### LIMIT THEOREMS FOR FUNCTIONS OF MARGINAL QUANTILES

Kwok-Pui Choi

7th Workshop on Markov Processes and Related Topics

July 20, 2010

Joint work with

J.G. Babu, Z.D. Bai & V. Mangalam

### **OUTLINE**

- 1. Introduction
- 2. MAIN RESULTS
- 3. PROOFS (SKETCH)
- 4. EXAMPLES/COUNTEREXAMPLES

- random sample of size n drawn from a bivariate normal,
- before observations  $(x_i, u_i)$ 's, the association between  $x_i$  and  $u_i$  are lost.
- Observations are then only available in the following sense:
  - $x_1, \dots, x_n$  and  $y_1, \dots, y_n$ , where
  - $y_1, \cdots, y_n$  is some unknown permutation of  $u_1, \cdots, u_n$
- Interested in estimating the correlation coefficient, p

- random sample of size n drawn from a bivariate normal,
- before observations  $(x_i, u_i)$ 's, the association between  $x_i$  and  $u_i$  are lost.
- Observations are then only available in the following sense:
  - $x_1, \dots, x_n$  and  $y_1, \dots, y_n$ , where
  - $y_1, \dots, y_n$  is some unknown permutation of  $u_1, \dots, u_n$
- ▶ Interested in estimating the correlation coefficient. a

- random sample of size n drawn from a bivariate normal,
- before observations  $(x_i, u_i)$ 's, the association between  $x_i$  and  $u_i$  are lost.
- Observations are then only available in the following sense:
  - $\triangleright$   $x_1, \dots, x_n$  and  $y_1, \dots, y_n$ , where
  - ▶  $y_1, \dots, y_n$  is some unknown permutation of  $u_1, \dots, u_n$
- ▶ Interested in estimating the correlation coefficient,  $\rho$

- random sample of size n drawn from a bivariate normal,
- before observations  $(x_i, u_i)$ 's, the association between  $x_i$  and  $u_i$  are lost.
- Observations are then only available in the following sense:
  - $\triangleright$   $x_1, \dots, x_n$  and  $y_1, \dots, y_n$ , where
  - ▶  $y_1, \dots, y_n$  is some unknown permutation of  $u_1, \dots, u_n$
- Interested in estimating the correlation coefficient, ρ

- random sample of size n drawn from a bivariate normal,
- before observations  $(x_i, u_i)$ 's, the association between  $x_i$  and  $u_i$  are lost.
- Observations are then only available in the following sense:
  - $\triangleright$   $x_1, \dots, x_n$  and  $y_1, \dots, y_n$ , where
  - ▶  $y_1, \dots, y_n$  is some unknown permutation of  $u_1, \dots, u_n$
- ▶ Interested in estimating the correlation coefficient,  $\rho$

- random sample of size n drawn from a bivariate normal,
- before observations  $(x_i, u_i)$ 's, the association between  $x_i$  and  $u_i$  are lost.
- Observations are then only available in the following sense:
  - $\triangleright$   $x_1, \dots, x_n$  and  $y_1, \dots, y_n$ , where
  - ▶  $y_1, \dots, y_n$  is some unknown permutation of  $u_1, \dots, u_n$
- Interested in estimating the correlation coefficient, ρ

- ▶ Our motivation: Estimating the parameters in a linear regression problem  $y = \alpha + \beta x$  for  $(X_i, Y_i)$ 's when the association between the  $X_i$ 's and the  $Y_i$ 's is lost.
- ▶ If the linkage were not lost, elementary fact:

$$\hat{\beta} = (\sum_{i=1}^{n} X_i Y_i - n \bar{X} \bar{Y}) / \sum_{i=1}^{n} (X_i - \bar{X})^2.$$

- Natural candidate for estimating  $\beta$  when association is lost: Average  $\sum_{i=1}^{n} X_i Y_{\pi(i)}$  over all permutations  $\pi$ .
- ► That is,

$$\frac{1}{n!} \sum_{\pi} \left( \frac{1}{n} \sum_{i=1}^{n} X_i Y_{\pi(i)} \right)$$

- ▶ Our motivation: Estimating the parameters in a linear regression problem  $y = \alpha + \beta x$  for  $(X_i, Y_i)$ 's when the association between the  $X_i$ 's and the  $Y_i$ 's is lost.
- If the linkage were not lost, elementary fact:

$$\hat{\beta} = (\sum_{i=1}^{n} X_i Y_i - n \bar{X} \bar{Y}) / \sum_{i=1}^{n} (X_i - \bar{X})^2.$$

- Natural candidate for estimating  $\beta$  when association is lost: Average  $\sum_{i=1}^{n} X_i Y_{\pi(i)}$  over all permutations  $\pi$ .
- ► That is,

$$\frac{1}{n!} \sum_{\pi} \left( \frac{1}{n} \sum_{i=1}^{n} X_i Y_{\pi(i)} \right)$$

