Stochastic Dynamics Associated with the Poisson-Dirichlet Distribution and the Dirichlet Process

Shui Feng McMaster University

July 19-23, 2010

The Seventh Workshop on Markov Processes and Related Topics at Beijing Normal University

– Typeset by FoilT $\overline{\rm FX}$ – 1

- GEM Distribution
- Poisson-Dirichlet Distribution
- Dirichlet Process
- GEM Process
- Infinite-Allele Model
- Fleming-Viot Process

1. GEM Distribution

For $0 \leq \alpha < 1, \theta > -\alpha$, let U_1, U_2, \dots be independent, and $U_i \sim Beta(1-\alpha, \theta + i\alpha)$. Set

$$
V_1 = U_1, V_n = (1 - U_1) \cdots (1 - U_{n-1}) U_n, n \ge 2.
$$

The law of $(V_1, V_2, ...)$ is called the GEM distribution.

2. Poisson-Dirichlet Distribution

The law of the descending order statistics of V_1, V_2, \ldots is called the two-parameter Poisson-Dirichlet distribution, denoted by $PD(\alpha, \theta).$

The case $\alpha = 0$ corresponds to Kingman's Poisson-Dirichlet distribution.

3. Dirichlet Process

Let ξ_1, ξ_2, \ldots be iid with common diffuse measure ν on $[0, 1]$, and independently, $(P_1(\alpha, \theta), P_2(\alpha, \theta), \ldots)$ follows the two-parameter Poisson-Dirichlet distribution. The random measure on $[0, 1]$

$$
\Xi_{\alpha,\theta,\nu}(dx) = \sum_{i=1}^{\infty} P_i(\alpha,\theta) \delta_{\xi_i}(dx)
$$

is called the two-parameter Dirichlet process, denoted by $\Pi_{\alpha,\theta,\nu}$.

$$
[0,1]^{\infty} = \{(x_1, x_2, \dots) : x_i \in [0,1], i = 1, 2, \dots\},
$$

\n
$$
\triangle = \{ \mathbf{p} = (p_1, p_2, \dots) \in [0,1]^{\infty} : \sum_{i=1}^{\infty} p_i \le 1 \},
$$

\n
$$
\nabla = \{(p_1, p_2, \dots) \in \triangle : p_1 \ge p_2 \ge \dots \ge 0 \},
$$

\n
$$
M_1([0,1]) = \text{the set of all probabilities on } [0,1].
$$

Then $PD(\alpha, \theta)$ is a probability on ∇ , the GEM distribution is probability on \triangle , and the Dirichlet process is a probability on $M_1([0,1]).$

4. GEM Process

For $0 \leq \alpha < 1, \theta + \alpha \geq 1$ and any $i \geq 1$, set

$$
c_i = \frac{1-\alpha}{2}, d_i = \frac{\theta + i\alpha}{2}.
$$

For independent Brownian motions $B_1(t), B_2(t), \ldots$, consider the following SDE

$$
dx_i(t) = (c_i - (c_i + d_i)x_i(t))dt + \sqrt{x_i(t)(1 - x_i(t))}dB_i(t).
$$

The diffusion $x_i(t)$ takes values in $[0, 1)$ and is symmetric with reversible measure $Beta(1 - \alpha, \theta + i\alpha)$.

– Typeset by FoilTEX – $7\,$

Consider the map

$$
\Phi : [0,1]^\infty \to \triangle, \ (x_1, x_2, \ldots) \mapsto (p_1, p_2, \ldots),
$$

where

$$
p_1 = x_1, \ p_n = (1 - x_1) \cdots (1 - x_{n-1}) x_n, \ n \ge 2.
$$

The GEM process is the \triangle -valued diffusion given by $\Phi(x_1(t), x_2(t) \dots)$. Let $C_{cl}^{\infty}([0,1]^\infty)$ be the set of all bounded, C^{∞} cylindrical functions on $[0, 1]^{\infty}$ and

$$
\mathcal{D} = \{f|_{\triangle} : f \in C_{cl}^{\infty}([0,1]^{\infty})\}.
$$

 $-$ Typeset by FoilT_EX $-$ 8

For any f in D , the generator of the GEM process is

$$
\mathcal{L}f(\mathbf{p}) = \frac{1}{2} \sum_{i,j=1}^{\infty} a_{ij}(\mathbf{p}) \frac{\partial^2 f}{\partial p_i \partial p_j} + \sum_{i=1}^{\infty} b_i(\mathbf{p}) \frac{\partial f}{\partial p_i},
$$

