WHICH VECTOR FIELDS ON PATH SPACES ARE GRADIENTS?

David Elworthy, Warwick University

Seventh Workshop on Markov Processes and Related Topics Beijing Normal University, 19-23 July, 2010.

Report on work with Yuxin Yang

(ロ) (同) (三) (三) (三) (三) (○) (○)

Sub-title

NON-ANTICIPATION AIDING GEOMETRY

Vanishing of L^2 harmonic one forms on based path space

key-words: Malliavin calculus, Clark-Ocone formula, Markovian connections, exterior derivative

Starting point: Len Gross "Potential Theory on Hilbert Spaces" JFA 1967

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

For V in L^2 :

When does there exist $f \in L^2$ with

grad f = V?

Poincare' Lemma for \mathbf{R}^n

 $\exists f \text{ with } grad f = V$

\Leftrightarrow

 $\begin{array}{l} \langle DV(x)(a),b\rangle = \langle DV(x)(b),a\rangle \\ \text{for all } a,b\in \mathbf{R}^n \text{, and } x\in \mathbf{R}^n. \\ \text{Set} \\ d^1 V_x^{\sharp}(a,b) := d^1 V^{\sharp}(a\wedge b) := \frac{1}{2} \left(\langle DV(x)(a),b\rangle - \langle DV(x)(b),a\rangle \right) \\ \text{Exterior derivative.} \end{array}$

R^{*n*}, *n* = 1. Ends

Take $g: \mathbf{R} \to \mathbf{R}$ with

$$g(x) = \left\{ egin{array}{cc} -1 & ext{if } x ext{ on Left} \ +1 & ext{if } x ext{ on Right} \end{array}
ight.$$

Set V = grad g. Compact support, so $V \in L^2$.

$$d^1 V^{\sharp} = 0.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

BUT $V \neq grad f$ for $f \in L^2$ since neither end has finite measure.

Related question

Do there exist harmonic functions of finite energy?i.e.

 $h: M \to \mathbf{R}$

s.t.

- 1. $\Delta h = 0$
- 2. $V := grad h \in L^2$
- 3. h not constant.

Notation:

 $\Delta = \operatorname{div} \operatorname{grad} = -\operatorname{d}^*\operatorname{d}$

If so: div $V = 0 \& d^1 V^{\sharp} = 0$. Harmonic vector field.

L² Hodge Decomposition

M complete , μ smooth with positive density. Then: The Hilbert space of *L*²-vector fields

= Image of grad on L^2 -functions $\oplus \mathcal{H}^1_\mu(M)$

 \oplus Image of (*div*¹) on 2-vectors

where $\mathcal{H}^{1}_{\mu}(M) = \{V : d^{1}V^{\sharp} = 0 \& \text{ div } V = 0\}$ is the space of L^{2} Harmonic vector fields. Also div¹ is $(d^{1})^{*}$. Positive answer to our question iff *grad* has closed range and there are no L^{2} -harmonic vector fields:

 $\mathcal{H}^1_\mu(M)=0.$

grad does not have closed range

Classical Wiener space

$$M = \Omega = C_0 \mathbf{R}^m = \{ \sigma : [0, T] \to \mathbf{R}^m : \text{ cts. & s.t. } \sigma(0) = 0 \}.$$
$$\mu = \mathbf{P} = \text{Wiener measure}$$
$$H = \text{Cameron-Martin Space} = L_0^{2,1} \mathbf{R}^m$$
$$\langle h^1, h^2 \rangle_H = \int_0^T \langle \dot{h}^1(t), \dot{h}^2(t) \rangle_{\mathbf{R}^m} dt$$

As in Malliavin calculus we follow Gross: take H-valued vector fields, H-derivatives.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

H-derivative and gradient

Closed operators:

$$d: \mathcal{D}^{2,1} \subset L^2(C_0 \mathbf{R}^m; \mathbf{R}) \to L^2(C_0 \mathbf{R}^m; H^*)$$

grad: $\mathcal{D}^{2,1} \subset L^2(C_0 \mathbf{R}^m; \mathbf{R}) \to L^2(C_0 \mathbf{R}^m; H)$

$$egin{aligned} df_x(m{v}) &= \langle grad \; f(x),m{v}
angle_H\ df_x &= (grad \; f)^{\sharp}\ grad \; f(x) &= (df_x)^{\sharp} \end{aligned}$$

exterior derivative:Shigekawa (1986)