- ▶ Our motivation: Estimating the parameters in a linear regression problem  $y = \alpha + \beta x$  for  $(X_i, Y_i)$ 's when the association between the  $X_i$ 's and the  $Y_i$ 's is lost.
- If the linkage were not lost, elementary fact:

$$\hat{\beta} = (\sum_{i=1}^{n} X_i Y_i - n \bar{X} \bar{Y}) / \sum_{i=1}^{n} (X_i - \bar{X})^2.$$

- Natural candidate for estimating  $\beta$  when association is lost: Average  $\sum_{i=1}^{n} X_i Y_{\pi(i)}$  over all permutations  $\pi$ .
- ► That is,

$$\frac{1}{n!} \sum_{\pi} \left( \frac{1}{n} \sum_{i=1}^{n} X_i Y_{\pi(i)} \right)$$

- ▶ Our motivation: Estimating the parameters in a linear regression problem  $y = \alpha + \beta x$  for  $(X_i, Y_i)$ 's when the association between the  $X_i$ 's and the  $Y_i$ 's is lost.
- ▶ If the linkage were not lost, elementary fact:

$$\hat{\beta} = (\sum_{i=1}^{n} X_i Y_i - n \bar{X} \bar{Y}) / \sum_{i=1}^{n} (X_i - \bar{X})^2.$$

- Natural candidate for estimating  $\beta$  when association is lost: Average  $\sum_{i=1}^{n} X_i Y_{\pi(i)}$  over all permutations  $\pi$ .
- ► That is,

$$\frac{1}{n!} \sum_{\pi} \left( \frac{1}{n} \sum_{i=1}^{n} X_i Y_{\pi(i)} \right)$$

▶ Order  $X_i$ 's and  $Y_i$ 's separately:

$$X_{n:1} \leq X_{n:2} \leq \cdots \leq X_{n:i}$$

and

$$Y_{n:1} \leq Y_{n:2} \leq \cdots \leq Y_{n:i}.$$

Rearrangement inequality of Hardy-Littlewood-Pólya:

$$\frac{1}{n!} \sum_{\pi} \left( \frac{1}{n} \sum_{i=1}^{n} X_i Y_{\pi(i)} \right) \le \frac{1}{n} \sum_{i=1}^{n} X_{n:i} Y_{n:i}$$

and

$$\frac{1}{n!} \sum_{\pi} \left( \frac{1}{n} \sum_{i=1}^{n} X_i Y_{\pi(i)} \right) \ge \frac{1}{n} \sum_{i=1}^{n} X_{n:i} Y_{n:n-i+1}$$

▶ Property of  $\frac{1}{n}\sum_{i=1}^{n} X_{n:i}Y_{n:n-i+1}$  can be deduced from that of

$$\frac{1}{n}\sum_{i=1}^n X_{n:i}Y_{n:i}$$

► Order *X<sub>i</sub>*'s and *Y<sub>i</sub>*'s separately:

$$X_{n:1} \leq X_{n:2} \leq \cdots \leq X_{n:i}$$

and

$$Y_{n:1} \leq Y_{n:2} \leq \cdots \leq Y_{n:i}.$$

Rearrangement inequality of Hardy-Littlewood-Pólya:

$$\frac{1}{n!} \sum_{\pi} \left( \frac{1}{n} \sum_{i=1}^{n} X_i Y_{\pi(i)} \right) \le \frac{1}{n} \sum_{i=1}^{n} X_{n:i} Y_{n:i}$$

and

$$\frac{1}{n!} \sum_{\pi} \left( \frac{1}{n} \sum_{i=1}^{n} X_i Y_{\pi(i)} \right) \ge \frac{1}{n} \sum_{i=1}^{n} X_{n:i} Y_{n:n-i+1}$$

▶ Property of  $\frac{1}{n}\sum_{i=1}^{n} X_{n:i}Y_{n:n-i+1}$  can be deduced from that of

$$\frac{1}{n} \sum_{i=1}^{n} X_{n:i} Y_{n:i}.$$

▶ Order X<sub>i</sub>'s and Y<sub>i</sub>'s separately:

$$X_{n:1} \leq X_{n:2} \leq \cdots \leq X_{n:i}$$

and

$$Y_{n:1} \leq Y_{n:2} \leq \cdots \leq Y_{n:i}.$$

Rearrangement inequality of Hardy-Littlewood-Pólya:

$$\frac{1}{n!} \sum_{\pi} \left( \frac{1}{n} \sum_{i=1}^{n} X_i Y_{\pi(i)} \right) \le \frac{1}{n} \sum_{i=1}^{n} X_{n:i} Y_{n:i}$$

and

$$\frac{1}{n!} \sum_{\pi} \left( \frac{1}{n} \sum_{i=1}^{n} X_i Y_{\pi(i)} \right) \ge \frac{1}{n} \sum_{i=1}^{n} X_{n:i} Y_{n:n-i+1}$$

