Convergence to equilibrium of Markov processes and functional inequalities via Lyapunov conditions

Arnaud GUILLIN

Beijing, July 2010

(with D. Bakry, F. Barthe, P. Cattiaux, R. Douc, N. Gozlan, C. Roberto, F.Y. Wang, X. Wang, L. Wu)

- 4 回 2 4 注 2 4 注 3

Introduction

Let $(X_t)_{t\geq 0}$ be a continuous time Markov process (say a diffusion for simplicity) with

- *P_t* its associated semigroup,
- *L* its generator,
- μ its invariant probability measure,
- $\mathcal{E}(f,g) = \int -f Lg d\mu$ its associated Dirichlet form.

(ロ) (同) (E) (E) (E)

Introduction

Let $(X_t)_{t\geq 0}$ be a continuous time Markov process (say a diffusion for simplicity) with

- *P_t* its associated semigroup,
- *L* its generator,
- μ its invariant probability measure,
- $\mathcal{E}(f,g) = \int -f Lg d\mu$ its associated Dirichlet form.

Our goal:

```
"quantify the decay to 0 of d(P_t, \mu)"
```

for some distance d with easy to verify conditions.

소리가 소문가 소문가 소문가

Running Example

 (X_t) satisfies the stochastic differential equation

$$dX_t = \sqrt{2} \, dB_t - \nabla V(X_t) dt$$

and has as generator

$$\mathcal{L} = \Delta - \nabla V.\nabla$$

with invariant measure

$$d\mu(x) = e^{-V(x)} dx$$

and Dirichlet form

$$\mathcal{E}(f,f) = \int |\nabla f|^2 d\mu.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

There are many methods to do so and we will focus on two:

 Functional inequalities and d is linked to the L² norm (Poincaré) or the entropy (logarithmic Sobolev).

There are many methods to do so and we will focus on two:

- Functional inequalities and d is linked to the L² norm (Poincaré) or the entropy (logarithmic Sobolev).
- Coupling approach and *d* is the total variation distance.

And our central tool will be

Lyapunov conditions

- 4 回 ト 4 ヨ ト 4 ヨ ト

There are many methods to do so and we will focus on two:

- Functional inequalities and d is linked to the L² norm (Poincaré) or the entropy (logarithmic Sobolev).
- Coupling approach and *d* is the total variation distance.

And our central tool will be

Lyapunov conditions

and local conditions.

(4月) イヨト イヨト

Lyapunov conditions

The prototype of Lyapunov condition is: find $W \ge 1$, a set C, b > 0 and positive function φ

 $\mathcal{L}W \leq -\varphi \times W + b \mathbf{1}_{\mathcal{C}}.$

It has been used since a long time to study speed of convergence to equilibrium but often without explicit constant.

イロト イポト イヨト イヨト

Examples

– Ornstein-Uhlenbeck process : $\mathcal{L} = \Delta - x . \nabla$.

・ロト ・回ト ・ヨト ・ヨト

æ

Examples

– Ornstein-Uhlenbeck process : $\mathcal{L} = \Delta - x . \nabla$.

$$egin{array}{rcl} W(x) = 1 + |x|^2, & \mathcal{L}W &= 2n-2|x|^2 \ &\leq & -W(x) + 2(n-1) \mathbbm{1}_{\{|x|^2 \leq 2n\}} \end{array}$$

・ロト ・回ト ・ヨト ・ヨト

æ

Examples

– Ornstein-Uhlenbeck process : $\mathcal{L} = \Delta - x . \nabla$.

$$W(x) = 1 + |x|^2,$$
 $\mathcal{L}W = 2n - 2|x|^2$
 $\leq -W(x) + 2(n - 1)1_{\{|x|^2 \le 2n\}}$

but with another choice

$$\begin{split} \mathcal{W}(x) &= e^{a|x|^2}, \qquad \mathcal{LW} &= \left(2an + 4a\left(a - \frac{1}{2}\right)|x|^2\right)\mathcal{W}(x) \\ &\leq -\lambda |x|^2 \mathcal{W}(x) + b\mathbf{1}_{\{|x| \leq R\}} \end{split}$$

・ロン ・回と ・ヨン ・ヨン

æ

Examples continued

- Exponential type process: $\mathcal{L} = \Delta - \frac{x}{|x|} \cdot \nabla$. Choose a < 1

$$W(w) = e^{a|x|}, \qquad \mathcal{L}W \leq -c W(x) + b\mathbf{1}_{\{|x| \leq R\}}$$

