Some central limit theorems for the Brownian local time in $L^p(R)$

Yaozhong Hu University of Kansas

7th Workshop on Markov Processes and Related Topics
Beijing Normal University

July 22, 2010

Jointly with

David Nualart

Based on the following papers

Hu Y., Nualart, D.

Stochastic integral representation of the L^2 modulus of Brownian local time and a central limit theorem.

Electron. Commun. Probab. 14 (2009), 529 - 539.

Hu Y., Nualart, D.

Central limit theorem for the modulus of continuity of the Brownian local time in $L^3({\cal R})$

Submitted.

Hu Y., Nualart, D.

Central limit theorem for the p-integrated moment of Brownian local time increments

In progress.

Outline of The Talk

- 1. Background
- 2. Main results
- 3. Two tools
- 4. General case

1. Background

Let $\{B_t, t \geq 0\}$ be a standard one-dimensional Brownian motion.

 $\{L_t^x, t \ge 0, x \in R\}$ a continuous version of its local time.

$$\int_0^t f(B_s)ds = \int_{\mathbf{R}} f(x)L_t^x dx.$$

$$L_t^x = \int_0^t \delta(B_s - x) ds.$$

$$\delta(x) = \infty \quad \text{if} \quad x = 0$$

$$= 0 \quad \text{if} \quad x \neq 0$$

 $\int_{\mathbf{R}} \delta(x) dx = 1.$

$$= 0 \quad \text{if} \quad x$$

$$= 0 \quad \text{if} \quad x$$

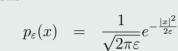
$$\int_{\mathbf{R}} f(y)\delta(x-y)dy = f(x).$$

is the Dirac delta "function" (generalized function, distribution in the sense of Laurent Schwartz)

Approximate the Dirac delta function by smooth

functions

as $\varepsilon \to 0$.



 $= \frac{1}{2\pi} \int_{\mathbf{R}} e^{ix\xi - \frac{\varepsilon}{2}\xi^2} d\xi$

 $\delta(x) = \frac{1}{2\pi} \int_{\mathbf{R}} e^{ix\xi} d\xi .$

 $\int_0^t \int_0^t \delta(B_u - B_v) du dv.$

Self-intersection local time

Albeverio, S., Hu, Y. and Zhou, X.Y.

A remark on non smoothness of self-intersection local time of planar Brownian motion.

Statistics and Probability Letter, 32 (1997), 57 - 65.

 $\{L_t^x, x \in \mathbf{R}\}$ is a semimartingale

Perkins Edwin

Local time is a semimartingale.

Z. Wahrsch. Verw. Gebiete 60 (1982), no. 1, 79 - 117.

Marcus M. B. and Rosen J.

 \mathcal{L}_p moduli of continuity of Gaussian processes and local times of symmetric Lévy processes,

Annals of Probab., 36, (2008), 594 - 622.

$$\lim_{h \downarrow 0} \int_{-\infty}^{\infty} \frac{(L_t^{x+h} - L_t^x)^2}{h} dx = 4t, \quad \text{a.s.}$$

More generally

$$= 2^{p} \mathbf{E} (|\eta|^{p}) \int_{a}^{b} |L_{t}^{x}|^{p/2} dx, \quad \text{a.s.}$$

 $\lim_{h \downarrow 0} \int_{0}^{b} \left| \frac{L_{t}^{x+h} - L_{t}^{x}}{\sqrt{h}} \right|^{x} dx$

almost surely and also in L^m , $m \ge 1$, $\eta \sim N(0, 1)$.

almost surely and also in
$$L^m$$
, $m \ge 1$, $\eta \sim N(0, 1)$

2. Main results

$$\lim_{h\downarrow 0} \int_{-\infty}^{\infty} \frac{(L_t^{x+h} - L_t^x)^2}{h} dx = 4t \,, \quad \text{a.s.}$$

$$h^{-\frac{1}{2}} \left(\int_{R} \frac{(L_t^{x+h} - L_t^x)^2}{h} dx - 4t \right)$$

$$\xrightarrow{\mathcal{L}} \frac{8}{\sqrt{3}} \left(\int_{R} (L_t^x)^2 dx \right)^{\frac{1}{2}} \eta,$$

where η is a N(0,1) random variable independent of B and \mathcal{L} denotes the convergence in law.

