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@ Prisoner’s dilemma games for 2 players.
@ Any way out of the dilemma?

@ Our model: local interaction with mutation for n > 5 players

like 1-dim interaction particle system

@ Dynamics | : Rational strategy for next time period by

imitating-most-successful-player, or

imitating-most-successful-action
@ Dynamics Il : Mutation

@ Jointed works with H.C. Chen and L.D. Wu.
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Prisoner’s Dilemma Game

@ 2 isolated prisoners to be sentenced.
@ Strategy set { Defect, Cooperation }. Like spin {£}.

@ Payoffs:
D C
D | 6 years, 6 years | 3 months, 10 years
C | 10 years, 3 months 1 year, 1 year

@ Nash Equilibrium is (D, D).

But (C, C) is better.
@ Payoff for strategy D > payoff for strategy C.
@ Any way out of the dilemma?

@ Karandikar et al. (1998), Palomino and Vega-Redonda
(1999), Ellison (1993), Eshel et al. (1998) and so on.
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Prisoner’s Dilemma Game continued...

With b > d > a > c, the payoff in general is
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@ Nash Equilibrium is (D, D). But (C, C) is better.
@ Payoff for strategy D > payoff for strategy C.
@ Definition. (s, t) is a Nash equilibrium if

payoff at (s, t) > payoffat (s,t') vt € S

l.e., no player gains by changing his present strategy
individually.

payoff at (s,t) > payoff at (s',t) Vs € S.
@ New models: many players, many times, local structure.
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Evolutionary games with local interaction

Similar to interacting particle systems.
e N={1,2,...,n}, n>5, be the set of players.
@ 1-dim setup: Players sit sequentially around a circle.
@ NN interaction: N; = {i — 1, i + 1} is the set of player i’s
neighbors.

o Let s = (s1, sz, ..., Sn) be the strategy profile at time t.
Here, s; € {C, D} for each player i.

@ The dynamics for forming the strategy for time ¢ + 1 consists
of 2 parts.
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Dynamics |. Strategy revision by imitation

Each player imagines to play the above PD game once with each
of their two neighbors.

Let z;(S) = player i’s total payoff thus incurred. Then
(2 nf(s))

[(2-nC3) ifs=C

if s
Here n®(S) = |{j € N; : s; = C}| is the number of player i’s
neighbors taking strategy C at time t.

=D,
@ Imitating-most-successful-player in his neighborhod: the
rational choice for player i is

ri(8) e M(s) ¥ {s; : zj(8) = max z(8) for k € N; U {i} }.
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Dynamics |. continued...

@ Imitating-most-successful-action: each player i will imitate the
most successful action yielding the highest average payoff
which was adopted among his neighbors and himself at time
t. Let 6 be the Kronecker notation. Then

Ykenuiy Z(8)OEs

s : |f E Si_1.S;.S;

a;(s) = 2keNu(iy OE.s, € {Si-1,Si,Sit+1}s
—00, if E+#Sji_1=8j=Sj41,

means the average payoff for strategy E € {C, D} among
player i and his neighbors. Therefore, player i’s next-period
rational choice r;(S) satisfies

ri(8) € M(3) & {E € {C, D} : aF (3) = max(a’(5), aP(s)) }.
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Dynamics |. continued...

@ The computation of M;(8) and M;(8) for player i involves
(Si—2,Si—1,Si, Si+1, Si42)
14 out of 32 cases need to be considered,
like ri(S) = sjif si_1 = sj = S 1.

. def —
@ For brevity, r(sj_2, Si_1, Si, Si+1, Si+2) = ri(S).
@ Strict rule by inertia:

ri(8) = s; iff s; € M;(8) (or s; € M;(5)).

@ Essentially the same results for the loose rule.

@ A time-homogeneous Markov chain on S = {C, D}" with
transition probability matrix Qu(S, d) = 1 iff 4 = 7(S),
where the rational choice F(S) = (r{(8), r2(8), ..., m(8)) is
uniquely determined for state s € S by the strict rule.
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Dynamics Il. Mutation

Players will simultaneously, but independently alter their rational
choices {r;(s)} with identical probability ¢ > 0.

The mutation rate can be regarded as the probability of players’
experimenting with new strategies.

All together, our local-interaction imitation dynamics define a
Markov chain {X;: t=0,1,...} on S.
Its transition matrix Q., a perturbation of @y, given by

Q.(8, U) = €27 0) . (1 — )=d(S). D) for all §, i € S.
Here, d(7(S), d) = |{i € N : r;(§) # u;}| is the number of

mismatches between the next truly- adopted strategy d and the
revised rational choice r(S) at state s.

