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1. Model of constrained MDPs

{S, (A(x) ⊂ A, x ∈ S), q(·|x, a), r(x, a), (cn(x, a), dn)},

• S : the state space, a Borel space;

• A(x) ⊆ A : the admissible action sets;

• q(·|x, a) : the transition rates, a ∈ A(x), x ∈ S;

• r(x, a) : the reward, a ∈ A(x), x ∈ S.

• cn(x, a) : the costs, a ∈ A(x), x ∈ S.

• dn : constrained constants, 1 ≤ n ≤ N
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2. The optimality problem

Notation:

• Ω0 := (S ×R+)∞, with R+ := (0,∞), x∞ 6∈ S,

• Ω := Ω0 ∪ {(x0, θ1, x1, . . . , θk−1, xk−1,∞, x∞, . . .)| θl >

0, xl ∈ S for each 0 ≤ l ≤ k − 1 and k ≥ 1}.

• Xk(e) := xk, Tk(e) := θ0 + . . . + θk, k = 0, . . . (θ0 := 0)

• ξt(e) :=
∑

k≥0 xkI{Tk≤t<Tk+1}(e)+x∞I{T∞≤t}(e), t ∈ [0,∞),

where e := (x0, θ1, x1, . . . , θk, xk, . . .) ∈ Ω.
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• Introduce the integer-valued random measure µ∗

µ∗(e, dt, dx) =
∑

k≥0

I{Tk<∞}(e)δ(Tk(e),Xk(e))(dt, dx), (1)

where δy(·) is the Dirac measure at point y.

• Define the predictable σ-algebra:

P := σ(B × {0}, C × (s,∞)| B ∈ F0, C ∈ Fs−, s > 0),

where Ft := σ{µ∗([0, s]×D), s ∈ [0, t], D ∈ B(S)}.
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Definition 1. (Policies)

• Randomized history-dependent policy π: Transition proba-

bility π from (Ω × R0
+,P) onto (A∞,B(A∞)) such that

π(A(ξt−(e))|e, t) ≡ 1.

• Randomized stationary policy φ: Transition probability φ

from (S,B(S)) onto (A,B(A)) such that φ(A(x)|x) ≡ 1.

• Stationary policy f : A measurable function f from (S,B(S))

onto (A,B(A)) such that φ({f (x)}|x) ≡ 1.

• Π, Πs, F : Corresponding classes of three kinds of policies.
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Definition 2. (Policy measure)

Fix any each π ∈ Π and initial distribution on S:

• The existence of a unique probability measure P π
γ on (Ω,F),

such that P π
γ {x0 ∈ dx} = γ(dx), is ensured.

• Policy measure: P π
γ depending on π.

• Eπ
γ : Expectation operator with respect to P π

γ

• Eπ
x and P π

x denote Eπ
γ and P π

γ respectively, when γ is the

Dirac measure at point x.
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Basic assumptions:

Regularity of the process: {ξt, t ≥ 0}: P π
x (ξt ∈ S) ≡ 1.

Assumption A. There exist a continuous function w ≥ 1

on S and constants ρ, b ≥ 0 and a sequence of nondecreasing

subsets {Sk} of S, such that

(1)
∫

S w(y)q(dy|x, a) ≤ ρw(x) + b for all (x, a) ∈ K;

(2) infx 6∈Sk
w(x) ↑ +∞ as k →∞, with inf ∅ := ∞;

(3) Sk ↑ S, and supa∈A(x),x∈Sk
|q({x}|x, a)| < ∞ for k ≥ 1

Assumption A ensures the regularity of {ξt, t ≥ 0}!
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Optimality criteria:

Let c0(x, a) := r(x, a);

The discounted criteria: for 0 ≤ n ≤ N ,

Vn(x, π) :=

∫ ∞

0

e−αt

∫

A

Eπ
x [cn(ξt−, a)π(da|e, t)] dt,

Vn(π) :=

∫

S

Vn(x, π)γ(dx)

Denote by

U := {π| Vn(π) ≤ dn, n = 1, . . . , N}.
the set of all constrained policies.
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Definition 3.

• A policy π∗ in U is called constrained-optimal if

V0(π
∗) ≥ V0(π) for all π ∈ U .

• A policy π∗ in Π is said to be optimal policy if

V0(π
∗) ≥ V0(π) for all π ∈ Π

Main goal:

(a) Find conditions ensuring the existence of (constrained) op-

timal policies;

(b) Give algorithms for solving a (constrained) optimal policies.
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3. Conditions for regularity and finiteness

Theorem 1. Under Assumption A, we have

(a) P π
x (T∞ = ∞) = 1, and P π

x (ξt ∈ S) = 1.

