Some Results Evolutionary Prisoner's Dilemma Games

Chow, Yunshyong

Institute of Mathematics Academia Sinica,Taipei,Taiwan Email: chow@math.sinica.edu.tw

7th Workshop on Markov Processes and Related Topics 2010, July 19-23, Bei-jing Normal University

つくい

- Prisoner's dilemma games for 2 players.
- Any way out of the dilemma?
- \bullet Our model: local interaction with mutation for $n > 5$ players. like 1-dim interaction particle system

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ ト

 OQ

- Dynamics I : Rational strategy for next time period by imitating-most-successful-player, or imitating-most-successful-action
- Dynamics II : Mutation
- Jointed works with H.C. Chen and L.D. Wu.

Prisoner's Dilemma Game

- 2 isolated prisoners to be sentenced.
- Strategy set { Defect, Cooperation }. Like spin $\{\pm\}$.
- Payoffs:

イロト イ押 トイヨ トイヨ トー

 Ω

- Nash Equilibrium is (D, D). But (C, C) is better.
- Payoff for strategy $D >$ payoff for strategy C.
- Any way out of the dilemma?
- Karandikar et al. (1998), Palomino and Vega-Redonda (1999), Ellison (1993), Eshel et al. (1998) and so on.

Prisoner's Dilemma Game continued...

With $b > d > a > c$, the payoff in general is

- Nash Equilibrium is (D, D). But (C, C) is better.
- Payoff for strategy $D >$ payoff for strategy C.
- \bullet Definition. (s, t) is a Nash equilibrium if

 $\mathsf{payoff} \; \mathsf{at} \; (\mathcal{s},t) \geq \; \mathsf{payoff} \; \mathsf{at} \; (\mathcal{s},t') \quad \forall t' \in \mathcal{S};$

 $\mathsf{payoff} \; \mathsf{at} \; (\mathcal{s},t) \geq \; \mathsf{payoff} \; \mathsf{at} \; (\mathcal{s}',t) \quad \forall \mathcal{s}' \in \mathcal{S}.$

아마 사람이 아직이 아직이 그런지.

 OQ

I.e., no player gains by changing his present strategy individually.

New models: many players, many times, local structure.

Similar to interacting particle systems.

- \bullet $N = \{1, 2, \ldots, n\}, n > 5$, be the set of players.
- 1-dim setup: Players sit sequentially around a circle.
- NN interaction: $N_i = \{i-1, i+1\}$ is the set of player *i*'s neighbors.
- Let $\vec{s} = (s_1, s_2, ..., s_n)$ be the strategy profile at time *t*. Here, $s_i \in \{C, D\}$ for each player *i*.
- \bullet The dynamics for forming the strategy for time $t + 1$ consists of 2 parts.

아마 사람이 아직이 아직이 그런지.

 299

Each player imagines to play the above PD game once with each of their two neighbors.

Let $z_i(\vec{s})$ = player *i*'s total payoff thus incurred. Then

$$
z_i(\vec{s}) = \begin{cases} b \cdot n_i^C(\vec{s}) + a \cdot (2 - n_i^C(\vec{s})) & \text{if } s_i = D, \\ d \cdot n_i^C(\vec{s}) + c \cdot (2 - n_i^C(\vec{s})) & \text{if } s_i = C. \end{cases}
$$

 H ere $n_i^C(\vec{s}) = |\{ j \in \mathcal{N}_i: s_j = C \}|$ is the number of player *i*'s neighbors taking strategy *C* at time *t*.

• Imitating-most-successful-player in his neighborhod: the rational choice for player *i* is

$$
r_i(\vec{s}) \in M_i(\vec{s}) \stackrel{\text{def}}{=} \{s_j : z_j(\vec{s}) = \max z_k(\vec{s}) \text{ for } k \in N_i \cup \{i\} \}.
$$

イロトイ団 トイ毛 トイ毛トー

 $2Q$

Dynamics I. continued...

