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Prisoner’s Dilemma Game

2 isolated prisoners to be sentenced.
Strategy set { Defect, Cooperation }. Like spin {±}.
Payoffs:

D C
D 6 years, 6 years 3 months, 10 years
C 10 years, 3 months 1 year, 1 year

Nash Equilibrium is (D, D).
But (C, C) is better.
Payoff for strategy D > payoff for strategy C.
Any way out of the dilemma?
Karandikar et al. (1998), Palomino and Vega-Redonda
(1999), Ellison (1993), Eshel et al. (1998) and so on.



Prisoner’s Dilemma Game continued...

With b > d > a > c, the payoff in general is

D C
D a, a b, c
C c, b d, d

Nash Equilibrium is (D, D). But (C, C) is better.
Payoff for strategy D > payoff for strategy C.
Definition. (s, t) is a Nash equilibrium if

payoff at (s, t) ≥ payoff at (s, t ′) ∀t ′ ∈ S;

payoff at (s, t) ≥ payoff at (s′, t) ∀s′ ∈ S.

I.e., no player gains by changing his present strategy
individually.
New models: many players, many times, local structure.



Evolutionary games with local interaction

Similar to interacting particle systems.
N = {1, 2, . . . ,n}, n ≥ 5, be the set of players.
1-dim setup: Players sit sequentially around a circle.
NN interaction: Ni = {i − 1, i + 1} is the set of player i ’s
neighbors.
Let ~s = (s1, s2, ..., sn) be the strategy profile at time t .
Here, si ∈ {C,D} for each player i .
The dynamics for forming the strategy for time t + 1 consists
of 2 parts.



Dynamics I. Strategy revision by imitation

Each player imagines to play the above PD game once with each
of their two neighbors.
Let zi(~s) = player i ’s total payoff thus incurred. Then

zi(~s) =

{
b · nC

i (~s) + a · (2− nC
i (~s)) if si = D,

d · nC
i (~s) + c · (2− nC

i (~s)) if si = C.

Here nC
i (~s) = |{j ∈ Ni : sj = C}| is the number of player i ’s

neighbors taking strategy C at time t .
Imitating-most-successful-player in his neighborhod: the
rational choice for player i is

ri(~s) ∈ Mi(~s)
def
= {sj : zj(~s) = max zk (~s) for k ∈ Ni ∪ {i} }.



Dynamics I. continued...

Imitating-most-successful-action: each player i will imitate the
most successful action yielding the highest average payoff
which was adopted among his neighbors and himself at time
t . Let δ be the Kronecker notation. Then

ai(~s) =


∑

k∈Ni∪{i}
zk (~s)·δE,sk∑

k∈Ni∪{i}
δE,sk

, if E ∈ {si−1, si , si+1},
−∞, if E 6= si−1 = si = si+1,

means the average payoff for strategy E ∈ {C,D} among
player i and his neighbors. Therefore, player i ’s next-period
rational choice ri(~s) satisfies

ri(~s) ∈ M̄i(~s)
def
= {E ∈ {C,D} : aE

i (~s) = max(aC
i (~s),aD

i (~s)) }.



Dynamics I. continued...

The computation of Mi(~s) and M̄i(~s) for player i involves

(si−2, si−1, si , si+1, si+2)

14 out of 32 cases need to be considered,

like ri(~s) = si if si−1 = si = si+1.

For brevity, r(si−2, si−1, si , si+1, si+2)
def
= ri(~s).

Strict rule by inertia:

ri(~s) = si iff si ∈ Mi(~s) (or si ∈ M̄i(~s)).

Essentially the same results for the loose rule.
A time-homogeneous Markov chain on S = {C, D}n with
transition probability matrix Q0(~s, ~u) = 1 iff ~u = ~r(~s),
where the rational choice ~r(~s) = (r1(~s), r2(~s), . . . , rn(~s)) is
uniquely determined for state ~s ∈ S by the strict rule.



Dynamics II. Mutation

Players will simultaneously, but independently alter their rational
choices {ri(~s)} with identical probability ε > 0.
The mutation rate can be regarded as the probability of players’
experimenting with new strategies.

