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Outline

Introduction of the model and result.
▶ Branching random walk;
▶ Minimal displacement;
▶ Consistent Minimal displacement.

Trials and errors leading to the proof.
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Definition of Branching Random Walks

Given a Galton-Watson tree T = (V ,E ) (with branching laws given
by {pk}∞k=0) and i.i.d. random variables {Xuv}uv∈E associated to
each edge uv in the tree. Then for each v ∈ Dn (all the vertices in
the nth level), one defines Sv =

∑n−1
k=0 Xvkvk+1 where v0, v1, . . . , vn is

the ancestor of v(= vn) at the level 0, 1, . . . , n. Then {Sv ∣v ∈ V }
forms a branching random walk.
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Assumptions

b-ary tree.

Large deviation assumption:

Ee�Xe <∞ for some � < 0 and some � > 0. (1)

Minimal displacement assumption: for some �− < 0 and �+ > 0 in
the interior of {� : Λ(�) <∞}, where Λ(�) = log Ee�Xe is the
log-moment generating function

�±Λ′(�±)− Λ(�±) = log b, (2)
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Minimal Displacement

Minimal displacement at level n: mn = minv∈Dn Sv .

Under previous assumptions, limn→∞
mn
n = Λ′(�−) := m, a.s..

WLOG, by shift, we can and will assume m = 0 later on.
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Consistent Minimal Displacement

The offset is defined as Ln =
minv∈Dn maxnk=0(Svk −mk) (= minv∈Dn maxnk=0 Svk when m = 0) .
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Figure: L3 when b = 2 and m = 0
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A Little More Comments about the Minimal Displacements

More delicate results on mn are available. That is, the second order
term can be very different. For example, under different assumptions,

▶ Bramson(1978): limn→∞ mn <∞ a.s.
▶ Dekking and Host (1991): limn→∞

mn log 2
log log n → g a.s.

Some properties of mn do not necessarily require the independence of
displacements of the children of the same parent. (The independence
inherited from the tree is enough.) For example,

▶ Dekking and Host (1991) proved the tightness of mn when Xuv s are
only assumed to be bounded.

▶ Fang and Zeitouni (2010, in progress): tightness of mn when Xuv s are
only assumed to have left exponential tails.
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Results about the Consistent Minimal Displacements

Theorem (O. Zeitouni, M. Fang, 2009)

Under assumption (1) and (2) and with l0 =
3

√
3�2�2

Q

−2�− where �2Q is a

certain variance, it holds that

lim
n→∞

Ln
n1/3

= l0 a.s. . (3)
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Stories (History, or Development)

In the process of studying random walks in random environments on
trees, Hu and Shi (2007) discovered that there exist constants
c1, c2 > 0 such that

c1 ≤ lim inf
n→∞

Ln
n1/3

≤ lim sup
n→∞

Ln
n1/3

≤ c2.

As part of their study of RWRE on trees, G. Faraud, Y. Hu and Z. Shi
(2009) independently obtained Theorem 1.
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A Large Deviation Result of Mogul’skii

Define Sn(t) = X0+X1+⋅⋅⋅+Xk

n1/3
for k

n ≤ t < k+1
n , k = 0, 1, . . . , n − 1,, where

X0 = 0 and {Xi}i≥1 are iid with EQ(Xi ) = 0. Let f1(t) and f2(t) be two
right-continuous and piecewise constant functions on [0, 1].
G = ∪0≤t≤1{(f1(t), f2(t))× t} is a region bounded by f1(t) and f2(t).

Theorem (Mogul’skii, 1974)

Under the above assumptions,

Q(Sn(t) ∈ G , t ∈ [0, 1]) = e−
�2�2Q

2
H2(G)n1/3+o(n1/3),

where

H2(G ) =

∫ 1

0

1

(f1(t)− f2(t))2
dt.
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A First Moment Argument — Hope for a Lower Bound

Consider
Nn =

∑
v∈Dn

1{−c−n1/3≤S
vk
≤c+n1/3 for k=0,1,...,n}.

