

0, otherwise

 $ib_0^{(\varepsilon)}$, if $i \ge 0, j = i - 1$

(b) Case 2: $\rho = 1$. For any $\varepsilon > 0$, define

 $\sqrt{ }$

 \int

 $\overline{\mathcal{L}}$

 \overline{q}

 (ε)

 $\frac{1}{ij}^{(\varepsilon)}=$

Theorem 2. *Let* Q *be defined as in* $(1) - (2)$ $(1) - (2)$ $(1) - (2)$ *and* $P(t) =$ $(p_{ij}(t);i, j \geq 0)$ *be the Feller minimal Q-function and* λ_Z *be the decay parameter of* $P(t)$ *on* \mathbf{Z}_{+} *.* (i) If $B'(1) > 0$ then $P(t)$ is λ_Z -positive. (ii) If $B'(1) \leq 0$ then $P(t)$ is λ_Z -recurrent if and only if

$$
\widetilde{J} = \int_0^1 \frac{1}{B(s)} e^{\int_0^s \frac{A(y) - A(1)}{B(y)} dy} ds = +\infty.
$$
 (14)

Moreover, $P(t)$ *is* λ_Z -positive if and only if

$$
\int_0^1 \frac{A(1) - A(y)}{B(y)} dy < \infty. \tag{15}
$$

[Background](#page-2-0) [Preliminary](#page-15-0) [Conclusions](#page-18-0) [Applicatios](#page-24-0)

[Hoempage](http://192.9.200.1)

Title

 $\left| \cdot \right|$

22 of 28

Return

Fullscreen

Close

Exit

 \blacktriangleleft

[Hoempage](http://192.9.200.1)

Title

 $\left| \cdot \right|$

23 of 28

Return

Fullscreen

Close

Exit

 \blacktriangleleft

Sketch of the proof. Note that if $\rho < 1$ then $(\bar{p}_{ij}(t); i, j \ge 0)$ is recurrent. Also note $\bar{B}(1) = \bar{A}(1) = 0$ together with $\bar{B}'(1) < 0$ and $\overline{A}'(1) < \infty$, applying Proposition [2](#page-13-0) to \overline{Q} will yield (i). Secondly, suppose that $B'(1) \leq 0$ $B'(1) \leq 0$ $B'(1) \leq 0$ and thus by Theorem 1 we have $\lambda_Z = -A(1)$. Define

 $\bar{p}_{ij}(t) = e^{\lambda_Z t} p_{ij}(t), \quad i, j \ge 0, t \ge 0.$

Apply Proposition [2](#page-13-0) and Theorem [1](#page-18-0) to $(\bar{p}_{ij}(t))$, we get (ii).

Theorem 3. (i) there exists a λ_Z -invariant measure $(m_i; i \geq 0)$ *for* Q *on* \mathbb{Z}_+ *, which is unique up to constant multiples. Moreover,* $M(s) = \sum_{i=0}^{\infty} m_i s^i$ is given by

$$
M(s) = m_0 e^{\int_0^s \frac{A(\rho) - A(y)}{B(y)} dy}, \quad |s| < \rho \tag{16}
$$

where $m_0 > 0$ *is a constant.*

(ii) $(m_i; i \geq 0)$ *is also a* λ_Z -invariant for $P(t)$. (iii) $M(1) = \sum_{i=0}^{\infty} m_i < \infty$ if and only if $B'(1) \leq 0$ and \int_0^1 0 $A(1) - A(y)$ $B(y)$ $dy < \infty$.

(iv) $(\rho^k; k \ge 0)$ *is a* λ_Z -invariant vector for $P(t)$ on \mathbb{Z}_+ . Moreover, *if* $B'(1) > 0$ *or* $B'(1) \le 0$ *with* [\(14\)](#page-21-0) *holds, then* $(\rho^k; k \ge 0)$ *is the unique* (*up to constant multiples*) λ_Z -*invariant vector for* $P(t)$ *on* \mathbf{Z}_{+} .

[Background](#page-2-0) [Preliminary](#page-15-0) [Conclusions](#page-18-0) [Applicatios](#page-24-0)

[Hoempage](http://192.9.200.1)

Title

 $\left| \cdot \right|$

 \leftarrow \rightarrow

24 of 28

Return

Fullscreen

Close

4 Applications

• Q being conservative.