All together, our local-interaction imitation dynamics define a
Markov chain {Xt : t = 0,1, ...} on S.
Its transition matrix Qε, a perturbation of Q0, given by

Qε(~s, ~u) = εd(~r(~s), ~u) · (1− ε)n−d(~r(~s), ~u) for all ~s, ~u ∈ S.

Here, d(~r(~s), ~u) = |{i ∈ N : ri(~s) 6= ui}| is the number of
mismatches between the next truly-adopted strategy ~u and the
revised rational choice ~r(~s) at state ~s.

U(~s, ~u) = d(~r(~s), ~u) means the cost from ~s to ~u.



Dynamics II. continued...

Qε(~s, ~u) > 0 for all ~s, ~u ∈ S.
Mutation makes our dynamic process {Xt} ergodic.
The unique invariant distribution µε is characterized by

µε = µε ·Qε.

Goal: to find µ∗
def
= limε→0 µε.

In particular, whether

~C ∈ S∗
def
= {~s ∈ S : µ∗(~s) > 0}?

I.e. whether all-cooperation is possible in the long run?
Elements in S∗ are called the Long Run Equilibria.



Method of Freidlin and Wentzell

Letting ε ↓ 0 in µε = µε ·Qε,
Vega-Redondo (2003) showed µ∗ = µ∗ ·Q0. Hence,

S∗ ⊆ S0 = { all invariant states under Q0}.

We will first characterize S0.
Use the method of Freidlin and Wentzell to find S∗
and the order estimate for Eε(T ), where

T = inf{t ≥ 0 : Xt ∈ S∗}

is the waiting time to hit the global minimum set S∗.
In case U(~s, ~u) = (U(~u)− U(~s))+, then
S∗ = {~s : U(~s) = min U}.



Method of Freidlin and Wentzell continued...

For any ~s ∈ S, let

G({~s}) = { all spanning trees rooted at ~s}.

U(~s, ~u) = d(~r(~s), ~u) means the cost from ~s to ~u.
v(g) =

∑
(~u→~v)∈g U(~u, ~v) means the cost of g ∈ G({~s}).

v({~s}) = ming∈G({~s}) v(g)

the minimum cost of all spanning trees rooted at ~s.
Define v1 = min~s∈S v({~s}) :
the minimum cost to build a network with 1 center.
Then µ∗ = limε→0 µε exists and the following holds.



Method of Freidlin and Wentzell continued...

Theorem 1. The support S∗ of µ∗ is given by

S∗ = {~s ∈ S | v({~s}) = v1}

and µε(~u) ≈ εv({~u})−v1 for any ~u ∈ S.
S∗ consists of those states in S which attain the minimum cost
v1 when treated as a root.
Let G(W ) = { all spanning trees rooted at W ⊂ S}
and v(W ) = ming∈G(W ) v(g). Define

vk = min
|W |=k

v(W ) for k ≥ 1.

Theorem 2. (Chiang and Chow (2007))

Eε(T ) ≈ ε−δ as ε ↓ 0.

Here δ = vk0−1 − vk0 and k0 = min{k ≥ 2 : ∃W ⊆
S with |W | = k , v(W ) = vk and W 6⊆ S∗}.



Results

M def
= S0 \ {~C, ~D}

is called the set of mixed stationary states, which means
cooperators and defectors coexist peacefully.
For ~s ∈ M 6= ∅ can be expressed as follows:

· · ·D · · ·D︸ ︷︷ ︸
dk

C · · ·C︸ ︷︷ ︸
ck

D · · ·D︸ ︷︷ ︸
d1

C · · ·C︸ ︷︷ ︸
c1

D · · ·D︸ ︷︷ ︸
d2

C · · ·C︸ ︷︷ ︸
c2

· · ·

di = length of the i th D-string,
cj = length of the j th C-string starting from a certain player.
For positive integers m and `, define

M≥m, ≥`
def
= {~s ∈ S : all di ≥ m, cj ≥ `}

Mm, `
def
= {~s ∈ S : all di = m, cj = `}.



Results continued...

Theorem 3. For Imitating-Successful-Player dynamics,
S∗ = {~D} and Eε(T ) ≈ ε−1 as ε ↓ 0.
If a + b > 2d , then S0 = {~C, ~D};
If a + b ≤ 2d , then S0 = {~C, ~D} ∪M≥2, ≥3.

