A continuum tree-valued Markov process

JEAN-FRANÇOIS DELMAS

http://cermics.enpc.fr/~delmas

CERMICS, Univ. Paris-Est

7th Workshop on Markov Processes and related topics

Beijing, July 2010

Outline

In collaboration with R. Abraham (Univ. Orléans, France).

Discrete case: Galton-Watson (GW) tree

- Poisson offspring distribution: $\mathcal{P}(e^{-\theta_0})$. G-W tree: T_{θ_0} . It is
 - sub-critical if $\theta_0 > 0$: a.s. extinction,
 - critical if $\theta_0 = 0$: a.s. extinction,
 - super-critical if $\theta_0 < 0$: $\mathbb{P}(\text{extinction}) < 1$.
- Pruning of GW tree.
 - Add indep. exponential random variables τ (mean=1) on each branch.
 - Let $\theta > 0$. Cut all branches s.t. $\tau \leq \theta$.
 - The sub-tree $T_{\theta_0+\theta}$ (with the initial root) is a GW tree with offspring distribution $\mathcal{P}(e^{-(\theta_0+\theta)})$.

Discrete tree-valued Markov process

- **Decreasing** tree-valued Markov process: $\theta \mapsto T_{\theta_0 + \theta}$.
- Consistency allows to define $\theta \mapsto T_{\theta}$ for $\theta \in \mathbb{R}$.
- Increasing tree-valued Markov process (by time reversal): $\theta \mapsto T_{-\theta}$ for $\theta \in \mathbb{R}$.
- For $q < \theta$: transition kernel: $T_{\theta} \mapsto T_q$:
 - Let T_{θ} be given.
 - For each node **e** of T_{θ} let $N_{\mathbf{e}}$ be indep. Poisson r.v. with parameter $\mathbf{e}^{-q} \mathbf{e}^{-\theta}$.
 - For each node e of T_θ attach (T^{e,i}, i ∈ {1,..., N_e}) indep. GW trees distributed as T_q.
 - Then: the big tree is distributed as T_q .

Explosion of (increasing) tree-valued Markov process

• Aldous and Pitman 1998: distribution of the explosion time

$$A = \inf\{\theta; \operatorname{Card} (T_{\theta}) < +\infty\} \quad (<0)$$

distribution of T_{A+} and of $(T_{A+q}, q > 0)$.

- For pruning at node (instead of branches) see Abraham, D. and He (2010) or next talk.
- **Remark**. Let $Z_{\theta}(n) = \text{Card} \{ \text{population at time } n \text{ of } T_{\theta} \}$. $Z_{\theta} = (Z_{\theta}(n), n \in \mathbb{N}) \text{ is the so-called G-W process. Then for } q < \theta$,

 Z_{θ} + Immig. (at time *n*) of $\mathcal{P}(Z_{\theta}(n)(e^{-q}-e^{-\theta}))$ indep. G-W distrib. as Z_q

is distributed as Z_q .

Continuous branching (CB) process

- Lamperti 1967: a CB $Y = (Y(t), t \in \mathbb{R}_+)$ is the limit of rescaled (mass and time) GW processes.
- *Y*(*t*) is the "mass" of a population at time *t* whose individuals are of infinitesimal mass and have infinitesimal lifetime.
- ψ -CB *Y* is Markov with Y(0) = x under \mathbb{P}_x and

$$\mathbb{E}_{x}[\mathrm{e}^{-\lambda Y(t)}] = \mathrm{e}^{-xu(\lambda,t)} \quad \text{with} \quad \int_{u(\lambda,t)}^{\lambda} \frac{dv}{\psi(v)} = t.$$

• The excursion (canonical) measure is the "distribution" of the population coming from an infinitesimal individual; informally:

$$\mathbb{N}[Y \in A] = \lim_{x \to 0} \frac{1}{x} \mathbb{P}(Y \in A | Y(0) = x).$$

Quadratic CB

• For the talk: quadratic branching mechanism: $\beta \ge 0$ and

 $\psi(\lambda) = \beta \lambda^2.$

• Shifted branching mechanism: for $\theta \in \mathbb{R}$,

$$\psi_{\theta}(\lambda) = \psi(\lambda + \theta) - \psi(\theta) = \beta \lambda^2 + 2\beta \theta \lambda.$$

• The ψ_{θ} -CB, Y_{θ} , is a Feller diffusion:

$$dY_{\theta}(t) = \sqrt{2\beta Y_{\theta}(t)} \ dW_t - 2\beta \theta Y_{\theta}(t) \ dt.$$