Chen, X.; Li, W. V.; Marcus, M. B.; Rosen, J.

A CLT for the L^2 modulus of continuity of Brownian local time.

Ann. Probab. 38 (2010), no. 1, 396–438.

Use moment methods

Rosen J.

Derivatives of self-intersection local times.

Preprint

Simpler proof

3. Two tools

Hu, Y. and Nualart, D.

Stochastic integral representation of the L^2 modulus of Brownian local time and a central limit theorem.

Electron. Commun. Probab. 14 (2009), 529-539.

The classical Itô representation theorem asserts that any square integrable random variable can be expressed as

$$F = E[F] + \int_0^\infty u_t dB_t,$$

where $u = \{u_t, t \ge 0\}$ is a unique adapted process such that $E\left(\int_0^\infty u_t^2 dt\right) < \infty$.

If F belongs to $D^{1,2}$, then

$$u_t = E[D_t F | \mathcal{F}_t].$$

This means

$$F = E[F] + \int_0^\infty E[D_t F | \mathcal{F}_t] dB_t.$$

Clark-Ocone formula

One can express the L^2 modulus of local time in terms of the self-intersection local time:

terms of the self-intersection local time:
$$G_t(h) = \int_R (L_t(x+h) - L_t(x))^2 dx$$

 $= -2 \int_0^t \int_0^v \left(\delta(B_v - B_u + h) \right)$

 $+\delta(B_v-B_v-h)$

 $-2\delta(B_v-B_u)$) dudv.

 $G_t(h) = E(G_t(h)) + \int_0^t u_{t,h}(r)dB_r$,

where

$$u_{t,h}(r) = 4 \int_0^r \int_0^h (p_{t-r}(B_r - B_u - \eta))^{-r} dt$$

 $-p_{t-r}(B_r - B_u + \eta)) d\eta du$

 $+4\int_{0}^{r} \left(I_{[0,h]}(B_{u}-B_{r})\right)$

 $-I_{[0,h]}(B_r-B_u)du.$

Make the following decomposition

$$u_{t,h}(r) = \hat{u}_{t,h}(r) + 4\Psi_h(r),$$

where

$$\hat{u}_{t,h}(r) = -4 \int_0^r \int_0^h (p_{t-r}(B_r - B_u + \eta)) d\eta du$$

$$-p_{t-r}(B_r - B_u - \eta) d\eta du$$

$$= -4 \int_0^r \int_0^h \int_{-\eta}^{\eta} p'_{t-r}(B_r - B_u + \xi) d\xi d\eta du$$

and

As a consequence

 $\Psi_h(r) = -\int_0^r \left(I_{[0,h]}(B_r - B_u) \right)$

 $-I_{[0,h]}(B_u-B_r)du.$

 $G_t(h) - E(G_t(h)) = \int_0^t \hat{u}_{t,h}(r) dB_r + 4 \int_0^t \Psi_h(r) dB_r.$

The stochastic integral

$$h^{-3/2} \int_0^t \hat{u}_{t,h}(r) dB_r$$

converges in $L^2(\Omega)$ to zero as h tends to zero.

It remains to show the following convergence in law:

$$h^{-\frac{3}{2}} \int_0^t \Psi_h(r) dB_r \stackrel{\mathcal{L}}{\to} 2\eta \sqrt{\frac{\alpha_t}{3}}$$
,

$$\Psi_h(r) = -\int_0^r \left(I_{[0,h]}(B_r - B_u) - I_{[0,h]}(B_u - B_r) \right) du.$$

where η is a standard normal random variable

independent of B, α_t is given by

$$\alpha_t = \int_R (L_t(x))^2 dx$$
$$= \int_0^t \int_0^t \delta(B_s - B_r) dr ds.$$

Notice that

$$M_t^h = h^{-\frac{3}{2}} \int_1^t \Psi_h(r) dB_r$$

is a martingale with quadratic variation

$$\left\langle M^h \right\rangle_t = h^{-3} \int_0^t \Psi_h^2(r) dr.$$

From the asymptotic version of Ray-Knight's theorem it suffices to show the following convergence in probability.

$$h^{-3} \int_0^t \Psi_h^2(r) dr \to \frac{4}{3} \alpha_t,$$

and

$$\langle M^h, B \rangle_t = h^{-3/2} \int_0^t \Psi_h(r) dr \to 0,$$

as h tends to zero.