@ U(s, u) = d(r(s), u) means the cost from S to 4.
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Dynamics Il. continued...

@ Q(S, U)>0foralls, e S.

@ Mutation makes our dynamic process { X;} ergodic.

@ The unique invariant distribution p. is characterized by

He = [he - Qe-
. def |.
@ Goal: to find py = lim._q fte-

@ In particular, whether

CeS ¥{(3eS: 1(5)>0}?

I.e. whether all-cooperation is possible in the long run?
@ Elements in S, are called the Long Run Equilibria.
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Method of Freidlin and Wentzell

@ Lettinge | 0in pe = pe - Q.
Vega-Redondo (2003) showed p. = s - Qp. Hence,
S. C Sy = { all invariant states under Qp}.
@ We will first characterize Sg.
@ Use the method of Freidlin and Wentzell to find S,
and the order estimate for E.(T), where
T=inf{t>0:X; € S}
is the waiting time to hit the global minimum set S,.

@ Incase U(s, d) = (U(d) — U(s))*, then
S. = {s: U(S) = minU}.
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Method of Freidlin and Wentzell continued...

@ Forany sc S, let

G({S}) = { all spanning trees rooted at s}.

@ U(S, u) = d(r(8), u) means the cost from S to 4.
® v(g) = X (5_p)eg U(U, V) means the cost of g € G({5}).
@ v({8}) = mingcgsy) v(9)
the minimum cost of all spanning trees rooted at s.
@ Define vi = ming.g v({S}) :
the minimum cost to build a network with 1 center.
@ Then u, = lim_q u. exists and the following holds.
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Method of Freidlin and Wentzell continued...

@ Theorem 1. The support S, of u, is given by
S, ={seS|v({s})=w}

and p () ~ "0V forany i e S.

@ S, consists of those states in S which attain the minimum cost
vy when treated as a root.

o Let G(W) = { all spanning trees rooted at W C S}
and v(W) = mingcgw) v(g). Define

= mi W) for k > 1.
Vk Ilr41/"|||£kv( ) for k >

@ Theorem 2. (Chiang and Chow (2007))
E(T)~e’ase|O.
Here § = vi,—1 — v, and ko = min{k > 2 : JW C

S with [W| = k, v(W) = v and W ¢ S, }.
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o ME 55\ {C,D}

is called the set of mixed stationary states, which means
cooperators and defectors coexist peacefully.

@ For S € M # () can be expressed as follows:

...D...DC---CD---DC---CD---DC---C---

dk Ck ds %] d> Co

d; = length of the jth D-string,
¢; = length of the jth C-string starting from a certain player.
@ For positive integers m and ¢, define

def
M>m, >0 =

{seS: ald>m, ¢=>1¢}
Mn & {5€S: ald=m, ¢ = (}.
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Results continued...

Theorem 3. For Imitating-Successful-Player dynamics,
S,={D}and E(T)~¢'as ¢ 0.

If a+ b > 2d, then Sy = {C, D};

If a+ b < 2d,then Sy = {C,D} UMsp >3.

@ All-defection D is the unique LRE of the ISP dynamics. Yet S,
depends on whether a+ b < 2d or not.
@ Because
P(r(x,C,D,C,x) = D) =1
and

P(r(x,D,C,D,*) = D) =1,
which shows the strength of D against C.
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Results continued...

Theorem 4. Assume the Imitating-Successful-Action dynamics.
()Ifa+b> <39 Sy ={C,D}, S.={D}and E(T)~ ¢ .

(i) If a+ b < ¢34 and 32t < ¢ 4 d, then Sy = {C, D} UM, where
the mixed stationary states in M has all d; € {1, 2, 3} and,
besides ¢; > 3,

¢ > 5if (d, dipq) = (1,1); ¢ > 4 if (d, dipq) = (1,2) or (2,1).

S, ={D}and E(T)~ e 'for n=5,

S, ={D}and E(T)~ ¢ [ for 6 < n< 20,

S. =Spand E.(T)~ ¢ for 21 < n < 30 but n # 25,
S. =Sy \ M zand E(T) =~ e for n=25or 30,
S. =(So\ Mz 3)\{D} and E(T)~ e 3for n>31.