Imitating-most-successful-action: each player *i* will imitate the most successful action yielding the highest average payoff which was adopted among his neighbors and himself at time *t*. Let δ be the Kronecker notation. Then

$$
a_i(\vec{s}) = \begin{cases} \frac{\sum_{k \in N_i \cup \{i\}} z_k(\vec{s}) \cdot \delta_{E, s_k}}{\sum_{k \in N_i \cup \{i\}} \delta_{E, s_k}}, & \text{if } E \in \{s_{i-1}, s_i, s_{i+1}\},\\ -\infty, & \text{if } E \neq s_{i-1} = s_i = s_{i+1}, \end{cases}
$$

means the average payoff for strategy $E \in \{C, D\}$ among player *i* and his neighbors. Therefore, player *i*'s next-period rational choice $r_i(\vec{s})$ satisfies

$$
r_i(\vec{s}) \in \overline{M}_i(\vec{s}) \stackrel{\text{def}}{=} \{E \in \{C, D\} : a_i^E(\vec{s}) = \max(a_i^C(\vec{s}), a_i^D(\vec{s})) \}.
$$

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ ト

Dynamics I. continued...

The computation of $M_i(\vec{s})$ and $\bar{M}_i(\vec{s})$ for player *i* involves

 $(s_{i-2}, s_{i-1}, s_i, s_{i+1}, s_{i+2})$

14 out of 32 cases need to be considered,

like
$$
r_i(\vec{s}) = s_i
$$
 if $s_{i-1} = s_i = s_{i+1}$.

 $\text{For brevity, } r(s_{i-2}, s_{i-1}, s_i, s_{i+1}, s_{i+2}) \stackrel{\text{def}}{=} r_i(\vec{s}).$

o Strict rule by inertia:

$$
r_i(\vec{s}) = s_i \text{ iff } s_i \in M_i(\vec{s}) \text{ (or } s_i \in \bar{M}_i(\vec{s})).
$$

- Essentially the same results for the loose rule.
- A time-homogeneous Markov chain on $S = \{C, D\}^n$ with transition probability matrix $Q_0(\vec{s}, \vec{u}) = 1$ iff $\vec{u} = \vec{r}(\vec{s}),$ where the rational choice $\vec{r}(\vec{s}) = (r_1(\vec{s}), r_2(\vec{s}), \ldots, r_n(\vec{s}))$ is uniqu[e](#page-8-0)ly determined for [s](#page-6-0)[t](#page-4-0)ate $\vec{s} \in S$ $\vec{s} \in S$ $\vec{s} \in S$ b[y th](#page-6-0)e s[tri](#page-7-0)ct [r](#page-5-0)[u](#page-9-0)[l](#page-10-0)[e.](#page-4-0) $2Q$

Players will simultaneously, but independently alter their rational choices $\{r_i(\vec{s})\}$ with identical probability $\epsilon > 0$. The mutation rate can be regarded as the probability of players' experimenting with new strategies.

All together, our local-interaction imitation dynamics define a M arkov chain $\{X_t: t = 0, 1, ...\}$ on S. Its transition matrix Q_{ϵ} , a perturbation of Q_0 , given by

$$
Q_{\epsilon}(\vec{s},\vec{u})=\epsilon^{d(\vec{r}(\vec{s}),\vec{u})}\cdot(1-\epsilon)^{n-d(\vec{r}(\vec{s}),\vec{u})}
$$
 for all $\vec{s},\vec{u}\in S$.

イロトメ 御 トメ 君 トメ 君 トー 君

 299

Here, $d(\vec{r}(\vec{s}), \vec{u}) = |\{i \in \mathbb{N} : r_i(\vec{s}) \neq u_i\}|$ is the number of mismatches between the next truly-adopted strategy \vec{u} and the revised rational choice $\vec{r}(\vec{s})$ at state \vec{s} .

• $U(\vec{s}, \vec{u}) = d(\vec{r}(\vec{s}), \vec{u})$ means the cost from \vec{s} to \vec{u} .

Dynamics II. continued...

- **○** $Q_{\epsilon}(\vec{s}, \vec{u}) > 0$ for all $\vec{s}, \vec{u} \in S$.
- \bullet Mutation makes our dynamic process $\{X_t\}$ ergodic.
- The unique invariant distribution μ_{ϵ} is characterized by

$$
\mu_{\epsilon}=\mu_{\epsilon}\cdot\mathbf{Q}_{\epsilon}.
$$

- Goal: to find $\mu_* \stackrel{\text{def}}{=} \lim_{\epsilon \to 0} \mu_{\epsilon}.$
- In particular, whether

$$
\vec{C} \in S_* \stackrel{\text{def}}{=} \{ \vec{s} \in S \; : \; \mu_*(\vec{s}) > 0 \}?
$$

イロトイ団 トイミトイミト

I.e. whether all-cooperation is possible in the long run? Elements in *S*[∗] are called the Long Run Equilibria.

