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Sublinear expectations

First, let us briefly recall some basic conceptions and results about
sublinear-expectations (see [11] for details).

S(d): the collection of d × d symmetric matrices. 〈R,Q〉 = tr [RQ]
for any R,Q ∈ S(d). S+(d): the set of the nonnegative elements in
S(d).
H: a linear space of real functions defined on a Polish space Ω
such that Cb(Ω) ⊂ H and if X1, · · · ,Xn ∈ H then ϕ(X1, · · · ,Xn) ∈ H
for each ϕ ∈ Cb,Lip(Rn).
Sublinear expectation: E[·] : X ∈ H 7→ E(X ) ∈ R:
(a) Monotonicity: If X ≥ Y , then E[X ] ≥ E[Y ];
(b) Constant preserving: E[c] = c, for all c ∈ R;
(c) Sub-additivity: E[X ]− E[Y ] ≤ E[X − Y ];
(d) Positive homogeneity: E[λX ] = λE[X ] for all λ ≥ 0.

The triple (Ω,H,E) is called a sublinear expectation space. X ∈ H
is called a random variable in (Ω,H).
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Independence and identical distribution

A m-dimensional random vector X = (X1, · · · ,Xm) is said to be in-
dependent of another n-dimensional random vector Y = (Y1, · · · ,Yn)
if

E(ϕ(X ,Y )) = E(E(ϕ(X , y))y=Y ), for ϕ ∈ Cb,Lip(Rm × Rn).

Let X1 and X2 be two d–dimensional random vectors defined re-
spectively in sublinear expectation spaces (Ω1,H1,E1) and (Ω2,H2,E2).
They are called identically distributed, denoted by X1 ∼ X2, if

E1(ϕ(X1)) = E2(ϕ(X2)), ∀ϕ ∈ Cb.Lip(Rn).

A sequence of d-dimensional random variables {Xn,n ≥ 1} with
each component being in the sublinear expectation space (Ω,H,E)
is said to be i.i.d, if each Xi+1 is independent of (X1, · · · ,Xi), and
Xi+1 ∼ Xi for i = 1,2, · · · .
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Throughout this talk, we only consider regular sublinear expecta-
tion, i. e. , for all {Xn,n ∈ N} ⊂ H, Xn(ω) ↓ 0 for all ω ∈ Ω =⇒
limn→∞ E(Xn) = 0.
Under the regular condition, there exists a relatively compact sub-
set P of M ( the space of probability measures on Ω) such that
E(X ) = supP∈P EP(X ) := E(X ) for each X ∈ L1

G(Ω).
The natural Choquet capacity associated with E is defined by

c(A) := sup
P∈P

P(A).
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A map G : S(d) 7→ R is said to be a monotonic and sublinear
function, if for A, Ā ∈ S(d),

G(A + Ā) ≤ G(A) + G(Ā),
G(λA) = λG(A), for all λ ≥ 0,
G(A) ≥ G(Ā), if A ≥ Ā.

(1.1)

Given a monotonic and sublinear function G : S(d) 7→ R, there
exists a bounded, convex and closed subset Σ ⊂ S+(d) such that

G(A) =
1
2

sup
σ∈Σ

(A, σ).

We assume that there exist constants 0 < σ ≤ σ <∞ such that

Σ ⊂ {σ ∈ Sd ; σId×d ≤ σ ≤ σId×d} . (1.2)
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G-normal distribution

A d-dimensional random vector X = (X1, · · · ,Xd ) is called G-normal
distributed if for each ϕ ∈ lip(Rd ),

u(t , x) := E
(
ϕ(x +

√
tX )
)
, t ≥ 0, x ∈ Rd

is the unique viscosity solution of the following nonlinear heat ker-
nel equation:

∂u
∂t

= G
(

D2
x u
)
, t ≥ 0, x ∈ Rd ; u(0, x) = ϕ(x), (1.3)

where D2
x u = (∂2

xi xj
u)d

i,j=1 is the Hessian matrix of u.
A d-dimensional random vector η is called maximal distributed if
there exists a bounded, closed and convex subset Γ ⊂ Rd such
that for any ϕ ∈ Cb,Lip,

E[ϕ(η)] = max
y∈Γ

ϕ(y).
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LLNs and CLT

Let {Xi , i ≥ 1} be a sequence of i.i.d. Rd -valued random variables
on a sublinear expectation space (Ω,H,E). Set µ = −E(−X1),
µ = E(X1), and {S̄n := 1

n
∑n

i=1 Xi ,n ≥ 1}
(LLN, Peng ([9])): For any ϕ ∈ Cb,Lip, limn→∞ E(ϕ(S̄n)) = E(ϕ(η)).