▶ Property of  $\frac{1}{n}\sum_{i=1}^{n} X_{n:i}Y_{n:n-i+1}$  can be deduced from that of

$$\frac{1}{n} \sum_{i=1}^{n} X_{n:i} Y_{n:i}.$$

Consider a general problem: asymptotic behavior of

$$\frac{1}{n}\sum_{i=1}^n\phi(X_{n:i},Y_{n:i})$$

Results can be generalized to d-dimension: Let  $(X_i^{(1)}, \dots, X_i^{(d)})$ ,  $1 \le i \le n$ , be IID random vectors. For each  $1 \le j \le d$ , order  $X_i^{(j)}$ ,  $1 \le i \le n$ :

$$X_{n:1}^{(j)} \le X_{n:2}^{(j)} \le \cdots \le X_{n:i}^{(j)}$$

▶ Study, as  $n \to \infty$ ,

$$\frac{1}{n} \sum_{i=1}^{n} \phi(X_{n:i}^{(1)}, \dots, X_{n:i}^{(d)})$$

Consider a general problem: asymptotic behavior of

$$\frac{1}{n}\sum_{i=1}^n\phi(X_{n:i},Y_{n:i})$$

Results can be generalized to d-dimension:

Let 
$$(X_i^{(1)}, \dots, X_i^{(d)})$$
,  $1 \le i \le n$ , be IID random vectors.

For each  $1 \le j \le d$ , order  $X_i^{(j)}$ ,  $1 \le i \le n$ :

$$X_{n:1}^{(j)} \leq X_{n:2}^{(j)} \leq \cdots \leq X_{n:i}^{(j)}$$

▶ Study, as  $n \to \infty$ ,

$$\frac{1}{n}\sum_{i=1}^{n}\phi(X_{n:i}^{(1)},\ldots,X_{n:i}^{(d)}).$$

Consider a general problem: asymptotic behavior of

$$\frac{1}{n}\sum_{i=1}^n\phi(X_{n:i},Y_{n:i})$$

Results can be generalized to d-dimension:

Let 
$$(X_i^{(1)}, \dots, X_i^{(d)})$$
,  $1 \le i \le n$ , be IID random vectors.

For each  $1 \le j \le d$ , order  $X_i^{(j)}$ ,  $1 \le i \le n$ :

$$X_{n:1}^{(j)} \leq X_{n:2}^{(j)} \leq \cdots \leq X_{n:i}^{(j)}$$

▶ Study, as  $n \to \infty$ ,

$$\frac{1}{n}\sum_{i=1}^n \phi(X_{n:i}^{(1)},\ldots,X_{n:i}^{(d)}).$$

### Loss of association is studied under

- broken sample.
- ▶ file-linkage problem,
- matching problem
- DeGroot & Goel (1980) Ann. Statist
- ▶ Copas & Hilton (1990) J. R. Statist. Soc. A
- Chan & Loh (2001) Statist. Sinica
- ▶ Bai & Hsing (2005) Probab. Theory & Rel. Fields

- Loss of association is studied under
  - broken sample,
  - file-linkage problem,
  - matching problem
- DeGroot & Goel (1980) Ann. Statist.
- Copas & Hilton (1990) J. R. Statist. Soc. A
- ► Chan & Loh (2001) Statist. Sinica
- ▶ Bai & Hsing (2005) Probab. Theory & Rel. Fields

- Loss of association is studied under
  - broken sample,
  - file-linkage problem,
  - matching problem
- ▶ DeGroot & Goel (1980) Ann. Statist.
- Copas & Hilton (1990) J. R. Statist. Soc. A
- Chan & Loh (2001) Statist. Sinica
- ▶ Bai & Hsing (2005) Probab. Theory & Rel. Fields

- Loss of association is studied under
  - broken sample,
  - ▶ file-linkage problem,
  - matching problem
- ▶ DeGroot & Goel (1980) Ann. Statist.
- ► Copas & Hilton (1990) J. R. Statist. Soc. A
- Chan & Loh (2001) Statist. Sinica
- ▶ Bai & Hsing (2005) Probab. Theory & Rel. Fields

- Loss of association is studied under
  - broken sample,
  - ▶ file-linkage problem,
  - matching problem
- DeGroot & Goel (1980) Ann. Statist.
- ► Copas & Hilton (1990) J. R. Statist. Soc. A
- Chan & Loh (2001) Statist. Sinica
- ▶ Bai & Hsing (2005) Probab. Theory & Rel. Fields

- Loss of association is studied under
  - broken sample,
  - file-linkage problem,
  - matching problem
- DeGroot & Goel (1980) Ann. Statist.
- ► Copas & Hilton (1990) J. R. Statist. Soc. A
- ► Chan & Loh (2001) Statist. Sinica
- ▶ Bai & Hsing (2005) Probab. Theory & Rel. Fields