- Cauchy type process: $\mathcal{L} = \Delta - (n + \alpha) \frac{\nabla V}{V} \cdot \nabla$ and V convex.

choose now 2 < k < lpha(1-arepsilon) + narepsilon + 2 for arepsilon sufficiently small then

$$W(x) = 1 + |x|^k$$
, $\mathcal{L}W \le -c (W(x))^{\frac{k-2}{k}} + b \mathbb{1}_{\{|x| \le R\}}$

イロト イポト イヨト イヨト

Functional Inequalities

Let us quickly illustrate the method :

Suppose that the following Poincaré inequality is verified

(PI) $\operatorname{Var}_{\mu}(f) := \mu(f^2) - \mu(f)^2 \le C_p \mathcal{E}(f, f)$

・ 同 ト ・ ヨ ト ・ ヨ ト

Functional Inequalities

Let us quickly illustrate the method :

Suppose that the following Poincaré inequality is verified

(PI)
$$\operatorname{Var}_{\mu}(f) := \mu(f^2) - \mu(f)^2 \le C_p \, \mathcal{E}(f, f)$$

then

$$\frac{d}{dt} \operatorname{Var}_{\mu}(P_t f) = 2 \int P_t f \, L \, P_t f \, d\mu$$

$$\leq -\frac{2}{C_p} \operatorname{Var}_{\mu}(P_t f)$$

so that Gronwall's lemma gives

伺い イヨト イヨト

Functional Inequalities

Let us quickly illustrate the method :

Suppose that the following Poincaré inequality is verified

(PI)
$$\operatorname{Var}_{\mu}(f) := \mu(f^2) - \mu(f)^2 \le C_p \, \mathcal{E}(f, f)$$

then

$$\frac{d}{dt} \operatorname{Var}_{\mu}(P_t f) = 2 \int P_t f \, L \, P_t f \, d\mu$$

$$\leq -\frac{2}{C_p} \operatorname{Var}_{\mu}(P_t f)$$

so that Gronwall's lemma gives

$$Var_{\mu}(P_t f) \leq e^{-\frac{2}{C_p}t} \operatorname{Var}_{\mu}(f)$$

(In fact equivalent to Poincaré inequality)

One can do the same based on

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

One can do the same based on

– weak Poincaré inequality : $\forall s > 0$

(wPI) $\operatorname{Var}_{\mu}(f) \leq \beta(s) \mathcal{E}(f, f) + s \|f\|_{\infty}^{2}$

(4月) イヨト イヨト

One can do the same based on

– weak Poincaré inequality : $\forall s > 0$

(wPI) $\operatorname{Var}_{\mu}(f) \leq \beta(s) \mathcal{E}(f, f) + s \|f\|_{\infty}^{2}$

leading to a sub exponential decay

 $\operatorname{Var}_{\mu}(P_t f) \leq \psi(t) \|f\|_{\infty}^2$

・ 同 ト ・ ヨ ト ・ ヨ ト

One can do the same based on

– weak Poincaré inequality : $\forall s > 0$

(wPI) $\operatorname{Var}_{\mu}(f) \leq \beta(s) \mathcal{E}(f, f) + s \|f\|_{\infty}^{2}$

leading to a sub exponential decay

 $\operatorname{Var}_{\mu}(P_t f) \leq \psi(t) \|f\|_{\infty}^2$

- logarithmic Sobolev inequality

 $(\mathbf{LSI}) \qquad \forall s > 0 \qquad \operatorname{Ent}_{\mu}(f) := \mu\left(f\log\frac{f}{\mu(f)}\right) \leq 2C_{I}\,\mathcal{E}(f,\log f)$

・ 同 ト ・ ヨ ト ・ ヨ ト

One can do the same based on

– weak Poincaré inequality : $\forall s > 0$

(wPI) $\operatorname{Var}_{\mu}(f) \leq \beta(s) \mathcal{E}(f, f) + s \|f\|_{\infty}^{2}$

leading to a sub exponential decay

 $\operatorname{Var}_{\mu}(P_t f) \leq \psi(t) \|f\|_{\infty}^2$

- logarithmic Sobolev inequality

 $(\mathsf{LSI}) \qquad \forall s > 0 \qquad \mathsf{Ent}_{\mu}(f) := \mu\left(f\log\frac{f}{\mu(f)}\right) \leq 2C_{I}\,\mathcal{E}(f,\log f)$

leading to an entropic decay

$$\operatorname{Ent}_{\mu}(P_t f) \leq e^{-\frac{2}{C_l}t} \operatorname{Ent}_{\mu}(f)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

The question then is

"How to obtain these functional inequalities?"