(CLT, Peng ([9])): Assume that µ = µ = 0. Then

lim
n→∞

E(ϕ(
√

nS̄n)) = E(ϕ(X )),

where X is a G-normal distributed random vector and G(A) =
1
2E(〈AX1,X1〉).
(SLLN, Chen([2]), Maccheroni and Marinacci([7])): For d = 1,

c
(
{µ > lim inf

n→∞
S̄n} ∪ {lim sup

n→∞
S̄n > µ}

)
= 0.
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G-Brownian motion

Let Ω denote the space of all Rd -valued continuous paths ω : (0,+∞) 3
t 7−→ ωt ∈ Rd , with ω0 = 0.
For each t > 0, set

Lip(Ωt ) :=
{
ϕ (ωt1 , ωt2 , · · ·ωtn ) : n ≥ 1, t1, · · · , tn ∈ [0, t ], ϕ ∈ lip(Rd×n)

}
.

A continuous process {Bt (ω)}t≥0 in a sublinear expectation space
(Ω,H,EG) is called a G-Brownian motion if the following proper-
ties are satisfied:
(i). B0 = 0, B1 is G-normal distributed and EG(Bt ) = −EG(−Bt ) =
0 for t ≥ 0.
(ii). For any s, t ≥ 0, Bt+s − Bs ∼ Bt .
(iii). For any m ≥ 1, 0 = t0 < t1 < · · · < tm < ∞, the increment
Btm − Btm−1 is independent from Bt1 , · · · ,Btm−1 .
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The representation theorem of G-expectation

The topological completion of Lip(Ωt ) (resp. Lip(Ω)) under the Ba-
nach norm ‖ · ‖p,G := (EG(| · |p))1/p is denoted by Lp

G(Ωt ) (resp.
Lp

G(Ω)), where p ≥ 1. EG(·) can be extended uniquely to a sublin-
ear expectation on L1

G(Ω). We denote also by EG the extension.

Set Γ := {γ = σ1/2, σ ∈ Σ}. Let P be the Wiener measure on
Ω. Let AΓ

0,∞ be the collection of all Γ-valued {Ft , t ≥ 0}-adapted
processes on the interval [0,+∞), and let Pθ be the law of the
process {

∫ t
0 θsdωs, t ≥ 0} under the Wiener measure P. Then

([4]): under supθ∈AΓ
0,∞

EPθ , the canonical process B is G-Brownian

motion, and for all X ∈ L1
G(F)

EG(X ) = sup
θ∈AΓ

0,∞

EPθ(X ). (1.4)
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G-stochastic integral

For p ∈ [1,∞), let Mp,0
G (0,1) denote the space of R-valued piecewise

constant processes

H =
n−1∑
i=0

Hti 1[ti ,ti+1)

where Hti ∈ Lp
G(Ωti ), 0 = t0 < t1 < · · · < tn = 1. For H ∈ Mp,0

G (0,1),
j = 1, · · · ,d , the G-stochastic integral is defined by

I j(H) :=

∫ t

0
HsdBj

s :=
n−1∑
i=0

Hti (B
j
t∧ti+1

− Bj
t∧ti ).

Let Mp
G(0,1) be the closure of Mp,0

G (0,1) under the norm:

‖H‖p
Mp

G(0,1)
:= EG

(∫ 1

0
|Ht |pdt

)
.

Then the mapping I j : M2,0
G (0,1)→ L2

G(Ω1) is continuous, and so it can
be continuously extended to M2

G(0,1).
For any H ∈ (M2

G(0,1))d , define∫ t

0
HsdBs =

d∑
i=1

∫ t

0
H i

sdBi
s.
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Quadratic variation process

The quadratic variation process of G-Brownian motion is defined by

〈B〉t := (〈B〉ijt )1≤i,j≤d =

(
Bi

tB
j
t − 2

∫ t

0
Bi

sdBj
s

)
1≤i,j≤d

, t ≥ 0.

For H ∈ (M1
G(0,1))d , define

∫ t

0
Hsd 〈B〉s =

 d∑
j=1

∫ t

0
H1

s d 〈B〉j1s , · · · ,
d∑

j=1

∫ t

0
Hd

s d 〈B〉jds

T

.

and for H ∈ (M1
G(0,1))d×d , define

∫ t

0
Hsd 〈B〉s =

d∑
i,j=1

∫ t

0
H ij

s d 〈B〉ijs .
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LDP for independent random variables

Large deviations and moderate deviations for i.i.d. random variables
are based on joint work with Mingzhou Xu.