Method of Freidlin and Wentzell

 \bullet Letting $\epsilon \perp 0$ in $\mu_{\epsilon} = \mu_{\epsilon} \cdot Q_{\epsilon}$. Vega-Redondo (2003) showed µ[∗] = µ[∗] · *Q*0. Hence,

 $S_* \subseteq S_0 = \{$ all invariant states under Q_0 .

 \bullet We will first characterize S_0 .

Use the method of Freidlin and Wentzell to find *S*[∗] and the order estimate for $E_{\epsilon}(T)$, where

$$
T=\inf\{t\geq 0: X_t\in S_*\}
$$

イロト イ押ト イヨト イヨト・ヨー

 QQ

is the waiting time to hit the global minimum set *S*∗.

• In case
$$
U(\vec{s}, \vec{u}) = (U(\vec{u}) - U(\vec{s}))^+
$$
, then $S_* = \{\vec{s} : U(\vec{s}) = \min U\}.$

• For any $\vec{s} \in S$, let

 $G({\{\vec{s}\}}) = {\{\text{all spanning trees rooted at } \vec{s}\}}.$

イロト イ押 トイミトイミト・ミー

 $2Q$

- $U(\vec{s}, \vec{u}) = d(\vec{r}(\vec{s}), \vec{u})$ means the cost from \vec{s} to \vec{u} .
- $\nu(g) = \sum_{(\vec{u} \to \vec{v}) \in g} U(\vec{u}, \vec{v})$ means the cost of $g \in G(\{\vec{s}\}).$
- $\nu({\{\vec{s}\}}) = \min_{g \in G({\{\vec{s}\}})} \nu(g)$ the minimum cost of all spanning trees rooted at \vec{s} .
- Define $v_1 = \min_{\vec{s} \in S} v(\{\vec{s}\})$: the minimum cost to build a network with 1 center.
- • Then $\mu_* = \lim_{\epsilon \to 0} \mu_{\epsilon}$ exists and the following holds.

Method of Freidlin and Wentzell continued...

Theorem 1. The support *S*[∗] *of* µ[∗] is given by

$$
S_*=\{\vec{s}\in S\mid \nu(\{\vec{s}\})=\nu_1\}
$$

and $\mu_{\epsilon}(\vec{u}) \approx \epsilon^{\nu(\{\vec{u}\})-\nu_{1}}$ for any $\vec{u} \in S$.

- *S*[∗] consists of those states in *S* which attain the minimum cost *v*¹ when treated as a root.
- \bullet Let *G*(*W*) = { all spanning trees rooted at *W* ⊂ *S*} and $v(W) = min_{a \in G(W)} v(g)$. Define

$$
v_k = \min_{|W|=k} v(W) \text{ for } k \geq 1.
$$

Theorem 2. (Chiang and Chow (2007))

$$
E_{\epsilon}(T)\approx \epsilon^{-\delta} \text{ as } \epsilon \downarrow 0.
$$

 $\textsf{Here} \ \delta = \textsf{v}_{\textsf{K}_0-1} - \textsf{v}_{\textsf{K}_0}$ and $\textsf{K}_0 = \textsf{min}\{ \textsf{k} \geq 2 : \exists \textsf{W} \subseteq \textsf{K}_0 \}$ S with $|W| = k$, $v(W) = v_k$ and $W \nsubseteq S_{\ast}$ [.](#page-13-0)

Results

 $M \stackrel{\text{def}}{=} S_0 \setminus {\{\vec{C}, \vec{D}\}}$

is called the set of mixed stationary states, which means cooperators and defectors coexist peacefully.

• For $\vec{s} \in M \neq \emptyset$ can be expressed as follows:

 d_i = length of the *i*th *D*-string,

 c_i = length of the *j*th *C*-string starting from a certain player.

 \bullet For positive integers *m* and ℓ , define

$$
M_{\geq m, \geq \ell} \stackrel{\text{def}}{=} \{ \vec{s} \in S \; : \; \text{ all } d_i \geq m, \; c_j \geq \ell \}
$$

$$
M_{m, \ell} \stackrel{\text{def}}{=} \{ \vec{s} \in S \; : \; \text{ all } d_i = m, \; c_j = \ell \}.
$$

イロト イ押 トイヨト イヨト

 $2Q$

Theorem 3. For Imitating-Successful-Player dynamics, $S_* = {\{\vec{D}\}}$ and $E_{\epsilon}(T) \approx \epsilon^{-1}$ *as* $\epsilon \downarrow 0$. If $a + b > 2d$, then $S_0 = {\{\vec{C}, \vec{D}\}}$; If $a + b \leq 2d$, then $S_0 = \{\vec{C}, \vec{D}\} \cup M_{>2, \geq 3}$.