where

$$
a_{ij}(\mathbf{p}) = p_i(\delta_{ij} - p_j) + p_i p_j \sum_{k=1}^{i-1} \frac{p_k}{\hat{p}_k} + \delta_{ij} p_i \hat{p}_{i-1},
$$

$$
b_i(\mathbf{p}) = p_i \sum_{k=1}^{i} \left(\frac{(\delta_{ki}\hat{p}_{k-1} - p_k)(c_k\hat{p}_{k-1} - (c_k + d_k)p_k)}{p_k\hat{p}_k} \right),
$$

where $\hat{p}_k = (1 - \sum_{l=1}^k p_l)$

 $-$ Typeset by FoilT_EX – 9

Properties

For simplicity, denote $PD(\alpha, \theta)$ by μ . Then the Dirichlet form associated with the GEM process is given by

$$
\mathcal{E}(f,g)=\langle\mu,f(-\mathcal{L}g)\rangle
$$

with domain $\mathcal{D}(\mathcal{E})$.

Theorem 1. (F and Wang (07)) (1) The GEM process is the unique Feller process generated by \mathcal{L}_{i} ;

(2) The GEM process is symmetric with GEM distribution as the reversible measure;

 $-$ Typeset by FoilT_EX – 10

(3) There exists $c > 0$ such that for any f in D

$$
\langle \mu, f^2 \log f^2 \rangle \le c\mathcal{E}(f, f) + \langle \mu, f^2 \rangle \log \langle \mu, f^2 \rangle,
$$

which is the Log-Sobolev inequality.

Denote the semigroup of the GEM process by P_t . Then it follows from the Log-Sobolev inequality that for any q in the domain of the Dirichlet form satisfying $g \geq 0, \langle \mu, g \rangle = 1$, the relative entropy of $P_t(g)$ with respect to μ converges to zero exponentially fast as t tends to infinity.

5. Infinite-Allele Models

In Pitman (02), the GEM distribution and the Poisson-Dirichlet distribution in the case of $\alpha = 0$ are shown to be invariant distribution of certain Markov chains involving the split-and-merge transformations of an interval-partition. The case of $\alpha > 0$ is studied in Bertoin (08) where the dynamics involve an exchangeable fragmentation-coagulation process.

Our focus here is on an infinite-dimensional diffusion process.

For any $n \geq 1$, let

$$
\phi_1(\mathbf{p}) = 1, \ \phi_n(\mathbf{p}) = \sum_{i=1}^{\infty} p_i^n, \ n \ge 2, \ \mathbf{p} \in \nabla
$$

and

 \mathcal{D}_0 = algebra generated by $\{\phi_n : n \geq 1\}.$

For $f \in \mathcal{D}_0$, set

$$
\mathcal{L}_{\alpha,\theta}f(\mathbf{p}) = \frac{1}{2} \left\{ \sum_{i,j=1}^{\infty} p_i(\delta_{ij} - p_j) \frac{\partial^2 f}{\partial p_i \partial p_j} - \sum_{i=1}^{\infty} (\theta p_i + \alpha) \frac{\partial f}{\partial p_i} \right\}
$$

– Typeset by FoilT EX – 13

.

Theorem 2. (Petrov(09)) (1) The generator $\mathcal{L}_{\alpha,\theta}$ defined on \mathcal{D}_0 is closable in $C(\nabla)$. The closure, also denoted by $\mathcal{L}_{\alpha,\theta}$ for notational simplicity, generates a unique ∇ -valued diffusion process $X_{\alpha,\theta}(t)$, the two-parameter infinite-allele diffusion process;

(2) The process $X_{\alpha,\theta}(t)$ is reversible with respect to $PD(\alpha,\theta)$;

(3) The spectrum of $\mathcal{L}_{\alpha,\theta}$ consists of the eigenvalues $\{0, -\lambda_2, -\lambda_3, \ldots\}$ with

$$
\lambda_n = \frac{n(n-1+\theta)}{2}, n \ge 0.
$$

The eigenvalue 0 is simple, and the multiplicity of $-\lambda_n$ for $n \geq 2$ is $\pi(n) - \pi(n-1)$ with $\pi(n)$ denoting the total number of partitions of integer n .