イロン イヨン イヨン イヨン

The question then is

"How to obtain these functional inequalities?"

There is of course a HUGE litterature about that... and we cannot review all results... see for example D. Bakry, M-F. Chen, M. Ledoux, F-Y. Wang, L. Wu... for some beautiful results.

- 4 回 ト 4 ヨ ト 4 ヨ ト

The question then is

"How to obtain these functional inequalities?"

There is of course a HUGE litterature about that... and we cannot review all results... see for example D. Bakry, M-F. Chen, M. Ledoux, F-Y. Wang, L. Wu... for some beautiful results.

We will focus on a recent approach based on Lyapunov conditions.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Poincaré inequality

Theorem

Let $\mathcal{L} = \Delta - \nabla V \cdot \nabla$. Suppose that there exists $W \ge 1$, $\lambda, b > 0$ and R > 0 such that

 $\mathcal{L}W \leq -\lambda W + b\mathbf{1}_{B(0,R)}$

イロト イポト イヨト イヨト

Poincaré inequality

Theorem

Let $\mathcal{L} = \Delta - \nabla V \cdot \nabla$. Suppose that there exists $W \ge 1$, $\lambda, b > 0$ and R > 0 such that

$$\mathcal{L}W \leq -\lambda W + b\mathbf{1}_{B(0,R)}$$

and a local Poincaré inequality : for f such that $\mu(f1_{B(0,R)}) = 0$

$$\int_{B(0,R)} f^2 d\mu \le \kappa_R \int |\nabla f|^2 d\mu$$

then

ヘロン 人間 とくほど くほとう

Poincaré inequality

Theorem

Let $\mathcal{L} = \Delta - \nabla V \cdot \nabla$. Suppose that there exists $W \ge 1$, $\lambda, b > 0$ and R > 0 such that

$$\mathcal{L}W \leq -\lambda W + b \mathbb{1}_{B(0,R)}$$

and a local Poincaré inequality : for f such that $\mu(f1_{B(0,R)}) = 0$

$$\int_{B(0,R)} f^2 d\mu \le \kappa_R \int |\nabla f|^2 d\mu$$

then

$$Var_{\mu}(f) \leq rac{1}{\lambda}(1+b\kappa_R) \int |
abla f|^2 d\mu$$

ヘロン 人間 とくほど くほとう

Local Poincaré inequality can be obtained by perturbation of the Poincaré inequality on balls for Lebesgue measure

- 4 回 ト 4 ヨ ト 4 ヨ ト

э

Local Poincaré inequality can be obtained by perturbation of the Poincaré inequality on balls for Lebesgue measure

Remark

The Lyapunov condition is verified for example if

- $x \cdot \nabla V \ge \alpha |x|$ for some positive α outside a ball;
- or a $|\nabla V|^2 \Delta V \ge c$ for 0 < a < 1 and positive c outside a ball.

In particular, if V is convex then the first condition is verified and thus a Poincaré inequality holds (recovering a result of Bobkov).

イロト イポト イヨト イヨト

Proof

Remark first

$$\int f^2 \frac{-\mathcal{L}W}{W} d\mu = \int \nabla \left(\frac{f^2}{W}\right) \cdot \nabla W \, d\mu$$
$$= 2 \int \frac{f}{W} \nabla f \cdot \nabla W \, d\mu - \int \frac{f^2}{W^2} |\nabla W|^2 d\mu$$
$$= \int |\nabla f|^2 d\mu - \int |\nabla f - (f/W) \nabla W|^2 d\mu$$
$$\leq \int |\nabla f|^2 d\mu.$$

<ロ> (四) (四) (三) (三) (三)

Proof

Remark first

$$\int f^2 \frac{-\mathcal{L}W}{W} d\mu = \int \nabla \left(\frac{f^2}{W}\right) \cdot \nabla W \, d\mu$$
$$= 2 \int \frac{f}{W} \nabla f \cdot \nabla W \, d\mu - \int \frac{f^2}{W^2} |\nabla W|^2 d\mu$$
$$= \int |\nabla f|^2 d\mu - \int |\nabla f - (f/W) \nabla W|^2 d\mu$$
$$\leq \int |\nabla f|^2 d\mu.$$

or a large deviations argument!