Closed operator:

$$d^{1}: \textit{Dom}(d^{1}) \subset L^{2}(C_{0}\mathbf{R}^{m}; H^{*}) \rightarrow L^{2}(C_{0}\mathbf{R}^{m} \rightarrow (\wedge^{2}H)^{*})$$

defined for H-vector fields A, B with A(x) = a and B(x) = b by:

 $2d^{1}\phi_{x}(a \wedge b) = d\left(\phi(B(\cdot))\right)_{x}A(x) - d(\phi(A(\cdot)))_{x}B(x) - \phi_{x}([A, B](x))$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

For $V : C_0 \mathbb{R}^m \to H$ we have $2d^1 V_x^{\sharp}(a \land b) = \langle dV_x(a), b \rangle_H - \langle dV_x(b), a \rangle_H.$

Clark-Ocone Formula

If $f \in \mathcal{D}^{2,1}$ then

$$f = \int_{C_0 \mathbf{R}^m} f \, d\mathbf{P} - \operatorname{div}(\mathcal{P} \, \operatorname{grad} f)$$

where $\mathcal{P} : L^2(C_0 \mathbf{R}^m; H) \to L^2(C_0 \mathbf{R}^m; H)$ is the projection onto adapted vector fields. Martingale representation theorem

Consequences: grad and d have closed range and \mathcal{P} grad $f = 0 \Leftrightarrow$ grad $f = 0 \Leftrightarrow f = constant$

Beginning remark (Yuxin Yang)

Set

$$CO(V) = -\operatorname{div}(\mathcal{P}V) : C_0 \mathbf{R}^m \to \mathbf{R}$$

If $df \in L^2$ then $f = c + CO(grad f) \in L^2$. In fact:

 $V^{\sharp} \in \mathsf{Dom}(d^1) \Longrightarrow ||V - grad \ CO(V)||_{L^2} \le \sqrt{2} ||d^1 V^{\sharp}||_{L^2}$

Consequence: $d^1 V^{\sharp} = 0 \Leftrightarrow V = grad \ f \text{ some } f \in \mathcal{D}^{2,1}$ cf Shigekawa '86, Leandre '96 More precisely:

$$V^{\sharp} \in \text{Dom}(d^{1}) \implies$$

$$\stackrel{d}{\longrightarrow} \frac{d}{dt} (V_{t} - gradCO(V)_{t}) = \int_{t}^{T} \langle \mathbf{E} \{ \frac{d}{ds} (grad \dot{V}_{t})_{s} - \tau \frac{d}{dt} (grad \dot{V}_{s})_{t} | \mathcal{F}_{s} \}, dB_{s} \rangle_{\mathbf{R}^{t}} = -2 \int_{t}^{T} (2) \langle \mathbf{E} \{ \frac{d}{dt} \otimes \frac{d}{ds} (d^{1}V^{\sharp})_{t,s}^{\sharp} | \mathcal{F}_{s \lor t} \}, dB_{s} \rangle_{\mathbf{R}^{t}}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Consequence: For some $f \in \mathcal{D}^{2,1}$ $d^{1}V^{\sharp} = 0 \Leftrightarrow V = grad \ f \Leftrightarrow \mathbf{E}\{(\frac{d}{dt} \otimes \frac{d}{ds})(d^{1}V^{\sharp})_{ts}^{\sharp} | \mathcal{F}_{s \lor t}\} = 0$

Based paths on *M*, compact connected Riemannian

 $C_{x_0}M = \{ \sigma : [0, T] \rightarrow M \text{ cts. with } \sigma(0) = x_0 \}$

 $\mu =$ Brownian motion measure.

Tangent space at the path σ :

 $T_{\sigma}C_{x_0}M = \{v : [0, T] \rightarrow TM : \text{cts.with } v_0 = 0 \& v_t \in T_{\sigma(t)}M\}.$

Bismut tangent spaces

Need H-differentiation.

