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Basic Question

For V in L2:

When does there exist f ∈ L2 with

grad f = V?



Poincare’ Lemma for Rn

∃ f with grad f = V

⇐⇒

〈DV (x)(a), b〉 = 〈DV (x)(b), a〉

for all a, b ∈ Rn, and x ∈ Rn.
Set

d1V !
x(a, b) := d1V !(a ∧ b) := 1

2 (〈DV (x)(a), b〉 − 〈DV (x)(b), a〉)
Exterior derivative.



Rn, n = 1. Ends

Take g : R → R with

g(x) =

{
−1 if x on Left
+1 if x on Right

Set V = grad g. Compact support , so V ∈ L2.

d1V ! = 0.

BUT V *= grad f for f ∈ L2 since neither end has finite
measure.



Related question

Do there exist harmonic functions of finite energy?i.e.

h : M → R

s.t.
1. ∆h = 0
2. V := grad h ∈ L2

3. h not constant.
Notation:

∆ = div grad = −d∗d

If so: div V = 0 & d1V ! = 0. Harmonic vector field.



L2 Hodge Decomposition
M complete , µ smooth with positive density. Then:
The Hilbert space of L2-vector fields

= Image of grad on L2-functions⊕H1
µ(M)

⊕Image of (div1) on 2-vectors

where H1
µ(M) = {V : d1V ! = 0 & div V = 0} is the space of

L2 Harmonic vector fields. Also div1 is (d1)∗.
Positive answer to our question iff grad has closed range
and there are no L2-harmonic vector fields:

H1
µ(M) = 0.



Rn

grad does not have closed range



Classical Wiener space

M = Ω= C0Rm = {σ : [0, T ] → Rm : cts. & s.t. σ(0) = 0}.

µ = P = Wiener measure

H = Cameron-Martin Space = L2,1
0 Rm

〈h1, h2〉H =

∫ T

0
〈ḣ1(t), ḣ2(t)〉Rmdt

As in Malliavin calculus we follow Gross: take H-valued
vector fields, H-derivatives.



H-derivative and gradient

Closed operators:

d : D2,1 ⊂ L2(C0Rm; R) → L2(C0Rm; H∗)

grad : D2,1 ⊂ L2(C0Rm; R) → L2(C0Rm; H)

dfx(v) = 〈grad f (x), v〉H
dfx = (grad f )!

grad f (x) = (dfx)!



exterior derivative:Shigekawa (1986)

Closed operator:

d1 : Dom(d1) ⊂ L2(C0Rm; H∗) → L2(C0Rm → (∧2H)∗)

defined for H-vector fields A,B with A(x) = a and B(x) = b
by:

2d1φx(a∧b) = d (φ(B(·)))x A(x)−d(φ(A(·)))xB(x)−φx([A, B](x))

For V : C0Rm → H we have

2d1V !
x(a ∧ b) = 〈dVx(a), b〉H − 〈dVx(b), a〉H .



Clark-Ocone Formula

If f ∈ D2,1 then

f =

∫

C0Rm
f dP− div(P gradf )

where P : L2(C0Rm; H) → L2(C0Rm; H) is the projection
onto adapted vector fields.
Martingale representation theorem

Consequences: grad and d have closed range
and Pgrad f = 0 ⇔ grad f = 0 ⇔ f = constant



Beginning remark (Yuxin Yang)

Set
CO(V ) = − div(PV ) : C0Rm → R

If df ∈ L2 then f = c + CO(grad f ) ∈ L2. In fact:

V ! ∈ Dom(d1) =⇒ ||V − grad CO(V )||L2 ≤
√

2||d1V !||L2

Consequence: d1V ! = 0 ⇔ V = grad f some f ∈ D2,1

cf Shigekawa ’86, Leandre ’96



More precisely:

V ! ∈ Dom(d1)

=⇒
d
dt

(Vt−gradCO(V )t) =

∫ T

t
〈E{ d

ds
(gradV̇t)s−τ

d
dt

(gradV̇s)t |Fs},dBs〉Rm

=−2
∫ T

t
(2)〈E{

d
dt
⊗ d

ds
(d1V !)!

t ,s|Fs∨t}, dBs〉Rm .

Consequence:
For some f ∈ D2,1

d1V ! = 0 ⇔ V = grad f ⇔ E{( d
dt ⊗

d
ds )(d1V !)!

t ,s|Fs∨t} = 0



Based paths on M, compact connected Riemannian

Cx0M = {σ : [0, T ] → M cts. with σ(0) = x0}

µ = Brownian motion measure.

Tangent space at the path σ:

TσCx0M = {v : [0, T ] → TM : cts.with v0 = 0 & vt ∈ Tσ(t)M}.



Bismut tangent spaces

Need H-differentiation.

Hσ = {v ∈ TσCx0M : vt = //tht with h ∈ L2,1Tx0M}

Then

f : Cx0M → R dfσ = dHfσ : Hσ → R σ ∈ Cx0M

Take it closed, (Driver), with associated gradient and
divergence operators, and self-adjoint ∆ = div grad .