・ロン ・回と ・ヨン ・ヨン

Э

So that with $c = \mu(f1_{B(0,R)})$, the Lyapunov condition rewritted

$$1 \leq -rac{1}{\lambda} \, rac{\mathcal{LW}}{W} + rac{b}{\lambda} \, 1_{B(0,R)}$$

and local Poincaré inequality

$$\begin{array}{lll} \mathsf{Var}_{\mu}(f) & \leq & \int (f-c)^2 d\mu \\ & \leq & \frac{1}{\lambda} \int (f-c)^2 \frac{-\mathcal{L}W}{W} d\mu + \frac{b}{\lambda} \int_{B(0,R)} (f-c)^2 d\mu \\ & \leq & \frac{1}{\lambda} (1+b\kappa_R) \int |\nabla f|^2 d\mu \end{array}$$

・ロン ・回と ・ヨン ・ヨン

By a slight modification of the argument, it extends to weighted and weak Poincaré inequality

Theorem

Let $\mathcal{L} = \Delta - \nabla V \cdot \nabla$. Suppose that there exists $W \ge 1$, sublinear φ , b > 0 and R > 0 such that

 $\mathcal{L}W \leq -\varphi(W) + b\mathbf{1}_{B(0,R)}$

By a slight modification of the argument, it extends to weighted and weak Poincaré inequality

Theorem

Let $\mathcal{L} = \Delta - \nabla V \cdot \nabla$. Suppose that there exists $W \ge 1$, sublinear φ , b > 0 and R > 0 such that

$$\mathcal{L}W \leq -\varphi(W) + b \mathbb{1}_{B(0,R)}$$

and a local Poincaré inequality then

$$extsf{Var}_{\mu}(f) \leq \max\left(1, rac{b\kappa_R}{arphi(1)}
ight) \int (1+arphi'(W)^{-1}) |
abla f|^2 d\mu$$

・ 同 ト ・ ヨ ト ・ ヨ ト

By a slight modification of the argument, it extends to weighted and weak Poincaré inequality

Theorem

Let $\mathcal{L} = \Delta - \nabla V \cdot \nabla$. Suppose that there exists $W \ge 1$, sublinear φ , b > 0 and R > 0 such that

$$\mathcal{L}W \leq -\varphi(W) + b\mathbf{1}_{B(0,R)}$$

and a local Poincaré inequality then

$$extsf{Var}_{\mu}(f) \leq \max\left(1, rac{b\kappa_R}{arphi(1)}
ight) \int (1+arphi'(W)^{-1}) |
abla f|^2 d\mu$$

and denoting $G(s) = \inf\{u; \mu(\varphi(W) < uW) > s\}$ then

$$extsf{Var}_{\mu}(f) \leq (1+b\kappa_{ extsf{R}})G(s)^{-1}\int |
abla f|^2d\mu + 2s\|f\|_{\infty}^2$$

イロト イポト イヨト イヨト

For Cauchy type process : the Lyapunov condition is such that $\varphi'(W) = |x|^2$ and $G(s)^{-1} = s^{-\frac{2}{\alpha}}$ which are optimal in dimension one (see Barthe-Cattiaux-Roberto) and enable to recover recent results of Bobkov-Ledoux.

・ 同 ト ・ ヨ ト ・ ヨ ト

For Cauchy type process : the Lyapunov condition is such that $\varphi'(W) = |x|^2$ and $G(s)^{-1} = s^{-\frac{2}{\alpha}}$ which are optimal in dimension one (see Barthe-Cattiaux-Roberto) and enable to recover recent results of Bobkov-Ledoux.