Theorem 2.1

Let {Xi , i ≥ 1} be a sequence of i.i.d. Rd -valued random variables. As-
sume that there is a δ > 0, such that Ē[eδ|X1|] <∞. Then there exists a
rate function I : Rd 7→ [0,∞] such that for any open set O ∈ B(Rd ),

lim inf
N→∞

1
N

log c

(
1
N

N∑
i=1

Xi ∈ O

)
≥ − inf

x∈O
I(x),

and for any closed subset F ∈ B(Rd ),

lim sup
N→∞

1
N

log c

(
1
N

N∑
i=1

Xi ∈ F

)
≤ − inf

x∈F
I(x).
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If Ē[eδ|X1|] <∞ for all δ > 0, then

I(x) = sup
α∈Rd

{
〈x , α〉 − log Ē

(
e〈α,X1〉

)}
.

The large deviation principle is established by the subadditive method.
The representation of the rate function is obtain by the Varadhan
asymptotical integral lemma under the capacity.
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If P is a convex and compact set, then

I(x) = inf
P∈P

sup
α∈Rd

{
〈x , α〉 − log EP

(
e〈α,X1〉

)}
.

For any P ∈ P, I(EP(X1)) = 0, i.e., the solutions of the equation
I(x) = 0 are not unique under uncertainty of mean.
If X1 ∼ N(0,Σ) , where Σ is a compact convex subset and for some
0 < σ ≤ σ̄ <∞,

Σ ⊂ {σ ∈ S+(d);σId×d ≤ σ ≤ σ̄Id×d},

then
I(x) =

1
2

inf
σ∈Σ
〈x , σx〉.
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Large deviations for the empirical measures

Theorem 2.2

For any closed set F ∈ B
(
M1(Rd )

)
, we have

lim sup
n→∞

1
n

log c
(

1
n
(
δX1(B) + · · ·+ δXn (B)

)
∈ F

)
≤ − inf

ν∈F
Ic(ν),

and for any open set G ∈ B
(
M1(Rd )

)
,

lim inf
n→∞

1
n

log c
(

1
n
(
δX1(B) + · · ·+ δXn (B)

)
∈ G

)
≥ − inf

ν∈G
Ic(ν),

where
Ic(ν) := sup

f∈Cb(Rd )

{
〈f , ν〉 − log Ē (exp(f (X1)))

}
.
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Define the relative entropy a probability ν w.r.t c:

Entc(ν) = inf
P∈P

h(ν, µP)

where µP = P ◦ X−1
1 and

h(ν, µP) =

{∫
Rd

(
dν

dµP
log dν

µP

)
dµP if ν � µP ,

+∞ otherwise.

In addition, if P is a convex and compact set, then

Ic(ν) = Entc(ν),

For any P ∈ P, Ic(µP)) = 0, i.e., the solutions of the equation
Ic(ν) = 0 are not unique under uncertainty of mean.
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MDP for independent random variables

Let {(Xn,Yn),n ≥ 1} be i.i.i. Rd × Rd -valued random variables in
(Ω,H,E). We assume that
(i). E[X1] = E[−X1] = 0;
(ii). there is a δ ∈ (0,1), such that Ē[|X1|2+δ] <∞ and Ē[|Y1|2] <∞ .

Let {a(n); n ≥ 1} be a sequence of positive real numbers satisfying

n
a(n)

↑ ∞, a(n)

n1/2 ↑ ∞, as n→∞.

J(x) := sup
α∈Rd

{
〈x , α〉 − E

(
〈α,Y1〉+

1
2
〈αατX1,X1〉

)}
. (2.1)

If P is a convex and compact set, then

J(x) = inf
P∈P

1
2
〈(x − EP(Y1)), (EP(X1X T

1 ))−1(x − EP(Y1))〉.
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Theorem 2.3

For any open subset O ∈ B(Rd ),

lim inf
n→∞

n
a2(n)

log c

(
1

a(n)

n∑
i=1

Xi +
1
n

n∑
i=1

Yi ∈ O

)
≥ − inf

x∈O
J(x). (2.2)

Theorem 2.4

Assume that

lim
n→∞

n
a2(n)

log (nc (max{|X1|, |Y1|} ≥ a(n))) = −∞. (2.3)

Then, for any closed subset F in Rd ,

lim sup
n→∞

n
a2(n)

log c

(
1

a(n)

n∑
i=1

Xi +
1
n

n∑
i=1

Yi ∈ F

)
≤ − inf

x∈F
J(x). (2.4)
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Peng’s CLT and the large deviations for G-distributed random variables
play important role in the proof of lower bound. The upper bound is
proved by the truncation technique and the Laplace asymptotic integral
method.
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Variational representation

Theorem 3.1

Let Φ ∈ L1
G(Ω1) be bounded. Then

EG(eΦ(B·))

= exp

{
sup

H∈(M2
G(0,1))d

EG

(
Φ

(
B· +

∫ ·
0

Hsd〈B〉s
)
− 1

2

∫ 1

0
HsHT

s d〈B〉s

)}
.