(b) Eπ
x [w(ξt)] ≤ eρtw(x) + b

ρ(e
ρt − 1)

(c) The analog of the forward Kolmogorov equation holds:

P π
x (ξt(ω) ∈ D) = ID(x) + Eπ

x [

∫ t

0

∫

A

π(da|e, s)q(D|ξs−(e), a)ds]

Remark 1: Theorem 1 generalizes the corresponding re-

sults for Markov chains.
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Assumption B. (Finiteness conditions).

(1) There exists a constant M > 0 such that, |cn(x, a)| ≤
Mw(x) for every (x, a) ∈ K and n = 0, 1, . . . , N .

(2) The discount factor α verifies that α > ρ, with ρ as in

Assumption A.

(3)
∫

S w(x)γ(dx) < ∞.

(4) q∗(x) ≤ Lw(x) for all x ∈ S, with some constant L > 0.
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Theorem 2. Under Assumptions A and B, we have

(a) Eπ
x [|cn(ξt, a)|π(da|e, t)] ≤ MEπ

x [w(ξt)] for all t ≥ 0

(b) |Vn(x, π)| ≤ M [αw(x) + b]/[α(α− ρ)],

(c) |Vn(π)| ≤ MM ∗
1 ,M ∗

1 := [α
∫

S w(x)γ(dx)+ b]/[α(α−ρ)].
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4. Existence of optimal policies

Definition 3. Fix policies π, π1, π2 ∈ Π.

(i) Occupation measure of π: ηπ, which is defined by

ηπ(D × Γ) := α

∫ ∞

0

e−αtEπ
γ

[
I{ξt∈D}(e)π(Γ|e, t)] dt,

for D ∈ B(S) and Γ ∈ B(A).

(ii) π1 and π2 are called equivalent if ηπ1
= ηπ2

.

(iii) For any p.m. η on K := {(x, a)|x ∈ S, a ∈ A(x)}, let

η(dx, da) =: η̂(dx)φη(da|x), where φη ∈ Πs. (2)
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The original optimality problem is equivalent to

maximize
1

α

∫

K

c0(x, a)η(dx, da) (3)

over η ∈ {ηπ :

∫

K

cn(x, a)ηπ(dx, da) ≤ αdn, 1 ≤ n ≤ N}.

To solve problem (3), we need

• to seek a certain compactness structure on the set of all

occupation measures: {ηπ : π ∈ Π}.

• to characterize an occupation measure.
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Theorem 3. Under Assumption A, we ave

(a) ηπ (for each fixed π ∈ Π) satisfies the following equation

αη̂π(D) = αγ(D) +

∫

S×A

q(D|x, a)ηπ(dx, da)

(b) Conversely, if a p.m. η on K satisfies

αη̂(D) = αγ(D) +

∫

S×A

q(D|x, a)η(dx, da)

and
∫

S |q({x}|x, φη)|η̂(dx) < ∞, then ηφη
= η, where φη

is as in (2).

(c) If, in addition, Assumptions B(2)-B(4) are satisfied, then

φηφ
= φ for all φ ∈ Πs.
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To further analyze properties of occupation measures, let

Pw(K) be the set of all p.m. on K.

Mo := {ηπ|
∫

S

w(x)η̂π(dx) < ∞, π ∈ Π} ⊆ Pw(K),

Mc
o := {η ∈Mo|

∫

S×A

cn(x, a)η(dx, da) ≤ αdn, 1 ≤ n ≤ N}.
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Definition 4. w̄-weak topology on Pw̄(S×A) is defined by

the w̄-weak convergence as follows: A sequence {ηk, k ≥ 1} ⊆
Pw̄(S × A) is called to w̄-converge weakly to η ∈ Pw̄(S × A)

(and written as ηk
w̄−→ η) if

lim
k→∞

∫

S×A

u(x, a)ηk(dx, da) =

∫

S×A

u(x, a)η(dx, da),

for each continuous function u(x, a) on S×A such that |u(x, a)| ≤
Luw(x) for all (x, a) ∈ K, with some nonnegative constant Lu

depending on u.

ηk
w̄−→ η implies the standard weak convergence of p.m.
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Theorem 4. Under Assumptions A, B(2)-B(4), we have

(a) Mo and Mc
o are convex.

(b) If, in addition,
∫

S g(y)q(dy|x, a) is continuous on K for

each bounded continuous functions g, then Mo is closed

(with respect to the w-weak topology).
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For the solvability of (3), by Theorem 4 we introduce the

following condition.

Assumption C. Let w be as in Assumption A.

(1) The functions cn(x, a) and
∫

S g(y)q(dy|x, a) are continu-

ous on K for bounded continuous functions g;

(2) There exist a measurable function w′ ≥ 1 on S and an

increasing sequence of compact sets Km ↑ K, such that

limm→∞ inf(x,a)6∈Km

w(x)
w′(x) = ∞, where inf ∅ := ∞;

Remark 2. Assumption C is new.
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Theorem 5. Under Assumptions A, B, and C, we have

(a) Mo and Mc
o are metrizable and compact in the w-weak

topology;

(b) there exists a constrained optimal policy.