Remark

Note that weighted Poincaré inequality enables us to find easily a reversible diffusion exponentially convergent in L² for a given subexponential measure satisfying a Lyapunov condition: take $\omega = (1 + \varphi'(W)^{-1})$ and use the reversible diffusion

$$L^{\omega} = \omega \Delta + (\nabla \omega - \omega \nabla V) . \nabla.$$

イロト イポト イヨト イヨト

Theorem

Let $\mathcal{L} = \Delta - \nabla V \cdot \nabla$ and $d\mu = e^{-V} dx$. Suppose that there exists $W \ge 1$, some point x_0 , b > 0 such that

 $\mathcal{L}W \leq -c d^2(x, x_0) \times W + b$

イロト イポト イヨト イヨト

Theorem

Let $\mathcal{L} = \Delta - \nabla V \cdot \nabla$ and $d\mu = e^{-V} dx$. Suppose that there exists $W \ge 1$, some point x_0 , b > 0 such that

 $\mathcal{L}W \leq -c \, d^2(x, x_0) \times W + b$

then the following transportation inequality holds : for all probability measure ν

 $W_2^2(
u,\mu) \leq C \operatorname{Ent}_{\mu}\left(rac{d
u}{d\mu}
ight)$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Theorem

Let $\mathcal{L} = \Delta - \nabla V \cdot \nabla$ and $d\mu = e^{-V} dx$. Suppose that there exists $W \ge 1$, some point x_0 , b > 0 such that

 $\mathcal{L}W \leq -c \, d^2(x, x_0) \times W + b$

then the following transportation inequality holds : for all probability measure ν

$$W_2^2(
u,\mu) \leq {\sf C} \, {\sf Ent}_\mu\left(rac{d
u}{d\mu}
ight)$$

and if we suppose moreover $Hess(V) + Ric \ge K Id$ then the logarithmic Sobolev inequality holds

$$Ent_{\mu}(f^2) \leq C \int |\nabla f|^2 d\mu$$

イロト イポト イヨト イヨト

- More generally we have criterion for every (weighted) Super-Poincaré inequalities.
- Lyapunov condition also gives Bernstein's type inequalities.

イロト イポト イヨト イヨト

э

- More generally we have criterion for every (weighted) Super-Poincaré inequalities.
- Lyapunov condition also gives Bernstein's type inequalities.

Conclusion

We have a powerful tool to get functional inequalities and thus various rates of convergence to equilibrium but...

limited to reversible process

- 4 回 ト 4 ヨ ト 4 ヨ ト

- More generally we have criterion for every (weighted) Super-Poincaré inequalities.
- Lyapunov condition also gives Bernstein's type inequalities.

Conclusion

We have a powerful tool to get functional inequalities and thus various rates of convergence to equilibrium but...

limited to reversible process

so let's try another approach.

(4月) イヨト イヨト

Coupling

It is perhaps the oldest approach to study the speed of convergence to equilibrium :

・ロン ・回と ・ヨン・

Coupling

It is perhaps the oldest approach to study the speed of convergence to equilibrium :

find some random time T and a construction of X_t and Y_t both of the same law given by P_t starting from x and y which coincides after time T, so that

 $\|P_t(x,\cdot) - P_t(y,\cdot)\|_{TV} \le \mathbb{P}(T > t)$

we have then to study integrability property of T! We will also use Lyapunov condition

イロト イポト イヨト イヨト

Coupling

It is perhaps the oldest approach to study the speed of convergence to equilibrium :

find some random time T and a construction of X_t and Y_t both of the same law given by P_t starting from x and y which coincides after time T, so that

$\|P_t(x,\cdot) - P_t(y,\cdot)\|_{TV} \le \mathbb{P}(T > t)$

we have then to study integrability property of T!

We will also use Lyapunov condition and a minorization condition.

Coupling construction

Suppose that for some set C, some $t^* > 0$, there exists $\varepsilon > 0$ such that

$$(MC) \qquad \forall x \in C, \qquad P_{t^*}(x, \cdot) \geq \varepsilon \nu(\cdot)$$

Construction of (X_t, Y_t)

1.
$$X_0 = x$$
, $Y_0 = y$

- 2. Let $t_0 = \inf\{t; (X_t, Y_t) \in C \times C\}$ and $t_n = \inf\{t \ge t_{n-1} + t^*; (X_t, Y_t) \in C \times C\}$. Then proceed at each t_i
 - ► If not coupled, with probability ε , $X_{t_i+t^*} = Y_{t_i+t^*} = Z$ with $Z \sim \nu$ and declare to have coupled and $T = t_i + t^*!$.
 - if not coupled, with probability 1ε , simulate conditionally independently $X_{t_i+t^*}$ and $Y_{t_i+t^*}$ with the residual kernel and go on.