Extinction for CB process

- Extinction: $\{Y_{\theta}(t) = 0 \text{ for } t \text{ large}\}.$
- We have: $\mathbb{E}_{x}[Y_{\theta}(t)] = x e^{-\psi'_{\theta}(0)t}$.
 - CB sub-critical if $\psi'_{\theta}(0) > 0$ ($\theta > 0$): a.s. extinction.
 - CB critical if $\psi'_{\theta}(0) = 0$ ($\theta = 0$): a.s. extinction.
 - CB super-critical if $\psi'_{\theta}(0) < 0$ ($\theta < 0$): $\mathbb{P}(\text{extinction}) < 1$.

• Total population mass: $\sigma_{\theta} = \int_0^{\infty} Y_{\theta}(s) \, ds$ and

$$\{\sigma_{\theta} < +\infty\} = \{\text{extinction}\}.$$

• Recall that $\mathbb{N}\left[1 - e^{-\lambda\sigma_{\theta}}\right] = \psi_{\theta}^{-1}(\lambda)$. Thus:

$$\mathbb{N}[\sigma_{\theta} = +\infty] = \lim_{\lambda \downarrow 0} \mathbb{N}\Big[1 - e^{-\lambda \sigma_{\theta}}\Big] = \psi_{\theta}^{-1}(0+) = \begin{cases} 0 & \text{if } \theta \ge 0, \\ 2 |\theta| & \text{if } \theta < 0. \end{cases}$$

Growing family of CB

Let $q < \theta$.

- Consider a CB Y_{θ} under \mathbb{N} (population with infinitesimal initial mass).
- Consider immigration of indep. ψ_q -CB:

$$(t_i, Y_q^i; i \in I)$$

atoms of a Poisson point meas. with intensity (proportional to the size of the population) $2\beta Y_{\theta}(t) dt \mathbb{N}[dY_q]$.

• The process defined for $t \ge 0$ by

$$Y_{\theta}(t) + \sum_{i \in I; t_i > t} Y_q^i(t - t_i)$$

is distributed as Y_q . This allows to construct a family of CB-processes $(Y_{\theta}, \theta \in \mathbb{R})$ s.t. for all $t \ge 0, q < \theta$ we have,

 $Y_q(t) > Y_{\theta}(t)$ a.s. and thus $\sigma_q > \sigma_{\theta}$.

Explosion time and results

• Explosion time defined by:

$$A = \inf\{q; \sigma_q < +\infty\} \quad (<0).$$

• Let $\theta < 0$. We have:

$$\mathbb{N}[A > \theta] = \mathbb{N}[\sigma_{\theta} = +\infty] = \psi_{\theta}^{-1}(0+) = 2 |\theta|.$$

A is "distributed" under \mathbb{N} as 2 times the Lebesgue meas. on $(-\infty, 0)$.

- We compute the distrib. of Y_{A+} and $(Y_{A+q}, q > 0)$ cond. on $\{A = \theta\}$.
- In particular, cond. on $\{A = \theta\}$, $(\sigma_{A+q}, q > 0)$ is distributed as

$$\left(\frac{1}{2\beta}\,\frac{1}{\tau_{|\theta|+q}}, q>0\right),$$

where τ is stable subordinator (index 1/2): $\mathbb{E}[\exp -\lambda \tau_q] = e^{-q\sqrt{2\lambda}}$.

Tools and more general results

- The genealogical tree (or Lévy tree or continuum random trees (CRT)) of CB process: Aldous (1991) for ψ_0 , Duquesne and Le Gall (2002) for general **critical** or **sub-critical** ψ .
- Pruning CRT (marks on the skeleton and on the nodes): Abraham, D. and Voisin (preprint 2008). This allows to define a decreasing CRT-valued Markov process.
- Extension to super-critical cases using a Girsanov formula:

$$\frac{d\mathbb{P}_{|\mathcal{F}_t}^{\psi_{\theta}}}{d\mathbb{P}_{|\mathcal{F}_t}^{\psi}} = \exp\left(\theta Y(0) - \theta Y(t) - \psi(\theta) \int_0^t Y(s) \, ds\right),$$

where *Y* is a ψ_{θ} -CB under $d\mathbb{P}^{\psi_{\theta}}$ and $\psi_0 = \psi$ is critical. (Also true for CRT and general ψ .)

- Use consistency and time reversal to define the (increasing) tree-valued Markov process.
- Results: distribution of the CRT at the explosion time for general ψ .