Remark 3.

The conditions for Theorem 5(b) are weaker than those in

the existing literature because some assumptions such as the

nonnegativity of costs and the absolute integrability condition

in the literature are not required here.
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5. Calculation of optimal policies

First, by (3) and Theorem 3, it the original problem is equiv-

alent to the following linear program (LP):

LP : sup
η

∫

S×A

1

α
c0(x, a)η(dx, da) (4)

subject to



∫
S×A cn(x, a)η(dx, da) ≤ αdn, n = 1, . . . , N,

αη̂(D) = αγ(D) +
∫

S×A q(D|x, a)η(dx, da)
for all D ∈ B(S) with supx∈D q∗(x) < ∞,∫

S w(x)η̂(dx) < ∞, η ∈ P(K).

Thus, we obtain the following result on the solvability of

constrained optimal policies.
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Theorem 6. Under Assumptions A, B and C(3), the fol-

lowing assertions hold.

(a) If there exists a feasible solution to LP (4), then the set

U of constrained policies is nonempty. Conversely, if U is

nonempty, then there exists a feasible solution to LP (4).

(b) If there exists an optimal solution η∗ to LP (4), then the

randomized stationary policy φη∗ is constrained optimal.

Conversely, if π∗ is constrained optimal, then ηπ∗ is an

optimal solution to LP (4).
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When S and A(x) are finite, then LP (4) is the form of

maximize
∑

x∈S

∑

a∈A(x)

1

α
c0(x, a)η(x, a)

subject to



∑
x∈S

∑
a∈A(x) c1(x, a)η(x, a) ≤ αd1

... ... ...∑
x∈S

∑
a∈A(x) cn(x, a)η(x, a) ≤ αdN ,

α
∑

a∈A(x) η(x, a) = αγ(x)

+
∑

y∈S

∑
a∈A(y) q(x|y, a)η(y, a) ∀x ∈ S,

η(x, a) ≥ 0, x ∈ S, a ∈ A(x),

(5)

which is an LP and can be solved by many methods such as

the well-known simplex method.
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6. Examples

Example 1.

• Let S := (−∞,∞),

• A(x) := [β0, β(|x| + 1)], with some constants 0 < β0 < β.

• Consider the transition rates q(·|x, a):

q(D|x, a) := (|x| + 1)[

∫

D−{x}
f (y|x, a)dy − δx(D)]

where f (y|x, a) := 1√
2πa

e−
(y−x)2

2a .
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Assumption D.

(1) α > β, and
∫

S x2γ(dx) < ∞. (Hence, there exists a

constant ρ such that β < ρ < α);

(2) cn(x, a) (0 ≤ n ≤ N) are continuous on K and |cn(x, a)| ≤
L′(x2 + 1) for all (x, a) ∈ K, with some constant L′ > 0,

where c0(x, a) := −r(x, a).

Proposition 1. Under Assumption D, Example 1 satis-

fies Assumptions A, B, and C. Therefore , there exists a con-

strained optimal policy for Example 1.
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Example 2(on optimal policies). With the same data as

in Example 1, we further suppose that r(x, a) in Example 1 is

given by

r(x, a) := px2 − δa2, (6)

where p, δ > 0 are fixed constants.

Assumption E.

(1) dn ≥ L′[α
∫

S x2γ(dx) + α + b]/[α(α− β)] for all 1 ≤ n ≤
N), with b := β(ρ+2β

ρ−β + 2)2;

(2) 2αβ0− β2
0 ≤ p

δ ≤ min{α2, 2αβ − β2}, with p, δ as in (6).
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Proposition 2. Under Assumptions D and E, we have

(a) The stationary policy f ∗ is optimal for Example 2, where

f ∗(x) := (α−
√

α2 − p

δ
)(|x| + 1) ∀x ∈ S.

(b) V0(f
∗) =

∫
S V0(f

∗, x)γ(dx), where

V (f ∗, x) = (2δα− 2
√

δ2α2 − pδ)x2

+(4δα− 4
√

δ2α2 − pδ − 2p

α
)|x|

+2δα− 2
√

δ2α2 − pδ − p

α
.
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6. Remarks

(1) The existing works on continuous-time Markov decision

processes can be classified into two groups:

– Group 1: Bounded transition rates, and history-dependent

policies;

– Group 2: Unbounded transition rates, and Markov poli-

cies.

– Open problem: Unbounded transition rates, and history-

dependent policies; see, for instance, Yushkevich, A.A.,
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Theory Probab. Appl. 22(1977), 215-235.

(2) In Examples 1 and 2, the transition rates and rewards are

allowed to be unbounded, and policies may be history-

dependent.

(3) From this talk, we can see some developments on the open

problem by A. A. Yushkevich (1977).
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