All-defection ~D is the unique LRE of the ISP dynamics. Yet S0
depends on whether a + b ≤ 2d or not.
Because

P(r(∗,C,D,C, ∗) = D) = 1

and
P(r(∗,D,C,D, ∗) = D) = 1,

which shows the strength of D against C.



Results continued...

Theorem 4. Assume the Imitating-Successful-Action dynamics.
(i) If a + b > c+3d

2 , S0 = {~C, ~D}, S∗ = {~D} and Eε(T ) ≈ ε−1.
(ii) If a + b ≤ c+3d

2 and 3a+b
2 < c + d , then S0 = {~C, ~D} ∪M, where

the mixed stationary states in M has all di ∈ {1, 2, 3} and,
besides ci ≥ 3,

ci ≥ 5 if (di ,di+1) = (1,1); ci ≥ 4 if (di ,di+1) = (1,2) or (2,1).



S∗ = {~D} and Eε(T ) ≈ ε−1 for n = 5,
S∗ = {~D} and Eε(T ) ≈ ε−d

n
10 e for 6 ≤ n ≤ 20,

S∗ = S0 and Eε(T ) ≈ ε0 for 21 ≤ n < 30 but n 6= 25,
S∗ = S0 \M2, 3 and Eε(T ) ≈ ε−1 for n = 25 or 30,
S∗ = (S0 \M2, 3) \ {~D} and Eε(T ) ≈ ε−3 for n ≥ 31.

(iii) If a + b ≤ c+3d
2 and 3a+b

2 ≥ c + d , then
S0 = {~C, ~D} ∪M≥2, ≥3,S∗ = {~D} and Eε(T ) ≈ ε−1.



Results continued...

Theorem 4 (ii) shows that when a + b ≤ c+3d
2 and

3a+b
2 < c + d , S∗ varies as the population size n grows from
{~D} = S∗ for 5 ≤ n ≤ 20 to {~D, ~C} ⊂ S∗ for 21 ≤ n ≤ 30, and
finally to S∗ = (S0 \M2, 3) \ {~D} for n ≥ 31. In particular,
all-cooperation ~C instead of all-defection ~D becomes a LRE
under the ISA dynamics when # of players ≥ 31.
For positive integers m and `, define

M≥m, ≥`
def
= {~s ∈ S : all di ≥ m, cj ≥ `}

Mm, `
def
= {~s ∈ S : all di = m, cj = `}.

Chen and Chow, Evolutionary prisoner’s dilemma games with
local interaction and imitation, Adv. Applied Probab. 41(2009).



Match v rounds randomly

In the above, each player plays the PD game once with each
of his neighbors for strategy updating.
What if players are randomly matched to play with his
neighbors for v times?
Only 2 ways to do the matching:

m1 : 1↔ 2,3↔ 4, ......, n − 1↔ n,

m2 : n↔ 1,2↔ 3, .......,n − 2↔ n − 1.

Number of players n has to be even.
By LLN, v =∞⇔ plays once with each of his neighbors.
Theorem 5. For both the ISP and ISA dynamics,
S∗ = {~D} for any 1 ≤ v <∞.
Chow and Wu (2010), in preparation.



Match v rounds randomly continued...

Theorem 4 (ii) shows that when a + b ≤ c+3d
2 and

3a+b
2 < c + d , S∗ varies as the population size n grows from
{~D} = S∗ for 5 ≤ n ≤ 20 to {~D, ~C} ⊂ S∗ for 21 ≤ n ≤ 30, and
finally to S∗ = (S0 \M2, 3) \ {~D} for n ≥ 31.

Any mixed stationary state ~s in M = S0 \ {~C, ~D} has all
di ∈ {1, 2, 3} and, besides ci ≥ 3,

ci ≥ 5 if (di ,di+1) = (1,1); ci ≥ 4 if (di ,di+1) = (1,2) or (2,1).

Decompose M as ∪L
1Mk ,

where Mk
def
= {~s ∈ M : ~s has k disjoint D-strings }.

~s k→ ~u means U(~s, ~u) = k and
~s k↔ ~u if U(~u,~s) = k as well.



Match v rounds randomly continued...