Calculate the first moment, and we have

ENn = e
(c+−

�2�2Q
2(c−+c+)2

)n1/3+o(n1/3)
.

Notice that when c− →∞, we can choose c+ → 0 and still have
ENn → 0. This implies that

lim inf
n→∞

Ln
n1/3

≥ 0.

It does NOT work!
Remark This first moment argument completely ignores the tree structure.
In fact, if we define similar quantity Lindn for independent walks, we do have

lim
n→∞

Lindn

n1/3
= 0.
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Difference between Branching Random Walks and
Independent Random Walks

0 1 2 3 4 5 6 7 8 9
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

0 1 2 3 4 5 6 7 8 9
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

12 / 19



Recursion Inequality — some Lower Bound

Key Recursion Inequality

Lm+n ≥ min
v∈Dm

(Sv + Lvn) ∨ 0

where Lvn is defined in the same way as Ln for each vertex v ∈ V .
Take exponentials first, use change of measure, and the best lower bound
based on this recursion is 0.688 (for the standard Gaussian).
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A Second Moment Argument — some Upper Bound

First and second moments are

ENn = e
(c+−

�2�2Q
2(c−+c+)2

)n1/3+o(n1/3)

and

EN2
n ≤ e

(cc−+2cc+−
�2�2Q

2(c−+c+)2
)n1/3+o(n1/3)

.

Apply a second moment method, we obtain

P(Nn > 0) ≥ (ENn)2

EN2
n

≥ e
(−cc−−

�2�2Q
2(c−+c+)2

)n1/3+o(n1/3)
.

By a truncation (at level of order n1/3) argument, we get some upper
bound. In standard Gaussian case, the optimal truncation would give us an
upper bound 3.047.
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A Closer Look at the Second Moment Argument

The fixed right bound is kind of determined by the problem. But to
impose a fixed left bound −c−n1/3 for all levels is not natural.

Instead of approximating the whole branching random walks by
independent walks, we can try to divide branching random walks into
several levels and to approximating branching random walks of depth
�n by independent random walks.

We can then consider walks who stay within [�kn
1/3, ln1/3] for levels

between k�n and (k + 1)�n.
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The Optimization Problem

After a second moment method calculation, we need (consider the
continuous �t)

max
t
{−�(t) +

∫ t

0

c

(l − �(u))2
du} ≤ 0

to make the truncation argument work. With w(t) = l − �(t), we need

l ≥ max
t
{w(t) +

∫ t

0

c

w(u)2
du}.

Thus the best upper bound we can hope by this argument is

min
w :(0,1)→R+

max
t
{w(t) +

∫ t

0

c

w(u)2
du},

and we solve this problem, we can find the ’best’ curve s(t) satisfies

s ′(t) = − �2�2
Q

2�−(l−s(t))2 , s(0) = 0.
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The Lower Bound — the First Moment Revisited

In the picture, Zi denote the number of vertices in the correspondence
region. When l1 < l0, using result of Mogul’skii, we can prove that
E (

∑K−1
k=0 Zk + Z )→ 0 exponentially in n1/3. Thus

∑K−1
k=0 Zk + Z = 0 a.s.

for all large n. That gives the lower bound

lim inf
n→∞

Ln
n1/3

≥ l0 a.s.. (4)
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The Upper Bound — A Modified Second Moment
Argument

When l2 > l0, define

Ñ l2
n =

∑
v∈Dn

1{S
vj
∈[skn1/3,l2n1/3], for k�n≤j≤(k+1)�n, k=0,..., 1

�
−1}.

Calculating EÑ l2
n and E (Ñ l2

n )2, we obtain by second moment method

P(Ñ l2
n > 0) ≥ P(Ñ l2

n > 0) ≥ e−�2n
1/3+o(n1/3)

for some �2 small. This is good enough for us to obtain the upper bound
by a standard truncation argument.
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End of Presentation.

Thank You!

&

Have a nice half-day break!
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