– Typeset by FoilTEX – 14

Theorem 3. (F and $\text{Sun}(09)$) (1) The bilinear form

$$
\mathcal{E}_{\alpha,\theta}(f,g) = \frac{1}{2} \int_{\nabla} \sum_{i,j=1}^{\infty} p_i (\delta_{ij} - p_j) \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial p_j}(\mathbf{p}) dPD(\alpha,\theta)
$$

is closable on $L^2(\nabla; PD(\alpha,\theta))$ and the closure is a regular Dirichlet form. The symmetric Hunt process associated with the Dirichlet form coincides with the process in Theorem [2.](#page-13-0)

(2). For any
$$
k \geq 1
$$
, let

$$
C_k = \nabla \cap \{ \sum_{i=1}^k p_i = 1 \}, D_k = C_k \cap \{ p_k > 0 \}.
$$

If $\theta + k\alpha < 1$, then the process $X_{\alpha,\theta}(t)$ will hit any subset of C_k with

– Typeset by FoilT $\overline{\rm FX}$ – 15

non-zero $(k-1)$ -dimensional Lebesgue measure; if $\theta + k\alpha \geq 1$, then D_k is not hit by $X_{\alpha,\theta}$.

Remarks. Theorems [2](#page-13-0) and [3](#page-14-0) are generalizations of the results in Ethier and Kurtz (81), Ethier (92), and Schmuland (91). There is a fundamental change in boundary behavior when α changes from zero to a positive number. In Schmuland (91), all finite dimensional simplex will be hit as long as $\theta < 1$; for $\alpha > 0$, the condition $\theta + k\alpha$ puts additional restrictions on the dimension of the simplex that can be hit.

6. Fleming-Viot Process

Let S be a compact metric space, $C(S)$ be the set of continuous functions on S , $M_1(S)$ the space of probability measures on S equipped with the usual weak topology, and ν a diffuse probability in $M_1(S)$. Consider operator A of the form

$$
Af(x) = \frac{\theta}{2} \int (f(y) - f(x)) \nu(dy), \ f \in C(S).
$$

Define

$$
\mathcal{D} = \{u : u(\mu) = f(\langle \phi, \mu \rangle), f \in C_b^{\infty}(\mathbf{R}), \phi \in C(S), \mu \in M_1(S) \},\
$$

where $\langle \phi, \mu \rangle$ is the integration of ϕ with respect to μ and $C_b^\infty ({\bf R})$ denotes the set of all bounded, infinitely differentiable functions on $\mathbf R$.

– Typeset by FoilT $\overline{\rm FX}$ – 17

Then the Fleming-Viot process with neutral parent independent mutation (FV process) is a pure atomic measure-valued Markov process with generator

$$
\mathcal{A}u(\mu)=\langle A\delta u(\mu)/\delta\mu(\cdot),\mu\rangle+\frac{f''(\langle\phi,\mu\rangle)}{2}\langle\phi,\phi\rangle_{\mu},\,\,u\in\mathcal{D},
$$

where

$$
\delta u(\mu)/\delta \mu(x) = \lim_{\varepsilon \to 0+} \varepsilon^{-1} \{ u((1-\varepsilon)\mu + \varepsilon \delta_x) - u(\mu) \},
$$

$$
\langle \phi, \psi \rangle_{\mu} = \langle \phi \psi, \mu \rangle - \langle \phi, \mu \rangle \langle \psi, \mu \rangle,
$$

and δ_x stands for the Dirac measure at $x \in S$. It is known (Ethier (90)) that the Fleming-Viot process with parent independent mutation is reversible with the Dirichlet process $\Pi_{0,\theta,\nu}$ as the reversible measure.

[–] Typeset by FoilTEX – 18

Dirichlet Form Formulation

Set

$$
\mathcal{F} := \mathrm{Span}\{\langle f_1, \mu \rangle \cdots \langle f_k, \mu \rangle : f_1, \ldots, f_k \in C(S), k \geq 1\}.
$$

Consider the following symmetric bilinear form

$$
\mathcal{E}_{FV}(u,v)=\frac{1}{2}\int \langle \frac{\delta u}{\delta\mu(\cdot)},\frac{\delta v}{\delta\mu(\cdot)}\rangle_{\mu}\Pi_{0,\theta,\nu_0}(d\mu),\quad u,v\in\mathcal{F}.
$$

The Fleming-Viot process is the symmetric Hunt process associated with this form.