~s = ··DD︸︷︷︸
2

C · ·C︸ ︷︷ ︸
ci−1

•
D︸︷︷︸
1

C · ·C︸ ︷︷ ︸
ci

DD︸︷︷︸
2

·· 0↔ ··DD︸︷︷︸
2

C · ·C︸ ︷︷ ︸
ci−1−1

D
•
D D︸ ︷︷ ︸
3

C · ·C︸ ︷︷ ︸
ci−1

DD︸︷︷︸
2

··

= ~sd
1→ · · DD︸︷︷︸

2

C·
•
C ·C︸ ︷︷ ︸

ci−1+1+ci

DD︸︷︷︸
2

·· = ~u 1→ ~s.

~s 1↔ ~u for any ~s, ~u ∈ Mk \M2, 3 for k ≥ 1.

~s 1↔ ~u for any ~s ∈ Mk \M2, 3 and ~u ∈ Mk−1 for k ≥ 1.
Here M0 = {~C}.
Any two states in {~C} ∪M \M2, 3 are equivalent.



Match v rounds randomly continued...

~D can reach out at the minimum cost 3 as follows :

~D 3→
◦
C
◦
C
◦
C︸ ︷︷ ︸

3

D · ·D︸ ︷︷ ︸
n−3

0→ C · ·C︸ ︷︷ ︸
5

D · ·D︸ ︷︷ ︸
n−5

0→ C · ·C︸ ︷︷ ︸
7

D · ·D︸ ︷︷ ︸
n−7

0→ · · · 0→ ~u ∈ M1,

where the unique D-string in ~u has length 1 or 2 depending
on n is even or odd.
Let η = # of closed connected components in M.
v({~s}) = 3 + η for any ~s ∈ {~C} ∪M \M2, 3.
v({~u}) = 4 + η for any ~u ∈ M2, 3

In order to find the minimum cost path from ~C to ~D, it suffices
to do so from any ~s ∈ {~C} ∪M \M2, 3. And it saves to use
some state with as many D’s as possible.
Note that any D-string in ~s ∈ M has length ≤ 3.



Match v rounds randomly continued...

If di = di+1 = 1, it saves to have ci = 9 as the i th C-string of ~s can
be eliminated at cost 1 :

~s 0↔ ~sd
1→ · · ∗

•
D︸︷︷︸
1

CCCC︸ ︷︷ ︸
4

◦
D︸︷︷︸
1

CCCC︸ ︷︷ ︸
4

•
D︸︷︷︸
1

∗ · ·

0→ · · D
•
D D︸ ︷︷ ︸
3

CC︸︷︷︸
2

DDD︸ ︷︷ ︸
3

CC︸︷︷︸
2

D
•
D D︸ ︷︷ ︸
3

··

0→ · · ∗
•
D︸︷︷︸
1

CDDCDCDDC
•
D︸︷︷︸
1

∗ · · 0→ · · D
•
D D · · ·D

•
D D︸ ︷︷ ︸

13

· · .

Hence, v({~D}) = d n
10e+ η.

Remember v({~s}) = 3 + η for ~s ∈ {~C} ∪M \M2, 3.
Theorem 4 (ii) then follows by comparing d n

10e with 3.



Match v rounds randomly continued...

Proposition 6. Assume v = 1. For both ISP and ISA dynamics,
we have S0,v = {~C, ~D} ∪Modd

≥3,≥3 and S∗,v = {~D}. Here,

Modd
≥3,≥3

def
= M≥3,≥3

⋂
{~s ∈ S | all ci and dj are odd }.

~D can be reached at the minimum cost 1 as follows :

M1 3 C
◦
C C︸ ︷︷ ︸
3

D · ·D︸ ︷︷ ︸
n−3

1→ C
◦
D C︸ ︷︷ ︸
3

D · ·D︸ ︷︷ ︸
n−3

0→ ~D

~C 1→ · · ·C D︸︷︷︸
1

C · · · 0→ · · ·C DDD︸ ︷︷ ︸
3

CC · · · ∈ M1.

~D 2→ · · ·DD

match︷︸︸︷
CC︸︷︷︸

2

︷︸︸︷
DD · · · 0→ · · ·D

match︷︸︸︷
CC

︷︸︸︷
CC︸ ︷︷ ︸

4

DD · · · 0→ · · · 0→ ~C.

Easy to show v({~D}) = η + 1, v({~C}) = η + 2
and v({~s}) ≥ η + 2 for ~s ∈ M.
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