Theorem 4 *. The minimal* Q*-function is the unique MBPID. Moreover,*

(i) if $B'(1) \leq 0$, then $\lambda_Z = 0$ and the MBPID is 0-recurrent iff $B'(1) \leq 0$ and $J = +\infty$ where *J* is given in [\(5\)](#page-13-0). (ii) *If* $B'(1) > 0$ *then* $\lambda_Z = -A(\rho) > 0$ *. Also, the MBPID is positively* λ_Z -recurrent and there exists a unique (up to constant multi $ples) \lambda_Z$ -invariant measure $(m_i; i \geq 0)$ whose generating function $M(s) = \sum_{i=0}^{\infty} m_i s^i$ is given by

$$
M(s)=m_0\exp\{\int_0^s\frac{A(\rho)-A(y)}{B(y)}dy\},\quad |s|<\rho.
$$

Furthermore, this λ _Z-invariant measure is not summable and thus *there does not exist any quasi-stationary distribution.*

[Background](#page-2-0) [Preliminary](#page-15-0) [Conclusions](#page-18-0) Applicatios

[Hoempage](http://192.9.200.1)

Title

 $\left| \cdot \right|$

25 of 28

Return

Fullscreen

Close

Exit

 \blacktriangleleft

• Q being not conservative.

Theorem 5. (i) The Feller minimal Q-function is the unique \ddot{Q} *function satisfying Kolmogorov forward equation.* (ii) \tilde{Q} *is not regular iff* $B(1) = 0$ (*thus* $A(1) < 0$ *),* $B'(1) = +\infty$ and \int_{0}^{1} ε $\frac{ds}{-B(s)} < +\infty$ for some (equivalently for all) $\varepsilon \in (\rho,1)$ where $\rho < 1$.

(iii) *If* \tilde{Q} *is regular, then* $a_{i\Delta} = 1$ ($i \ge 0$). If \tilde{Q} *is not regular, then*

$$
a_{i\Delta} = A(1) \cdot \int_{\rho}^{1} \frac{y^{i}}{B(y)} e^{-\int_{y}^{1} \frac{A(x)}{B(x)} dx} dy \text{ and } a_{i\infty} = 1 - a_{i\Delta} \quad (17)
$$

where aⁱ[∆] *and* ai[∞] *are the extinction and explosion probability of the Feller minimal Q-process, respectively.*

[Background](#page-2-0) [Preliminary](#page-15-0) [Conclusions](#page-18-0) [Applicatios](#page-24-0)

References

- [1] ANDERSON,W. (1991). *Continuous-Time Markov Chains: An Applications-Oriented Approach*. Springer-Verlag, New York.
- [2] ATHREYA, K. B. AND JAGERS, P. (1996). *Classical and Modern Branching Processes*. Springer, Berlin.
- [3] CHEN, A.Y., LI, J.P. AND RAMESH, N.I. (2005). Uniqueness and Extinction of Weighted Markov Branching Processes. *Methodology and Computing in Applied Probability.* 7, 489-516.
- [4] KINGMAN,J.F.C. (1963) The exponential decay of Markov transition probability. *Proc. London Math. Soc.*, 13, 337-358.
- [5] LI, J.P. AND CHEN, A.Y. (2006) Markov Branching Processes with Immigration and Resurrection. *Markov Processes and Related Fields* , 12, 139-168.
- [6] POLLETT, P.K. (1986) On the equivalence of mu-invariant measures for the minimal process and its q -matrix. *Stochastic Proc. Appl.* , 22, 203-221.
- [7] REUTER, G.E.H. AND RILEY, P.W. (1972) The Feller property for Markov semigroups on a countable state space. *J. London Math. Soc.* , (2)5, 267-275.
- [8] SEVAST'YANOV, B.A. (1957) Limit theorems for branching stochastic processes of special form. *Theory Prob. Applications.* , 2(3), 321-331.
- [9] VATUTIN, V.A. (1977) A conditional limit theorem for a critical branching process with immigration. *TMathematical Notes.*, 21, 405-411.
- [10] YANG,X.Q. (1990). *The Construction Theory of Denumerable Markov Processes*. Wiley, New York.
- [11] ZUBKOV, A.M. (1972) The life-periods of a branching process with immigration. *Theory Prob. Applications*, 17(1), 174-183.

[Background](#page-2-0) [Preliminary](#page-15-0) [Conclusions](#page-18-0) [Applicatios](#page-24-0)

[Hoempage](http://192.9.200.1)

Title

 $\left| \cdot \right|$

 \leftarrow \rightarrow

27 of 28

Return

Fullscreen

Close

[Hoempage](http://192.9.200.1)

Title

 $\left| \cdot \right|$ iii

 \blacksquare

28 of 28

Return

Fullscreen

Close

Exit

THANK YOU!