We have thus to control integrability of entrance time to some set C: $\tau_C(t^*) = \inf\{t \ge t^*, X_t \in C\}$

Theorem

Suppose that there exists $W \ge 1$, $\delta > 0$, b > 0 such that

 $\mathcal{L}W \leq -\delta \times W + b1_C$

- 4 回 ト 4 ヨ ト 4 ヨ ト

We have thus to control integrability of entrance time to some set C: $\tau_C(t^*) = \inf\{t \ge t^*, X_t \in C\}$

Theorem

Suppose that there exists $W \ge 1$, $\delta > 0$, b > 0 such that

$$\mathcal{L}W \leq -\delta imes W + b \mathbf{1}_C$$

then

$$\forall x \notin C, \mathbb{E}_x(e^{\delta \tau_C(0)}) \leq W(x)$$

(4回) (1日) (日)

We have thus to control integrability of entrance time to some set C: $\tau_C(t^*) = \inf\{t \ge t^*, X_t \in C\}$

Theorem

Suppose that there exists $W \ge 1$, $\delta > 0$, b > 0 such that

$$\mathcal{L}W \leq -\delta imes W + b \mathbf{1}_C$$

then

$$\forall x \notin C, \mathbb{E}_x(e^{\delta \tau_C(0)}) \leq W(x)$$

and if exists $W \ge 1$, sublinear concave φ , b > 0 such that

$$\mathcal{L}W \leq -\varphi(W) + b1_C$$

・ 同 ト ・ ヨ ト ・ ヨ ト

We have thus to control integrability of entrance time to some set C: $\tau_C(t^*) = \inf\{t \ge t^*, X_t \in C\}$

Theorem

Suppose that there exists $W \ge 1$, $\delta > 0$, b > 0 such that

$$\mathcal{L}W \leq -\delta \times W + b1_C$$

then

$$\forall x \notin C, \mathbb{E}_x(e^{\delta au_C(0)}) \leq W(x)$$

and if exists $W \ge 1$, sublinear concave φ , b > 0 such that

$$\mathcal{L}W \leq -\varphi(W) + b1_C$$

$$\forall x \notin C, \mathbb{E}_{x} \left(H_{\varphi}^{-1}(\tau_{C}(t^{*})) \leq W(x) + c_{b,\varphi,\theta^{*}}
ight)$$

where $H_{\varphi}(u) = \int_{1}^{u} \frac{1}{\varphi} ds$.

Proof

By Itô's formula $e^{\delta(t \wedge \tau_C(0))} W(X_{t \wedge \tau_C(0)})$ is a local supermartingale so that

$$\mathbb{E}(W(X_0)) \geq \mathbb{E}(e^{\delta \tau_{\mathcal{C}}(0)}W(X_{\tau_{\mathcal{C}(0)}})) \geq \mathbb{E}(e^{\delta \tau_{\mathcal{C}}(0)}).$$

Proof

By Itô's formula $e^{\delta(t \wedge \tau_C(0))} W(X_{t \wedge \tau_C(0)})$ is a local supermartingale so that

$$\mathbb{E}(W(X_0)) \geq \mathbb{E}(e^{\delta \tau_{\mathcal{C}}(0)}W(X_{\tau_{\mathcal{C}(0)}})) \geq \mathbb{E}(e^{\delta \tau_{\mathcal{C}}(0)}).$$

The subexponential case is much more involved.

・ロト ・回ト ・ヨト ・ヨト

Theorem If (MC) is verified and that there exists $W \ge 1$, $\delta > 0$, b > 0 such that

 $\mathcal{L}W \leq -\delta \times W + b\mathbf{1}_C$

Theorem

If (MC) is verified and that there exists $W \ge 1$, $\delta > 0$, b > 0 such that

$$\mathcal{L}W \leq -\delta \times W + b1_{\mathcal{C}}$$

then for an explicit $\rho = \rho(\varepsilon, C, t^*, W) < 1 \ K > 1$,

 $\|P_t(x,\cdot) - P_t(y,\cdot)\|_{TV} \le K\rho^t \left(W(x) + W(y)\right)$

Theorem

If (MC) is verified and that there exists $W \ge 1$, $\delta > 0$, b > 0 such that