- Loss of association is studied under
  - broken sample,
  - file-linkage problem,
  - matching problem
- DeGroot & Goel (1980) Ann. Statist.
- ► Copas & Hilton (1990) J. R. Statist. Soc. A
- ► Chan & Loh (2001) Statist. Sinica
- ▶ Bai & Hsing (2005) Probab. Theory & Rel. Fields

- Loss of association is studied under
  - broken sample,
  - file-linkage problem,
  - matching problem
- DeGroot & Goel (1980) Ann. Statist.
- Copas & Hilton (1990) J. R. Statist. Soc. A
- ► Chan & Loh (2001) Statist. Sinica
- ▶ Bai & Hsing (2005) Probab. Theory & Rel. Fields

#### Some notation:

- $\blacktriangleright$   $(X_1, Y_1), \dots, (X_n, Y_n)$  be IID, with joint df H:
  - $X_1, X_2, \dots, X_n \sim F$ .
  - $Y_1, Y_2, ..., Y_n \sim G$
  - ▶ Define  $F^{-1}(y) = \inf\{x : F(x) \ge y\}$
- Theorem 1 Let φ be a real-valued measurable function on R<sup>2</sup> satisfying some conditions, then, as n → ∞,

$$\frac{1}{n}\sum_{i=1}^{n}\phi(X_{n:i},Y_{n:i})\xrightarrow{a.s.}\bar{\gamma}$$

Here

$$\overline{\gamma} := \int_0^1 \phi(F^{-1}(y), G^{-1}(y)) dy = E\phi\left(F^{-1}(U), G^{-1}(U)\right)$$

#### Some notation:

- $\blacktriangleright$   $(X_1, Y_1), ..., (X_n, Y_n)$  be IID, with joint df H:
  - ►  $X_1, X_2, ..., X_n \sim F$ .
  - ►  $Y_1, Y_2, ..., Y_n \sim G$
  - ▶ Define  $F^{-1}(y) = \inf\{x : F(x) \ge y\}$ .
- Theorem 1 Let φ be a real-valued measurable function on R<sup>2</sup> satisfying some conditions, then, as n → ∞,

$$\frac{1}{n} \sum_{i=1}^{n} \phi(X_{n:i}, Y_{n:i}) \xrightarrow{a.s.} \bar{\gamma}$$

Here

$$\bar{\gamma} := \int_0^1 \phi(F^{-1}(y), G^{-1}(y)) dy = E\phi\left(F^{-1}(U), G^{-1}(U)\right)$$

#### Some notation:

- $(X_1, Y_1), \dots, (X_n, Y_n)$  be IID, with joint df H:
  - $X_1, X_2, \ldots, X_n \sim F$ .
  - $Y_1, Y_2, ..., Y_n \sim G$
  - ▶ Define  $F^{-1}(y) = \inf\{x : F(x) \ge y\}$ .
- ▶ **Theorem 1** Let  $\phi$  be a real-valued measurable function on  $\mathbb{R}^2$  satisfying some conditions, then, as  $n \to \infty$ ,

$$\frac{1}{n}\sum_{i=1}^{n}\phi(X_{n:i},Y_{n:i})\xrightarrow{a.s.}\bar{\gamma}.$$

Here

$$\bar{\gamma} := \int_0^1 \phi(F^{-1}(y), G^{-1}(y)) dy = E\phi\left(F^{-1}(U), G^{-1}(U)\right)$$

#### Some notation:

- $\blacktriangleright$   $(X_1, Y_1), ..., (X_n, Y_n)$  be IID, with joint df H:
  - $X_1, X_2, \ldots, X_n \sim F$ .
  - $Y_1, Y_2, ..., Y_n \sim G$
  - ▶ Define  $F^{-1}(y) = \inf\{x : F(x) \ge y\}$ .
- ▶ **Theorem 1** Let  $\phi$  be a real-valued measurable function on  $\mathbb{R}^2$  satisfying some conditions, then, as  $n \to \infty$ ,

$$\frac{1}{n}\sum_{i=1}^n\phi(X_{n:i},Y_{n:i})\xrightarrow{a.s.}\bar{\gamma}.$$

Here

$$\bar{\gamma} := \int_0^1 \phi(F^{-1}(y), G^{-1}(y)) dy = E\phi\left(F^{-1}(U), G^{-1}(U)\right)$$