 $-$ Typeset by FoilT_EX – 19

Two-Parameter FV

For $0 < \alpha < 1$, set

$$
\mathcal{E}^\alpha_{FV}(u,v)=\frac{1}{2}\int \langle \frac{\delta u}{\delta\mu(\cdot)},\frac{\delta v}{\delta\mu(\cdot)}\rangle_{\mu}\Pi_{\alpha,\theta,\nu_0}(d\mu),\quad u,v\in\mathcal{F},
$$

Natural Questions: Is the bilinear form $\mathcal{E}_{FV}^{\alpha}$ closable? Does it give rise to a regular Dirichlet form?

Positive answers to these questions will lead to a two-parameter Fleming-Viot process.

Two special cases are confirmed in F and Sun (09).

Special Case I

Assume that $\theta = 0, 0 < \alpha < 1, S = \{0, 1\}$ with $\beta = \nu(\{0\}), \hat{\beta} = \gamma$ $1 - \beta$. Then we have

Theorem 4. The form $\mathcal{E}_{FV}^{\alpha}$ is closable and the closure is a regular Dirichlet form.

The generator in this case has the form

$$
\mathcal{A}_{\alpha,0}f(p) = \frac{1}{2}p(1-p)f''(p) + \frac{\alpha}{2}f'(p)[(1-2p) -
$$

$$
\frac{2\hat{\beta}^2p^{2\alpha}(1-p) - 2\beta^2(1-p)^{2\alpha}p + 2\beta\hat{\beta}(1-2p)p^{\alpha}(1-p)^{\alpha}\cos(\alpha\pi)}{\hat{\beta}^2p^{2\alpha} + p^2(1-p)^{2\alpha} + 2\beta\hat{\beta}p^{\alpha}(1-p)^{\alpha}\cos(\alpha\pi)}
$$

 $-$ Typeset by FoilT_EX – 21

.

Special Case II

Assume that $\theta > 0, 0 < \alpha < 1, S = \{0, 1\}.$

Theorem 5. The form $\mathcal{E}_{FV}^{\alpha}$ is closable and the closure is a regular Dirichlet form.

The generator in this case has the form

$$
\mathcal{A}_{\alpha,\theta}f(p) = \frac{1}{2}p(1-p)f''(p) + \frac{1}{2}f'(p)[(1-2p) + p(1-p)g'_{\alpha,\theta}(p)/g_{\alpha,\theta}(p)],
$$

where $g_{\alpha,\theta}(p)$ is the density function of $\Xi_{\alpha,\theta}(\{0\})$.

 $-$ Typeset by FoilT_EX – 22

General Case

The problem remains open! The results so far seem to suggest that the parameter α will only change the structure of the drift.

References

1. J. Bertoin (2008). Two-parameter Poisson–Dirichlet measures and reversible exchangeable fragmentation-coalescence processes. Combin. Probab. Comput. 17, No. 3, 329–337.

2. S.N. Ethier (1990). The infinitely-many-neutral-alleles diffusion model with ages. Adv. Appl. Probab. 22, 1–24.

3. S.N. Ethier (1992). Eigenstructure of the infinitely-manyneutral-alleles diffusion model. J. Appl. Probab. 29, 487-498.

4. S.N. Ethier and T.G. Kurtz (1981). The infinitely-manyneutral-alleles diffusion model. Adv. Appl. Probab., 13, 429-452.

5. S. Feng and F.Y. Wang (2007). A class of infinite-dimensional diffusion processes with connection to population genetics. J. Appl. Prob. 44, 938-949.

6. S. Feng and W. Sun (2009). Some diffusion processes associated with two parameter Poisson-Dirichlet distribution and Dirichlet process. Probab. Theory Relat. Fields, DOI 10.1007/s00440- 009-0238-2.

7. L.A. Petrov (2009). Two-parameter family of infinitedimensional diffusions on the Kingman simplex. $Funct.$ Anal. Appl. 43, No. 4, 279–296.

8. J. Pitman (2002). Poisson-Dirichlet and the GEM invariant distributions for the split-and-merge transformation of an intervalpartition. Combin. Probab. Comput. 11, 501514.

9. B. Schmuland (1991). A result on the infinitely many neutral alleles diffusion model. J. Appl. Probab. 28, 253-267.

THANK YOU!

 $-$ Typeset by FoilT $EX -$ 27