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If the linkage were not lost, elementary fact:

n n
B=(Y XYi—nXY)/ Y (Xi— X).
i=1 i=1
Natural candidate for estimating § when association is lost:
Average Y. ; X; Yz(; over all permutations .

That is,
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» Order Xj’s and Y;’s separately:
Xn:1 < Xn:2 <. < Xn:i

and
Yn:1 < Yn:2 <---< Yn:i-

» Rearrangement inequality of Hardy-Littlewood-Pdlya:
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nlz< ZXY )Snzxnziyn:i
i=1

and
1 12 12
H ; E ; Xi Yﬂ(i) > E ; Xn:i Yn:n—i+1
» Property of 1 ! 1 Xn.i Ynn—it1 can be deduced from that of
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2. MAIN RESULTS

Some notation:

> (X1, Y1),....(Xn, Yn) be 1D, with joint df H:

> X1,X2,...,Xn ~ F.
> Y1,Y2,...,Yn ~ G
» Define F~'(y) =inf{x: F(x) > y}.

» Theorem 1 Let ¢ be a real-valued measurable function on R?
satisfying some conditions, then, as n — oo,

-1 n

E Z ¢(Xn:ia Yn:i) 2 ’}7
i=1

Here

7= [ o(F ). G ()ay = £6 (F'(U).67' (1)

where U ~ Uniform(0,1).



Theorem 2 Let ¢ be a real-valued measurable function on R?
satisfying some further conditions, then

n _ 1 n
7Z¢(Xn:i7 Yn:i)*ﬁ?’— ZZHZ+OP

n ;=5 vn =5

2= Y { WGPV < )= vl i< )= 1

—1 —1
Here U, = F(X;), Vi = G(Y), w1 (u) = Wk&y):(u,u) and
vy is similarly defined.



Theorem 2 (contd.) Further, as n — oo,

0 (X, Yoi) — VN 725 N(0, 62)

ms

7
where
o = 2[ [ a0 () + y()ya(v)] dud
2 /0 /O [K (U, v) — uv]ws (U) v (V) dudv.

Here K(u,v) = H(F~(u), G (v)).
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» Key observation

1¢ 1y '
EZ‘P(Xn:iaYn:i) ~ HZ(P( n+1)G_1(n_:_1)>

i=1 i=1

Q

[o(Fm.670) o

» In the sum above, careful analysis for i close to 1 or n is
required.
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» Introduce U; = F(X;) and V; = G(Y;) for1 <i<n.

» Joint distribution of (Uy, V4) is K(u,v) = H(F~(u), G~ 1(v)).
» Denote y(u,v)=¢(F'(u),G 1 (v)).

» Key approximations, with u,.; =i/(n+1),
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4. EXAMPLES/COUNTEREXAMPLES

Example 1 Some condition on ¢ is needed.

> Let
o(x.y)=I(x=y).

> Let Xq,...,Xn, Y1,< Y, be independent with common

uniform distribution on (0, 1).
» Note that
» P(X, # Yn,)_1 for 1 <i< n. Hence
Y1 ¢(Xnis Yni)=0as

» However,

/01 o(x,x) dx =1.

» Theorem 1 does not hold.
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Example 2

» Let Xj,..., X, be iid with continuous df F, mean 4 and
variance o?.

v

Let Yi,..., Y, be iid with continuous df G, mean u, and
variance oz.

v

Suppose that G(x) = F(*32).
Then, as n — oo,

v

1L .
- Y X Vi =25 2 + 6162
i=1

v

Apply above to Xj’'s and —Y/’s, then, as n — oo,

1 4 a.s.
- Y XniYon-iz1 — piliz — 6103.
i=1
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» From Theorem 1, as n — oo,

1 & s.
n Z Xni Yoi 225 Wi ip + 610,
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» From Theorem 2, as n — oo,

Z,n:1 Xn:i Yn:i — ”(M H2 + O 62) iISL) N(O, 62)
vn

where

02 = p20% + u2o? + (1+p?)o20s +2u1 Ua 01 02p.



Thank you for your attention !