#### Some notation:

- $(X_1, Y_1), \dots, (X_n, Y_n)$  be IID, with joint df H:
  - $X_1, X_2, ..., X_n \sim F$ .
  - $Y_1, Y_2, ..., Y_n \sim G$
  - ▶ Define  $F^{-1}(y) = \inf\{x : F(x) \ge y\}$ .
- ▶ **Theorem 1** Let  $\phi$  be a real-valued measurable function on  $\mathbb{R}^2$  satisfying some conditions, then, as  $n \to \infty$ ,

$$\frac{1}{n}\sum_{i=1}^n\phi(X_{n:i},Y_{n:i})\xrightarrow{a.s.}\bar{\gamma}.$$

Here

$$\bar{\gamma} := \int_0^1 \phi(F^{-1}(y), G^{-1}(y)) dy = E\phi\left(F^{-1}(U), G^{-1}(U)\right)$$

**Theorem 2** Let  $\phi$  be a real-valued measurable function on  $\mathbb{R}^2$  satisfying some further conditions, then

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\phi(X_{n:i},Y_{n:i})-\sqrt{n}\,\bar{\gamma}=\frac{1}{\sqrt{n}}\sum_{\ell=1}^{n}Z_{n,\ell}+o_{P}(1)$$

where

$$Z_{n,\ell} = \frac{1}{n} \sum_{i=1}^n \left\{ \psi_1(\frac{i}{n+1})[I(U_\ell \leq \frac{i}{n}) - \frac{i}{n}] + \psi_2(\frac{i}{n+1})[I(V_\ell \leq \frac{i}{n}) - \frac{i}{n}] \right\}.$$

Here  $U_{\ell} = F(X_{\ell})$ ,  $V_{\ell} = G(Y_{\ell})$ ,  $\psi_1(u) = \frac{\partial \phi(F^{-1}(x), G^{-1}(y))}{\partial x}|_{(x,y)=(u,u)}$  and  $\psi_2$  is similarly defined.

**Theorem 2** (contd.) *Further, as*  $n \rightarrow \infty$ ,

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\phi(X_{n:i},Y_{n:i})-\sqrt{n}\;\bar{\gamma}\xrightarrow{dist}N(0,\sigma^2)$$

where

$$\sigma^{2} = 2 \int_{0}^{1} \int_{0}^{v} u(1-v)[\psi_{1}(u)\psi_{1}(v) + \psi_{2}(u)\psi_{2}(v)] dudv$$
$$+2 \int_{0}^{1} \int_{0}^{1} [K(u,v) - uv]\psi_{1}(u)\psi_{2}(v) dudv.$$

Here 
$$K(u, v) = H(F^{-1}(u), G^{-1}(v))$$
.

### 3. Sketches of Proofs

# Proof (sketch) of Theorem 1

Key observation

$$\frac{1}{n} \sum_{i=1}^{n} \phi(X_{n:i}, Y_{n:i}) \approx \frac{1}{n} \sum_{i=1}^{n} \phi\left(F^{-1}(\frac{i}{n+1}), G^{-1}(\frac{i}{n+1})\right)$$
$$\approx \int_{0}^{1} \phi\left(F^{-1}(y), G^{-1}(y)\right) dy.$$

▶ In the sum above, careful analysis for *i* close to 1 or *n* is required.

### 3. Sketches of Proofs

## Proof (sketch) of Theorem 1

Key observation

$$\frac{1}{n}\sum_{i=1}^{n}\phi(X_{n:i},Y_{n:i}) \approx \frac{1}{n}\sum_{i=1}^{n}\phi\left(F^{-1}(\frac{i}{n+1}),G^{-1}(\frac{i}{n+1})\right)$$
$$\approx \int_{0}^{1}\phi\left(F^{-1}(y),G^{-1}(y)\right)dy.$$

▶ In the sum above, careful analysis for *i* close to 1 or *n* is required.

## Proof (sketch) of Theorem 2

- ▶ Introduce  $U_i = F(X_i)$  and  $V_i = G(Y_i)$  for  $1 \le i \le n$ .
- ▶ Joint distribution of  $(U_1, V_1)$  is  $K(u, v) = H(F^{-1}(u), G^{-1}(v))$ .
- ▶ Denote  $\psi(u, v) = \phi(F^{-1}(u), G^{-1}(v))$
- ▶ Key approximations, with  $\mu_{n:i} = i/(n+1)$ ,

$$\begin{split} &\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \phi\left(X_{n:i}, Y_{n:i}\right) - \sqrt{n} \; \bar{\gamma} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \psi\left(U_{n:i}, V_{n:i}\right) - \sqrt{n} \; \bar{\gamma} \\ &\approx \; \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left[ \psi\left(U_{n:i}, V_{n:i}\right) - \psi\left(\mu_{n:i}, \mu_{n:i}\right) \right] \\ &\approx \; \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left[ \left(U_{n:i} - \mu_{n:i}\right) \psi_{1}(\mu_{n:i}) + \left(V_{n:i} - \mu_{n:i}\right) \psi_{2}(\mu_{n:i}) \right] \\ &\approx \; \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \sum_{\ell=1}^{n} \left\{ \left[ I\left(U_{\ell} \leq \frac{i}{n}\right) - \frac{i}{n} \right] \psi_{1}(\mu_{n:i}) + \left[ I\left(V_{\ell} \leq \frac{i}{n}\right) - \frac{i}{n} \right] \psi_{2}(\mu_{n:i}) \right\} \end{split}$$