In the classical case, a variational representation of functionals
of finite dimensional Brownian motion was obtained by Boué and
Dupuis ([1]).
Under the G-expectation, the complicated measurable selection
technique in [1] and the Clark-Ocone formula cannot be used. We
use a new approach to overcome these difficulties. The key of the
upper bound is to define an appropriate function H ∈ (M2

G(0,1))d

using a sequence of stochastic differential equations.
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LDP for G-Brownian motion

Theorem 3.2
For any closed subset F in (C ([0,1],Rp) , ρ),

lim sup
ε→0

ε log cG (√εB|[0,1] ∈ F
)
≤ − inf

ψ∈F
J(h) (3.1)

and for any open subset O in (C ([0,1],Rp) , ρ),

lim inf
ε→0

ε log cG (√εB|[0,1] ∈ O
)
≥ − inf

ψ∈O
J(h), (3.2)

where

J(h) =


1
2

∫ 1

0
inf
σ∈Σ

(h′(s), σ−1h′(s))ds, h ∈ H,

+∞, otherwise,

(3.3)

and H =
{

f (·) =
∫ ·

0 f ′(s)ds; f ′ ∈ L2([0,1],Rd )
}

.
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LDP for stochastic flows

Consider the following small perturbation stochastic differential equa-
tion driven by d-dimensional G-Brownian motion B:

X ε(x , t) = x +

∫ t

0
bε(X ε(x , s))ds +

√
ε

∫ t

0
σε(X ε(x , s))dBs, (3.4)

where

bε = (bε1, · · · ,bεp)T : Rp → Rp; σε = (σεi,j) : Rp → Rp ⊗ Rd , ε ≥ 0

satisfy the following conditions:

(H1). bε and σε, ε ≥ 0 are uniformly Lipschitz continuous.

(H2). bε and σε converge uniformly to b := b0 and σ := σ0, respectively.
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For positive number p ≥ 1 given, for each N ≥ 1, ψ ∈ C(Rp× [0,1],Rp),
set

‖ψ‖N = sup
|x |≤N,t∈[0,1]

|ψ(x , t)|,

and define

ρ(ψ1, ψ2) =
∞∑

N=1

1
2N min{‖ψ1 − ψ2‖N ,1}, ψ1, ψ2 ∈ C(Rp × [0,1],Rp).

Then (C(Rp × [0,1],Rp), ρ) is a separable metric space.
For any f ∈ H, let Ψ(f )(x , t) ∈ C(Rp × [0,1],Rp) be a unique solution of
the following ordinary differential equation:

Ψ(f )(x , t) =x +

∫ t

0
b(Ψ(f )(x , s))ds +

∫ t

0
σ(Ψ(f )(x , s))f ′(s)ds (3.5)

I(ψ) = inf
h∈H
{J(h), ψ = Ψ(h)} , ψ ∈ C(Rp × [0,1],Rp). (3.6)
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Theorem 3.3

Let (H1) and (H2) hold. Let X ε = {X ε(x , t), x ∈ Rp, t ∈ [0,1]} be
a unique solution of the SDE (3.4). Then for any closed subset F in
(C (Rp × [0,1],Rp) , ρ),

lim sup
ε→0

ε log cG (X ε ∈ F ) ≤ − inf
ψ∈F

I(ψ) (3.7)

and for any open subset O in (C (Rp × [0,1],Rp) , ρ),

lim inf
ε→0

ε log cG (X ε ∈ O) ≥ − inf
ψ∈O

I(ψ), (3.8)

From the variational representation, we can prove that for any Φ ∈
Cb(C (Rp × [0,1],Rp)),

lim
ε→0

∣∣∣∣∣ε log EG
(

exp
{

Φ(X ε)

ε

})
− sup
ψ∈C(Rp×[0,1],Rp)

{Φ(ψ)− I(ψ)}

∣∣∣∣∣ = 0.

(3.9)
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Thank You
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