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1. Background

Let {B;,t > 0} be a standard one-dimensional
Brownian motion.

{L#,t > 0, € R} a continuous version of its
local time.

/ ' F(B.)ds = | t@rido.



and



/R f@)d(z — y)dy = f(z).

is the Dirac delta “function” (generalized func-
tion, distribution in the sense of Laurent Schwartz)

Approximate the Dirac delta function by smooth



functions

pe(z)

ase — 0.




1 .
i(z) = o /Re”fdf.

Self-intersection local time

t t
/ / d(By — By)dudv .
o Jo
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lim dr =4t, as.
hio J_ o h
More generally
b x+h z |P
L™ — L
lim S A
hio J, Vh

b
— E (Inl?) / LoPdz,  as.

almost surely and alsoin L™ ,m > 1,7 ~ N (0, 1).



2. Main results

[ (- )
lim e

dr =4t, as.
hlo J_ o h



L L:L‘+h _ = 2
o ([ 0, )
R h

- (/R(Lffdw)%n,

where 7 is a N (0, 1) random variable indepen-
dent of B and £ denotes the convergence in law.
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3. Two tools
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The classical Itd representation theorem asserts
that any square integrable random variable can be
expressed as

F:E[F]‘I‘/ UtdBt,
0

where u = {u;,t > 0} is a unique adapted pro-
cess such that E ([;~ ufdt) < oo.



If F belongs to D2, then
u = E[D,F|F)].

This means

F:Em+/ E[D,F|F|dB,.
0

Clark-Ocone formula



One can express the L? modulus of local time in
terms of the self-intersection local time:

Gi(h) = / (Lu(w + b) — Lu(z))2dz

:_2// 5(By — Bu+h)

+0(By, — B, — h)
—26(B, — By)) dudv .



Using Clark-Ocone formula, we have

Gi(h) = E(Gy(h)) + /0 e n(r)dB, |



where
up(r) = // Pi—r(Br — By, — 1)
—Pt— r B B, —i—n))dndu

+4/ (To.m(Bu = Br)
0
_I[O,h](Br — Bu)) du.



Make the following decomposition

Uuh(T’) = ﬁch(T) F 4\11]1(7“),

where

'lAJ/th :—4// ptrB B+77)

—pi—r(Br — By )) dndu

_ _4///]9”3 By + §)dédndu



and

W) = - / (Lo (B, - B.)
0
_[[O,h](Bu — BT)) du

Asa consequence

Go(h)—E(Gu(h)) = /O e (r)dBy-t4 /0 ", (r)dB,.



The stochastic integral

t
h3/2 / Uiy, (r)d B,
0

converges in L%(Q) to zero as h tends to zero.



It remains to show the following convergence in

law:
ot
hS/ U, (r)dB, 5 277,/%,
0

V() = — / (Tow (B, — B.)
0
—Ijo.4(Bu — By)) du.

where 7) is a standard normal random variable



independent of B, o is given by

o = [ (L)
:// (B, — B,)drds.

Notice that

t
MP=h"2 / U, (r)dB,
0



is a martingale with quadratic variation
t
(M"Y, = 3 / V2 (1) dr.
0

From the asymptotic version of Ray-Knight’s the-
orem it suffices to show the following conver-
gence in probability.

t
4
h_g/ W2 (r)dr — 3%
0



and
t
(M",B), =h~ 3/2/ Uy, (r)dr — 0,
0
as h tends to zero.

Use backward Tanaka formula
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A CLT for the third integrated moment of Brow-
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A central limit theorem for the modulus of conti-
nuity in L3(R) of the local time.



For each fixed ¢t > 0

1
1 3
= (L”h LE)3dw £, 8v3 (/( )3dx) n
R
as h tends to zero, where 7 is a normal random
variable with mean zero and variance one that is

independent of B.



4. General case



For each fixed ¢t > 0

1
= ([ - orae
— /R BE(LF — Lf)de)

-$<Zaémwﬂn

=10

as h tends to zero, where 7 is a normal random



variable with mean zero and variance one that is
independent of B, and the constants C; depend
on p,t. The index g is 2 if p is even and 3 if p is
odd.



Let p be a positive integer. We have the following

G" = / (LEH — LEYPdx
R

p=1 .t
= E[G"+) / vMdB,
0

k=1



where fork=1,... ,p—1

ok = h—pz“fki!' e — i)
“JR

X (/t [Pser(Br — 2 —h)

+(=1)"*p._ (B, — a;)} Fth(s)ds) dx,



where, by convention, F}, ,_;(s) = 1.

p—1 1

Fh,k(s) = /
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R
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=1l
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/ 1 ——
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0<“'+1T3+u2+ﬂ<t_8
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