(iii) If a+ b < ©439 and 382 > ¢ + d, then
So={C,D} UM 53,S. = {D} and E(T) ~ ¢ .
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Results continued...

@ Theorem 4 (ii) shows that when a+ b < 43¢ and
%’ < c+d, S, varies as the population size n grows from
{D}=S,for5<n<20to{D,C} C S, for21 < n<30,and
finally to S, = (Sp \ Mz, 3) \ {D} for n > 31. In particular,
all-cooperation C instead of all-defection D becomes a LRE
under the ISA dynamics when # of players > 31.

@ For positive integers m and ¢, define

def |
Mzm,zzé{SES: alldi>m, ¢ > (}

My {58 : alldj=m, ¢=1}.

@ Chen and Chow, Evolutionary prisoner’s dilemma games with
local interaction and imitation, Adv. Applied Probab. 41(2009).
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Match v rounds randomly

@ In the above, each player plays the PD game once with each

of his neighbors for strategy updating.

@ What if players are randomly matched to play with his
neighbors for v times?

@ Only 2 ways to do the matching:

me:n—12<3, ... ,nh—2<n—1

@ Number of players n has to be even.

@ By LLN, v = o < plays once with each of his neighbors.

@ Theorem 5. For both the ISP and ISA dynamics,
S, ={D}forany 1 <v < .

@ Chow and Wu (2010), in preparation.
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Match v rounds randomly continued...

@ Theorem 4 (ii) shows that when a+ b < %29 and

%’ < c+d, S, varies as the population size n grows from
{D}=S,for5<n<20to{D,C} c S, for21 < n< 30, and
finally to S, = (Sp \ Mo, 3) \ {D} for n > 31.

Any mixed stationary state §in M = Sy \ {C, D} has all

di € {1, 2, 3} and, besides ¢; > 3,

¢ >5if(d,dipq)=(1,1);¢ > 4if (di,di1) = (1,2) or (2,1).
Decompose M as UM,
where M, & {§ € M : § has k disjoint D-strings }.

U means U(S, U) = k and
u

< k
S —
S~k oo -
s~ uif U(u,s) = k as well.
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Match v rounds randomly continued...

- hd 0 .
S—~QZQC C\D/JC C%QnH QQ/D/C CDDDC CQB
Ci—1 1 Ci

2 ¢_y+i1+c 2

05 uforany s,u e M\ My, 5 for k > 1.
d

@ s~ tforany s € M\ M 3 and U € My_4 for k > 1.
Here Moz{é}.

@ Any two states in {é} UM\ M, 3 are equivalent.

«4O0>» «Fr» « > «

>

DA



Match v rounds randomly continued...

@ D can reach out at the minimum cost 3 as follows :

D2 cccp-Dc..cp--D
3 n—3 5 n—5

where the unique D-string in ¢ has length 1 or 2 depending
on nis even or odd.

@ Let n = # of closed connected components in M.

o v({§})=3+nforany e {C}UM\ My, .
v({d})=4+nforany i e M, 3

@ In order to find the minimum cost path from C to D, it suffices
to do so fromany s € {5} UM\ M, 3. And it saves to use
some state with as many D’s as possible.
Note that any D-string in $ € M has length < 3.
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Match v rounds randomly continued...

If di = dj,1 =1, it saves to have ¢; = 9 as the ith C-string of s can
be eliminated at cost 1 :

1 d ° e
..« D CCCC D CCCC D =«
1 4 1 4 1
S . .ppDCCDDDCCDDD
2
3
0 [ ]
—)-

2
.« D CDDCDCDDC D *--%..DDD---D
Y Y

1 13
Hence, v({D}) = [&] +n.

Remember v({8}) = 3+ nfor§ e {C} UM\ My, 3.
Theorem 4 (ii) then follows by comparing [+ with 3.
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Match v rounds randomly continued...

Modd def

Proposition 6. Assume v = 1. For both ISP and ISA dynamics,
>3,>3 —

we have Sp, = {C, D} UM, and S., = {D}. Here,

Ms3 >3 (]{8€ S| all¢;and dj are odd }.
@ D can be reached at the minimum cost 1 as follows :

M,>CCCD-D~cDCcD--D%D
——— —_—— —

n-3 3 n—-3
¢cL..cbc--%...copbpcc--- M,
Y g
match match
— AN 0
D—-..-DD CC DD -
~~

4
@ Easy to show v({D}) =n+1, v({C}) = n+2
and v({8}) >n+2forse M.
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