Clarke-Ocone formula

If f ∈ D2,1 then by S.Fang

f =

∫

Cx0 M
f dµ− div(Pgrad f )

where P : L2ΓH→ L2ΓH is the projection onto adapted
vector fields.

Therefore [Fang]: d has closed range in the space of
L2-H-one-forms

φσ : Hσ → R with
∫

Cx0 M
|φσ|2Hσ

dµ(σ) < ∞



Our question for vector fields on Cx0M.

d1φ(U(x),V (x)) = d(φ(V (·)))x U(x)−d(φ(U(·)))xV (x)−φx([U, V ](x))

TROUBLE!! The bracket of H-vector fields may not be an
H-vector field.

In general cannot define a suitable closed exterior
derivative operator d1 from L2ΓH∗ to L2Γ ∧2 H∗ , [Léandre].

BUT: OK on classical Wiener space, [Shigekawa,1986]; for
M a compact Lie group, bi-invariant metric with flat
connection, even for loops,[Fang& Franchi,1997]. Also
[Kusuoka,1991] for a different approach. See also [Jones
& Leandre, 1991],& many papers of [Leandre] for non-L2

theories.



Modified approach: K.D.E.&Xue-Mei Li

Perturb ∧2H to more suitable new Hilbert spaces H2

with continuous inclusion

H2
σ ↪→ ∧2TσCx0

For smooth cylndrical 1-forms φ set:

d1
Hφ = d1φ|H2.

This is closable. Take its closure! Call it d1



H-2-vectors and H-2-forms

For u ∈ ∧2TCx0 :

u ∈ H2 ⇐⇒ u − R(u) ∈ ∧2H
⇐⇒ u = (Id + Q)(v) some v ∈ ∧2H

where R : ∧2TCx0 → ∧2TCx0 is the curvature operator of
the damped Markovian connection.
Get Hodge decomposition for L2-H-one-forms.
K.D.E. & Xue-Mei Li, JFA 2007



Damped Markovian connection

For V ∈ D2,1H and v ∈ Hσ we have

∇∇v V ∈ Hσ

Define ∇∇! : D2,1H→ L2Γ(H⊗H) by

〈∇∇!(V )σ, v1 ⊗ v2〉Hσ⊗Hσ = 〈∇∇v2V , v1〉Hσ



Use of damped Markovian connection, ∇∇, on H

Define D1 : D2,1(H) → L2Γ(∧2H) by

D1(V ) =
1
2

(
τ(∇∇!V )−∇∇!V

)
∈ L2 ∧2 H.

Then for cylindrical φ:

d1φ(U) = 〈D1φ!, U〉∧2H + φTT (U)

for the torsion TT : ∧2H→ TCx0M given by

TT (U1 ∧ U2) := ∇∇U1U2 −∇∇U2U1 − [U1, U2].



Formula for Path Space

DD
dt (grad CO(V )− V )t = 2

∫ T
t 〈

DD
dt ⊗

DD
dsP

(2)D1V , d{σs}〉H
where
P(2) : L2Γ(H⊗H) → L2Γ(H⊗H) is the projection on A2, the
space of U ∈ L2Γ(H⊗H) such that Us,t is Fs∨t -measurable.

Consequence: V = grad f some f ∈ D2,1 iff P(2)D1V = 0.
BUT D1grad f = −(df ◦ TT )∗



Q and TT

• div TT (U) = 0 if U = U1 ∧ U2 with U1 and U2 adapted.
{Cruzeiro & Fang 1997}.

• TT (U) = div1 Q(U) if U = U1 ∧ U2 with U1 and U2

adapted. {Elworthy &Xue-Mei Li 2008}.

• Such U = U1 ∧ U2 are total in A2. Therefore the
above hold for U ∈ A2.



D1 and d1

From this:
P2D1(V ) = P2(Id − R)(d1V !)!.



Revised formula; conclusions

If V ∈ dom d1 then CO(V ) ∈ D2,1 and

DD
dt

(grad CO(V )− V ) = 2
∫ T

t
〈DD
dt
⊗ DD

ds
P(2)(d1V )!, d{σs}〉

. Thus:
• V = grad f some f ∈ D2,1 iff d1f = 0.

• If φ is an L2 harmonic H-one-form then φ = 0.

• ?It seems that our definition of the exterior derivative
was the correct one !



Based Loop Spaces

• Eberle: d does not have closed range if M has a
closed geodesic with a neighbourhood of negative
curvature

• Aida: d does have closed range for certain radially
symmetric asymptotically flat manifolds

• X.Chen, Xue-Mei Li, Bo Wu: d does have closed
range for n-dimensional hyperbolic space.

• No definition of d1 for L2 forms BUT for based loops
on Lie groups G using left invariant connections all
works (Fang &Franchi), and (Aida) gets L2

cohomology vanishing for G simply connected.



end

THAT’S IT THANKS !