• All-defection \vec{D} is the unique LRE of the ISP dynamics. Yet S_0 depends on whether $a + b < 2d$ or not.

o Because

$$
P(r(*,C,D,C,*)=D)=1
$$

and

$$
P(r(*, D, C, D, *) = D) = 1,
$$

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ ト

which shows the strength of *D* against *C*.

Results continued...

Theorem 4. Assume the Imitating-Successful-Action dynamics. (i) If $a + b > \frac{c + 3a}{2}$ $\overline{\mathcal{Z}}^3$, $\mathcal{S}_0 = \{\vec{\mathcal{C}}, \vec{\mathcal{D}}\}, \; \overline{\mathcal{S}}_* = \{\vec{\mathcal{D}}\}$ and $\overline{\mathcal{E}}_{\epsilon}(T) \approx \epsilon^{-1}.$ (ii) If $a+b \leq \frac{c+3a}{2}$ $\frac{2\cdot 3d}{2}$ and $\frac{3a+b}{2} < c+d,$ then $\mathcal{S}_0 = \{\vec{C},\vec{D}\} \cup M,$ where the mixed stationary states in *M* has all $d_i \in \{1, 2, 3\}$ and, besides $c_i > 3$,

$$
c_i \geq 5 \text{ if } (d_i, d_{i+1}) = (1, 1); c_i \geq 4 \text{ if } (d_i, d_{i+1}) = (1, 2) \text{ or } (2, 1).
$$

$$
\begin{cases}\nS_* &= \{\vec{D}\} \text{ and } E_{\epsilon}(T) \approx \epsilon^{-1} \text{ for } n = 5, \\
S_* &= \{\vec{D}\} \text{ and } E_{\epsilon}(T) \approx \epsilon^{-\lceil \frac{n}{10} \rceil} \text{ for } 6 \le n \le 20, \\
S_* &= S_0 \text{ and } E_{\epsilon}(T) \approx \epsilon^0 \text{ for } 21 \le n < 30 \text{ but } n \neq 25, \\
S_* &= S_0 \setminus M_{2,3} \text{ and } E_{\epsilon}(T) \approx \epsilon^{-1} \text{ for } n = 25 \text{ or } 30, \\
S_* &= (S_0 \setminus M_{2,3}) \setminus \{\vec{D}\} \text{ and } E_{\epsilon}(T) \approx \epsilon^{-3} \text{ for } n \ge 31.\n\end{cases}
$$

(iii) If
$$
a + b \leq \frac{c+3d}{2}
$$
 and $\frac{3a+b}{2} \geq c + d$, then
\n
$$
S_0 = \{\vec{C}, \vec{D}\} \cup M_{\geq 2, \geq 3}, S_* = \{\vec{D}\} \text{ and } E_{\epsilon}(T) \approx \epsilon^{-1}.
$$

Results continued...

- Theorem 4 (ii) shows that when $a + b \leq \frac{c + 3a}{2}$ $\frac{1}{2}^{\circ}$ and $\frac{3a+b}{2} < c+d$, S_* varies as the population size *n* grows from $\{\vec{\overline{D}}\} = S_*$ for $5 \le n \le 20$ to $\{\vec{\overline{D}}, \vec{\overline{C}}\} \subset S_*$ for $21 \le n \le 30$, and finally to $S_* = (S_0 \setminus M_{2,3}) \setminus {\{\overrightarrow{D}\}}$ for $n \geq 31$. In particular, all-cooperation \vec{C} instead of all-defection \vec{D} becomes a LRE under the ISA dynamics when $\#$ of players $>$ 31.
- \bullet For positive integers m and ℓ , define

$$
M_{\geq m, \geq \ell} \stackrel{\text{def}}{=} \{ \vec{s} \in S \; : \; \text{ all } d_i \geq m, \; c_j \geq \ell \}
$$

$$
M_{m, \ell} \stackrel{\text{def}}{=} \{ \vec{s} \in S \; : \; \text{ all } d_i = m, \; c_j = \ell \}.
$$

Chen and Chow, Evolutionary prisoner's dilemma games with local interaction and imitation, Adv. Applied Probab. 41(2009).