## Proof (sketch) of Theorem 2

- ▶ Introduce  $U_i = F(X_i)$  and  $V_i = G(Y_i)$  for  $1 \le i \le n$ .
- ▶ Joint distribution of  $(U_1, V_1)$  is  $K(u, v) = H(F^{-1}(u), G^{-1}(v))$ .
- ▶ Denote  $\psi(u, v) = \phi(F^{-1}(u), G^{-1}(v))$ .
- ▶ Key approximations, with  $\mu_{n:i} = i/(n+1)$ ,

$$\begin{split} &\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \phi(X_{n:i}, Y_{n:i}) - \sqrt{n} \; \bar{\gamma} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \psi(U_{n:i}, V_{n:i}) - \sqrt{n} \; \bar{\gamma} \\ \approx & \frac{1}{\sqrt{n}} \sum_{i=1}^{n} [\psi(U_{n:i}, V_{n:i}) - \psi(\mu_{n:i}, \mu_{n:i})] \\ \approx & \frac{1}{\sqrt{n}} \sum_{i=1}^{n} [(U_{n:i} - \mu_{n:i}) \psi_{1}(\mu_{n:i}) + (V_{n:i} - \mu_{n:i}) \psi_{2}(\mu_{n:i})] \\ \approx & \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \sum_{i=1}^{n} \left\{ [I(U_{\ell} \leq \frac{i}{n}) - \frac{i}{n}] \psi_{1}(\mu_{n:i}) + [I(V_{\ell} \leq \frac{i}{n}) - \frac{i}{n}] \psi_{2}(\mu_{n:i}) \right\} \end{split}$$

## Proof (sketch) of Theorem 2

- ▶ Introduce  $U_i = F(X_i)$  and  $V_i = G(Y_i)$  for  $1 \le i \le n$ .
- ▶ Joint distribution of  $(U_1, V_1)$  is  $K(u, v) = H(F^{-1}(u), G^{-1}(v))$ .
- Denote  $\psi(u, v) = \phi(F^{-1}(u), G^{-1}(v))$ .
- Key approximations, with  $\mu_{n:i} = i/(n+1)$ ,

$$\begin{split} &\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\phi\left(X_{n:i},Y_{n:i}\right)-\sqrt{n}\;\bar{\gamma}=\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\psi\left(U_{n:i},V_{n:i}\right)-\sqrt{n}\;\bar{\gamma}\\ \approx &\frac{1}{\sqrt{n}}\sum_{i=1}^{n}[\psi(U_{n:i},V_{n:i})-\psi(\mu_{n:i},\mu_{n:i})]\\ \approx &\frac{1}{\sqrt{n}}\sum_{i=1}^{n}[(U_{n:i}-\mu_{n:i})\psi_{1}(\mu_{n:i})+(V_{n:i}-\mu_{n:i})\psi_{2}(\mu_{n:i})]\\ \approx &\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\sum_{\ell=1}^{n}\left\{[I(U_{\ell}\leq\frac{i}{n})-\frac{i}{n}]\psi_{1}(\mu_{n:i})+[I(V_{\ell}\leq\frac{i}{n})-\frac{i}{n}]\psi_{2}(\mu_{n:i})\right\} \end{split}$$

## Proof (sketch) of Theorem 2

- ▶ Introduce  $U_i = F(X_i)$  and  $V_i = G(Y_i)$  for  $1 \le i \le n$ .
- ▶ Joint distribution of  $(U_1, V_1)$  is  $K(u, v) = H(F^{-1}(u), G^{-1}(v))$ .
- Denote  $\psi(u, v) = \phi(F^{-1}(u), G^{-1}(v))$ .
- Key approximations, with  $\mu_{n:i} = i/(n+1)$ ,

$$\begin{split} &\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\phi(X_{n:i},Y_{n:i})-\sqrt{n}\;\bar{\gamma}=\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\psi(U_{n:i},V_{n:i})-\sqrt{n}\;\bar{\gamma}\\ \approx &\frac{1}{\sqrt{n}}\sum_{i=1}^{n}[\psi(U_{n:i},V_{n:i})-\psi(\mu_{n:i},\mu_{n:i})]\\ \approx &\frac{1}{\sqrt{n}}\sum_{i=1}^{n}[(U_{n:i}-\mu_{n:i})\psi_{1}(\mu_{n:i})+(V_{n:i}-\mu_{n:i})\psi_{2}(\mu_{n:i})]\\ \approx &\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\sum_{\ell=1}^{n}\left\{[I(U_{\ell}\leq\frac{i}{n})-\frac{i}{n}]\psi_{1}(\mu_{n:i})+[I(V_{\ell}\leq\frac{i}{n})-\frac{i}{n}]\psi_{2}(\mu_{n:i})\right\} \end{split}$$