Use backward Tanaka formula

Rosen, J.

A CLT for the third integrated moment of Brownian local time.

Preprint.

A central limit theorem for the modulus of continuity in $L^3(\mathbb{R})$ of the local time.

For each fixed t > 0

$$\frac{1}{h^2} \int_{\mathbb{R}} (L_t^{x+h} - L_t^x)^3 dx \xrightarrow{\mathcal{L}} 8\sqrt{3} \left(\int_{\mathbb{R}} (L_t^x)^3 dx \right)^{\frac{1}{2}} \eta$$

as h tends to zero, where η is a normal random variable with mean zero and variance one that is independent of B.

4. General case

For each fixed t > 0

$$\frac{1}{h^{\frac{p+1}{2}}} \left(\int_{R} (L_t^{x+h} - L_t^x)^p dx - \int_{R} E(L_t^{x+h} - L_t^x)^p dx \right)$$

$$\stackrel{\mathcal{L}}{\longrightarrow} \left(\sum_{i=1}^p C_i \int_{R} (L_t^x)^i dx \right)^{\frac{1}{2}} \eta$$

as h tends to zero, where η is a normal random

variable with mean zero and variance one that is independent of B, and the constants C_i depend on p, t. The index i_0 is 2 if p is even and 3 if p is odd.

Let p be a positive integer. We have the following

Let
$$p$$
 be a positive integer. We have the following
$$G^{h} = \int_{\mathbb{R}} (L_{t}^{x+h} - L_{t}^{x})^{p} dx$$

 $= E [G^h] + \sum_{i=1}^{p-1} \int_0^t \Psi_r^{(k)} dB_r,$

where for
$$k = 1, \dots, p-1$$

$$\mathbf{J}_{\mathbf{L}}^{(k)} = \mathbf{L}^{-\frac{p+1}{2}} p! \int (\mathbf{L}^{x+1} \mathbf{L}^{x+1} \mathbf{L}^$$

 $\Psi_r^{(k)} = h^{-\frac{p+1}{2}} \frac{p!}{k!} \int_{\mathcal{D}} (L_r^{x+h} - L_r^x)^k$

 $\times \left(\int_{-\infty}^{t} \left[p'_{s-r}(B_r - x - h) \right] \right)$

 $+(-1)^{p-k}p'_{s-r}(B_r-x) F_{b-k}(s)ds dx,$

where for $k = 1, \dots, p-1$

where, by convention, $F_{h,p-1}(s) = 1$.

where, by convention,
$$F_{h,p-1}(s) = 1$$
.
$$F_{h,k}(s) = \int_{s < s_{k+2} < \dots < s_p < t} \prod_{j=k+1}^{p-1} \frac{1}{\sqrt{2\pi(s_{j+1} - s_j)}}$$

 $\left(1+(-1)^{p-j}e^{-\frac{h^2}{2(s_{j+1}-s_j)}}\right)ds_{k+2}\cdots ds_p$

 $= \int_{0 < \sigma_{p-k-2} + \dots + \sigma_1 < t-s} \prod_{j=1}^{p-k-1} \frac{1}{\sqrt{2\pi\sigma_j}}$

 $\left(1+(-1)^{j}e^{-\frac{h^{2}}{2\sigma_{j}}}\right)d\sigma_{1}\cdots d\sigma_{p-k-2}$

$$F_{h,k}(s) = h^{\nu} \int_{0 < \dots + \frac{h^2}{u_3} + u_2 + \frac{h^2}{u_1} < t - s} \prod_{j=1, j \text{ odd}}^{p-k-1} \frac{1}{\sqrt{2\pi}} u_j^{-\frac{3}{2}} \left(1 - e^{-\frac{u_j}{2}} \right) \times \prod_{j=1, j \text{ even}}^{p-k-1} \frac{1}{\sqrt{2\pi u_j}} \left(1 + e^{-\frac{h^2}{2u_j}} \right) du_{k+2} \cdots du_p.$$