Match *v* rounds randomly

- In the above, each player plays the PD game once with each of his neighbors for strategy updating.
- What if players are randomly matched to play with his neighbors for *v* times?
- Only 2 ways to do the matching:

$$
m_1: 1 \leftrightarrow 2, 3 \leftrightarrow 4, \dots, n-1 \leftrightarrow n,
$$

$$
m_2:n\leftrightarrow 1,2\leftrightarrow 3,......,n-2\leftrightarrow n-1.
$$

- Number of players *n* has to be even.
- **■** By LLN, $v = \infty$ \Leftrightarrow plays once with each of his neighbors.
- **Theorem 5.** For both the ISP and ISA dynamics, $S_* = \{D\}$ for any $1 \leq v < \infty$.
- Chow and Wu (2010), in preparation.

- Theorem 4 (ii) shows that when $a + b \leq \frac{c + 3a}{2}$ $\frac{1}{2}^{\alpha}$ and $\frac{3a+b}{2} < c+d$, S_* varies as the population size *n* grows from ${\{\vec{D}\}} = S_*$ for $5 \le n \le 20$ to ${\{\vec{D}, \vec{C}\}} \subset S_*$ for $21 \le n \le 30$, and finally to $S_* = (S_0 \setminus M_{2,3}) \setminus {\{\vec{D}\}}$ for $n > 31$.
- Any mixed stationary state \vec{s} in $M = S_0 \setminus {\{\vec{C}, \vec{D}\}}$ has all $d_i \in \{1, 2, 3\}$ and, besides $c_i \geq 3$,

 $c_i \geq 5$ if $(d_i, d_{i+1}) = (1, 1)$; $c_i \geq 4$ if $(d_i, d_{i+1}) = (1, 2)$ or $(2, 1)$.

イロトイ団 トイモトイモト

- Decompose *M* as ∪ *L* ¹*M^k* , where $M_k \stackrel{\text{def}}{=} \{\vec{s} \in M : \vec{s} \text{ has } k \text{ disjoint } D\text{-strings }\}.$ $\vec{s} \stackrel{k}{\rightarrow} \vec{u}$ means $U(\vec{s}, \vec{u}) = k$ and
	- $\vec{s} \stackrel{k}{\leftrightarrow} \vec{u}$ if $U(\vec{u}, \vec{s}) = k$ as well.

- $\vec{s} \stackrel{1}{\leftrightarrow} \vec{u}$ for any $\vec{s}, \vec{u} \in M_k \setminus M_{2,3}$ for $k \geq 1$.
- \vec{s} ↔ \vec{u} for any \vec{s} ∈ $M_k \setminus M_{2, 3}$ and \vec{u} ∈ M_{k-1} for $k ≥ 1$. Here $M_0 = \{ \acute{C} \}.$
- Any two states in {*C*[~] } ∪ *^M* \ *^M*2, ³ are equivalent.

 \overrightarrow{D} can reach out at the minimum cost 3 as follows :

where the unique D -string in \vec{u} has length 1 or 2 depending on *n* is even or odd.

- \bullet Let $\eta = \#$ of closed connected components in M.
- $\bullet \nu({\{\vec{s}\}}) = 3 + \eta$ for any $\vec{s} \in {\{\vec{C}\}} \cup M \setminus M_{2,3}$. $v({\vec{u}}) = 4 + \eta$ for any $\vec{u} \in M_{2,3}$
- \bullet In order to find the minimum cost path from \vec{C} to \vec{D} , it suffices to do so from any $\vec{s} \in \{\vec{C}\} \cup M \setminus M_{2,3}$. And it saves to use some state with as many *D*'s as possible. Note that any D-stri[ng](#page-19-0) in $\vec{s} \in M$ [h](#page-21-0)as length ≤ 3 .

If $d_i = d_{i+1} = 1$, it saves to have $c_i = 9$ as the *i*th *C*-string of \vec{s} can be eliminated at cost 1 :

Theorem 4 (ii) then follows by comparing $\lceil \frac{n}{10} \rceil$ with 3.

Proposition 6. Assume $v = 1$. For both ISP and ISA dynamics, we have $\mathcal{S}_{0,\nu} = \{\vec{C}, \vec{D}\} \cup M^{odd}_{\geq 3,\geq 3}$ and $\mathcal{S}_{*,\nu} = \{\vec{D}\}.$ Here,

 $M_{\geq 3,\geq 3}^{\mathsf{odd}} \stackrel{\text{def}}{=} M_{\geq 3,\geq 3} \,\bigcap\, \{\vec{s} \in \mathcal{S} \,|\, \text{ all } c_i \text{ and } d_j \text{ are odd } \}.$

• *D* can be reached at the minimum cost 1 as follows :