## **Example 1** Some condition on $\phi$ is needed.

▶ Let

$$\phi(x,y)=I(x=y).$$

- ▶ Let  $X_1,...,X_n$ ,  $Y_1, \le Y_n$  be independent with common uniform distribution on (0, 1).
- Note that

$$P(X_{ni} \neq Y_{ni}) = 1$$
 for  $1 \le i \le n$ . Hence

However

$$\int_{-\infty}^{\infty} \phi(x,x) \ dx = 1.$$

Theorem 1 does not hold.

# **Example 1** Some condition on $\phi$ is needed.

Let

$$\phi(x,y)=I(x=y).$$

- Let  $X_1, ..., X_n, Y_1, \le Y_n$  be independent with common uniform distribution on (0, 1).
- Note that

$$P(X_{n:i} \neq Y_{n:i}) = 1$$
 for  $1 \leq i \leq n$ . Hence

► However

$$\int_{0}^{1} \phi(x, x) dx = 1.$$

Theorem 1 does not hold.

## **Example 1** Some condition on $\phi$ is needed.

Let

$$\phi(x,y)=I(x=y).$$

- Let  $X_1, ..., X_n, Y_1, \le Y_n$  be independent with common uniform distribution on (0, 1).
- Note that
  - ►  $P(X_{n:i} \neq Y_{n:i}) = 1$  for  $1 \le i \le n$ . Hence  $\sum_{i=1}^{n} \phi(X_{n:i}, Y_{n:i}) = 0$  a.s..
  - ► However.

$$\int_0^1 \phi(x, x) \ dx = 1$$

Theorem 1 does not hold

## **Example 1** Some condition on $\phi$ is needed.

Let

$$\phi(x,y)=I(x=y).$$

- Let  $X_1, ..., X_n, Y_1, \le Y_n$  be independent with common uniform distribution on (0, 1).
- Note that
  - ►  $P(X_{n:i} \neq Y_{n:i}) = 1$  for  $1 \le i \le n$ . Hence  $\sum_{i=1}^{n} \phi(X_{n:i}, Y_{n:i}) = 0$  a.s..
  - However,

$$\int_0^1 \phi(x, x) \ dx = 1.$$

Theorem 1 does not hold

## **Example 1** Some condition on $\phi$ is needed.

Let

$$\phi(x,y)=I(x=y).$$

- Let  $X_1, ..., X_n, Y_1, \le Y_n$  be independent with common uniform distribution on (0, 1).
- Note that
  - ►  $P(X_{n:i} \neq Y_{n:i}) = 1$  for  $1 \le i \le n$ . Hence  $\sum_{i=1}^{n} \phi(X_{n:i}, Y_{n:i}) = 0$  a.s..
  - However,

$$\int_0^1 \phi(x,x) \ dx = 1.$$

► Theorem 1 does not hold.

## **Example 1** Some condition on $\phi$ is needed.

Let

$$\phi(x,y)=I(x=y).$$

- Let  $X_1, ..., X_n, Y_1, \le Y_n$  be independent with common uniform distribution on (0, 1).
- Note that
  - ►  $P(X_{n:i} \neq Y_{n:i}) = 1$  for  $1 \le i \le n$ . Hence  $\sum_{i=1}^{n} \phi(X_{n:i}, Y_{n:i}) = 0$  a.s..
  - However,

$$\int_0^1 \phi(x,x) \ dx = 1.$$

Theorem 1 does not hold.

- Let  $X_1,...,X_n$  be iid with continuous df F, mean  $\mu_1$  and variance  $\sigma_1^2$ .
- Let  $Y_1, ..., Y_n$  be iid with continuous df G, mean  $\mu_2$  and variance  $\sigma_2^2$ .
- ▶ Suppose that  $G(x) = F(\frac{x-a}{b})$ .
- ▶ Then, as  $n \to \infty$ ,

$$\frac{1}{n} \sum_{i=1}^{n} X_{n:i} Y_{n:i} \xrightarrow{a.s.} \mu_1 \mu_2 + \sigma_1 \sigma_2$$

$$\frac{1}{n}\sum_{i=1}^{n}X_{n:i}Y_{n:n-i+1} \xrightarrow{a.s.} \mu_1\mu_2 - \sigma_1\sigma_2$$