 $\mathcal{H}_{\sigma} = \{ \mathbf{v} \in T_{\sigma} C_{\mathbf{x}_0} M : \mathbf{v}_t = //_t h_t \text{ with } h \in L^{2,1} T_{\mathbf{x}_0} M \}$

Then

$$f: C_{x_0}M \to \mathbf{R}$$
 $df_{\sigma} = d_H f_{\sigma} : \mathcal{H}_{\sigma} \to \mathbf{R}$ $\sigma \in C_{x_0}M$

Take it closed, (Driver), with associated gradient and divergence operators, and self-adjoint $\Delta = \text{div } grad$.

Clarke-Ocone formula

If $f \in \mathcal{D}^{2,1}$ then by S.Fang

$$f = \int_{C_{x_0}M} f \, d\mu - \operatorname{div}(\mathcal{P}grad f)$$

where $\mathcal{P}:L^2\Gamma\mathcal{H}\to L^2\Gamma\mathcal{H}$ is the projection onto adapted vector fields.

Therefore (Fang): d has closed range in the space of L^2 -H-one-forms

$$\phi_{\sigma}: \mathcal{H}_{\sigma} \to \mathbf{R} \text{ with } \int_{\mathcal{C}_{\mathbf{x}_0} M} |\phi_{\sigma}|^2_{\mathcal{H}_{\sigma}} d\mu(\sigma) < \infty$$

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ ― 国 - のへで

Our question for vector fields on $C_{x_0}M$.

 $d^{1}\phi(U(x),V(x)) = d(\phi(V(\cdot)))_{x} U(x) - d(\phi(U(\cdot)))_{x} V(x) - \phi_{x}([U,V](x))$

TROUBLE!! The bracket of *H*-vector fields may not be an *H*-vector field.

In general cannot define a suitable closed exterior derivative operator d^1 from $L^2\Gamma\mathcal{H}^*$ to $L^2\Gamma \wedge^2 \mathcal{H}^*$, (Léandre).

BUT: OK on classical Wiener space, (Shigekawa,1986); for M a compact Lie group, bi-invariant metric with *flat* connection, even for loops,(Fang& Franchi,1997). Also (Kusuoka,1991) for a different approach. See also (Jones & Leandre, 1991),& many papers of (Leandre) for non- L^2 theories.

Modified approach: K.D.E.&Xue-Mei Li

Perturb $\wedge^2 {\cal H}$ to more suitable new Hilbert spaces ${\cal H}^2$ with continuous inclusion

$$\mathcal{H}^2_{\sigma} \hookrightarrow \wedge^2 T_{\sigma} C_{x_0}$$

For smooth cylindrical 1-forms ϕ set:

 $d_H^1\phi=d^1\phi|\mathcal{H}^2.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This is closable. Take its closure! Call it d^1

H-2-vectors and H-2-forms

For $u \in \wedge^2 TC_{x_0}$:

$$egin{aligned} & u \in \mathcal{H}^2 & \Longleftrightarrow & u - \mathbb{R}(u) \in \wedge^2 \mathcal{H} \ & \Leftrightarrow & u = (\mathit{Id} + \mathit{Q})(v) \ ext{some} \ v \in \wedge^2 \mathcal{H} \end{aligned}$$

where \mathbb{R} : $\wedge^2 TC_{x_0} \rightarrow \wedge^2 TC_{x_0}$ is the curvature operator of the damped Markovian connection. Get Hodge decomposition for L^2 -*H*-one-forms. *K.D.E. & Xue-Mei Li, JFA 2007*

(日) (日) (日) (日) (日) (日) (日)

Damped Markovian connection

For $V \in \mathcal{D}^{2,1}\mathcal{H}$ and $v \in \mathcal{H}_{\sigma}$ we have

 $\mathbb{W}_{V} V \in \mathcal{H}_{\sigma}$

Define $\mathbb{V}^{\sharp}: \mathcal{D}^{2,1}\mathcal{H} \to L^2\Gamma(\mathcal{H}\otimes\mathcal{H})$ by

 $\langle \overline{\mathbb{V}}^{\sharp}(V)_{\sigma}, v^{1} \otimes v^{2}
angle_{\mathcal{H}_{\sigma} \otimes \mathcal{H}_{\sigma}} = \langle \overline{\mathbb{V}}_{v^{2}} V, v^{1}
angle_{\mathcal{H}_{\sigma}}$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Use of damped Markovian connection, ∇ , on \mathcal{H}