$$\mathcal{L}W \leq -\delta \times W + b1_{\mathcal{C}}$$

then for an explicit $\rho = \rho(\varepsilon, C, t^*, W) < 1 \ K > 1$,

 $\|P_t(x,\cdot) - P_t(y,\cdot)\|_{TV} \le K\rho^t \left(W(x) + W(y)\right)$

and if there exist $W \ge 1$, sublinear concave φ , b > 0 such that

$$\mathcal{L}W \leq -\varphi(W) + b\mathbf{1}_{C}$$

イロト イポト イヨト イヨト 二日

Theorem

If (MC) is verified and that there exists $W \ge 1$, $\delta > 0$, b > 0 such that

$$\mathcal{L}W \leq -\delta \times W + b\mathbf{1}_{\mathcal{C}}$$

then for an explicit $\rho = \rho(\varepsilon, C, t^*, W) < 1 \ K > 1$,

 $\|P_t(x,\cdot) - P_t(y,\cdot)\|_{TV} \le K\rho^t \left(W(x) + W(y)\right)$

and if there exist $W \ge 1$, sublinear concave φ , b > 0 such that

$$\mathcal{L}W \leq -\varphi(W) + b\mathbf{1}_{C}$$

then for an explicit $K = K(\varepsilon, C, \varphi, W)$ and $\lambda(C, \varphi, W)$

$$\|P_t(x,\cdot) - P_t(y,\cdot)\|_{TV} \leq \frac{K}{H_{\varphi}^{-1}(\lambda(t-t^*))} \left(W(x) + W(y)\right)$$

イロト イポト イヨト イヨト 二日

- The coupling approach in the simple reversible setting may be compared to the functional inequality approach.
- It enables us to consider non reversible models such as kinetic Fokker-Planck equation

 $dx_t = v_t dt$ $dv_t = \sqrt{2}dB_t - \nabla V(x_t)dt - cv_t dt$

under various conditions on V.

The difficulty is of course in the estimation in the minorization condition.

イロト イポト イヨト イヨト

References

- D. Bakry, P. Cattiaux, A. G. "Rate of convergence for ergodic continuous Markov processes : Lyapunov versus Poincare." Journal of Functional Analysis, Vol 254, No 3, 727-759, 2008

- F. Barthe, D. Bakry, P. Cattiaux, A. G. "Poincare inequalities for logconcave probability measures: a Lyapunov function approach". Electronic Communications in Probability, Vol 13, 60-66, 2008

- G. Fort, R. Douc, A. G. "Subgeometric rates of convergence of f-ergodic strong Markov processes". Stochastic Processes and Their Applications, Vol 119, No3, 897-923, 2009

- A. G., C. Leonard, L. Wu, N. Yao "Transportation inequalities for Markov processes". Probability Theory and Related Fields, Vol 144, No 3-4, 669-695, 2009

- P. Cattiaux, A. G., F.Y. Wang, L. Wu "Lyapunov conditions for logarithmic Sobolev and Super Poincare inequality". Journal of Functional Analysis, Vol 256, No 6, 1821-1841, 2009

P. Cattiaux, A. G., L. Wu "A note on Talagrand transportation inequality and logarithmic Sobolev inequality".
 To appear in Probability Theory and Related Fields, 2010

- P. Cattiaux, N. Gozlan, A. G., C. Roberto "Functional inequalities for heavy tails distributions and application to isoperimetry " Electronic Journal of Probability, Vol 15, 346-385, 2010

- F. Gao, A. G., L. Wu "Bernstein types concentration inequalities for symmetric Markov processes", 2010

- P. Cattiaux, A. G., L. Wu "Some remarks on weighted logarithmic Sobolev inequality". 2010
- A.G., V. Penda, X. Wang. In preparation.2010

By others (Recent one):

 M. Hairer, J. Mattingly. "Slow Energy Dissipation in Chains of Anharmonic Oscillators" Commun. Pure Appl. Math. 68 (2009), no 8, pp. 999-1032

- M. Hairer. "How hot can a heat bath get?" Commun. Math. Phys. 292 (2009), no 1, pp. 131-177

- M. Hairer, J. Mattingly, M. Sheutzow. "Asymptotic coupling and a weak form of Harris' theorem with applications to stochastic delay equations". To appear in Prob. Theory Rel. Fields (2010)

- Y. Ma, L. Wu. On transportation information inequalities for continuum Gibbs measures. (2010).