Define
$$\mathfrak{D}^1 : \mathcal{D}^{2,1}(\mathcal{H}) \to L^2\Gamma(\wedge^2\mathcal{H})$$
 by
$$\mathfrak{D}^1(V) = \frac{1}{2}\left(\tau(\mathbb{V}^{\sharp}V) - \mathbb{V}^{\sharp}V\right) \in L^2 \wedge^2 \mathcal{H}.$$

Then for cylindrical ϕ :

$$d^{1}\phi(U) = \langle \mathfrak{D}^{1}\phi^{\sharp}, U \rangle_{\wedge^{2}\mathcal{H}} + \phi \mathbf{T}(U)$$

for the torsion $T : \wedge^2 \mathcal{H} \to TC_{x_0}M$ given by

$$T(U^1 \wedge U^2) := \mathbb{W}_{U^1} U^2 - \mathbb{W}_{U^2} U^1 - [U^1, U^2].$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Formula for Path Space

 $\begin{array}{l} \frac{\mathcal{D}}{dt}(\text{grad } CO(V) - V)_t = 2 \int_t^T \langle \frac{\mathcal{D}}{dt} \otimes \frac{\mathcal{D}}{ds} \mathcal{P}^{(2)} \mathfrak{D}^1 V, d\{\sigma_s\} \rangle_{\mathcal{H}} \\ \text{where} \\ \mathcal{P}^{(2)} : L^2 \Gamma(\mathcal{H} \otimes \mathcal{H}) \to L^2 \Gamma(\mathcal{H} \otimes \mathcal{H}) \text{ is the projection on } \mathbf{A}^2, \text{ the} \\ \text{space of } U \in L^2 \Gamma(\mathcal{H} \otimes \mathcal{H}) \text{ such that } U_{s,t} \text{ is } \mathcal{F}_{s \lor t} \text{-measurable.} \end{array}$

Consequence: V = grad f some $f \in \mathcal{D}^{2,1}$ iff $\mathcal{P}^{(2)}\mathfrak{D}^1 V = 0$. BUT $\mathfrak{D}^1 grad f = -(df \circ T)^*$

Q and T

- div T(U) = 0 if $U = U^1 \wedge U^2$ with U^1 and U^2 adapted. {*Cruzeiro & Fang 1997*}.
- $T(U) = \operatorname{div}^1 Q(U)$ if $U = U^1 \wedge U^2$ with U^1 and U^2 adapted. {*Elworthy &Xue-Mei Li 2008*}.
- Such $U = U^1 \wedge U^2$ are total in \mathbf{A}^2 . Therefore the above hold for $U \in \mathbf{A}^2$.

(日) (日) (日) (日) (日) (日) (日)

\mathfrak{D}^1 and d^1

From this:

$$\mathcal{P}^2\mathfrak{D}^1(V) = \mathcal{P}^2(\mathit{Id} - \mathbb{R})(\mathit{d}^1 V^{\sharp})^{\sharp}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

Revised formula; conclusions

If
$$\textit{V} \in \textit{dom } d^1$$
 then $\textit{CO}(\textit{V}) \in \mathcal{D}^{2,1}$ and

$$\frac{D\!\!D}{dt}(grad \ CO(V) - V) = 2\int_t^T \langle \frac{D\!\!D}{dt} \otimes \frac{D\!\!D}{ds} \mathcal{P}^{(2)}(d^1V)^{\sharp}, d\{\sigma_s\} \rangle$$

. Thus:

•
$$V = grad f$$
 some $f \in \mathcal{D}^{2,1}$ iff $d^1 f = 0$.

- If ϕ is an L^2 harmonic H-one-form then $\phi = 0$.
- ?It seems that our definition of the exterior derivative was the correct one !

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Based Loop Spaces

- Eberle: *d* does not have closed range if *M* has a closed geodesic with a neighbourhood of negative curvature
- Aida: *d* does have closed range for certain radially symmetric asymptotically flat manifolds
- X.Chen, Xue-Mei Li, Bo Wu: *d* does have closed range for n-dimensional hyperbolic space.
- No definition of d^1 for L^2 forms BUT for based loops on Lie groups G using left invariant connections all works (Fang &Franchi), and (Aida) gets L^2 cohomology vanishing for G simply connected.

THAT'S IT THANKS !