- Let  $X_1,...,X_n$  be iid with continuous df F, mean  $\mu_1$  and variance  $\sigma_1^2$ .
- Let  $Y_1, ..., Y_n$  be iid with continuous df G, mean  $\mu_2$  and variance  $\sigma_2^2$ .
- ▶ Suppose that  $G(x) = F(\frac{x-a}{b})$ .
- ▶ Then, as  $n \rightarrow \infty$ ,

$$\frac{1}{n}\sum_{i=1}^{n}X_{n:i}Y_{n:i}\xrightarrow{a.s.}\mu_{1}\mu_{2}+\sigma_{1}\sigma_{2}$$

$$\frac{1}{n}\sum_{i=1}^{n}X_{n:i}Y_{n:n-i+1}\xrightarrow{a.s.}\mu_1\mu_2-\sigma_1\sigma_2$$



- Let  $X_1, ..., X_n$  be iid with continuous df F, mean  $\mu_1$  and variance  $\sigma_1^2$ .
- Let  $Y_1, ..., Y_n$  be iid with continuous df G, mean  $\mu_2$  and variance  $\sigma_2^2$ .
- ▶ Suppose that  $G(x) = F(\frac{x-a}{b})$ .
- ▶ Then, as  $n \rightarrow \infty$ ,

$$\frac{1}{n}\sum_{i=1}^{n}X_{n:i}Y_{n:i}\xrightarrow{a.s.}\mu_1\mu_2+\sigma_1\sigma_2.$$

$$\frac{1}{n}\sum_{i=1}^{n}X_{n:i}Y_{n:n-i+1}\xrightarrow{a.s.}\mu_1\mu_2-\sigma_1\sigma_2.$$



- Let  $X_1,...,X_n$  be iid with continuous df F, mean  $\mu_1$  and variance  $\sigma_1^2$ .
- Let  $Y_1, ..., Y_n$  be iid with continuous df G, mean  $\mu_2$  and variance  $\sigma_2^2$ .
- ▶ Suppose that  $G(x) = F(\frac{x-a}{b})$ .
- ▶ Then, as  $n \rightarrow \infty$ ,

$$\frac{1}{n}\sum_{i=1}^{n}X_{n:i}Y_{n:i}\xrightarrow{a.s.}\mu_1\mu_2+\sigma_1\sigma_2.$$

$$\frac{1}{n}\sum_{i=1}^{n}X_{n:i}Y_{n:n-i+1}\xrightarrow{a.s.}\mu_1\mu_2-\sigma_1\sigma_2.$$



- Let  $X_1,...,X_n$  be iid with continuous df F, mean  $\mu_1$  and variance  $\sigma_1^2$ .
- Let  $Y_1, ..., Y_n$  be iid with continuous df G, mean  $\mu_2$  and variance  $\sigma_2^2$ .
- ▶ Suppose that  $G(x) = F(\frac{x-a}{b})$ .
- ▶ Then, as  $n \rightarrow \infty$ ,

$$\frac{1}{n}\sum_{i=1}^{n}X_{n:i}Y_{n:i}\xrightarrow{a.s.}\mu_1\mu_2+\sigma_1\sigma_2.$$

$$\frac{1}{n}\sum_{i=1}^{n}X_{n:i}Y_{n:n-i+1}\xrightarrow{a.s.}\mu_1\mu_2-\sigma_1\sigma_2.$$



**Example 3** Let  $(X_i, Y_i)$  be independent bivariate normal with means  $\mu_1$  and  $\mu_2$ , variances  $\sigma_1^2$  and  $\sigma_2^2$ , and correlation coefficient  $\rho$ .

▶ From Theorem 1, as  $n \rightarrow \infty$ ,

$$\frac{1}{n}\sum_{i=1}^{n}X_{n:i}Y_{n:i}\xrightarrow{a.s.}\mu_1\mu_2+\sigma_1\sigma_2.$$

▶ From Theorem 2, as  $n \rightarrow \infty$ ,

$$\frac{\sum_{i=1}^{n} X_{n:i} Y_{n:i} - n(\mu_1 \mu_2 + \sigma_1 \sigma_2)}{\sqrt{n}} \xrightarrow{\textit{dist}} N(0, \sigma^2)$$

where

$$\sigma^2 = \mu_1^2 \sigma_2^2 + \mu_2^2 \sigma_1^2 + (1 + \rho^2) \sigma_1^2 \sigma_2^2 + 2\mu_1 \mu_2 \sigma_1 \sigma_2 \rho$$

**Example 3** Let  $(X_i, Y_i)$  be independent bivariate normal with means  $\mu_1$  and  $\mu_2$ , variances  $\sigma_1^2$  and  $\sigma_2^2$ , and correlation coefficient  $\rho$ .

▶ From Theorem 1, as  $n \rightarrow \infty$ ,

$$\frac{1}{n}\sum_{i=1}^{n}X_{n:i}Y_{n:i}\xrightarrow{a.s.}\mu_1\mu_2+\sigma_1\sigma_2.$$

▶ From Theorem 2, as  $n \rightarrow \infty$ ,

$$\frac{\sum_{i=1}^{n} X_{n:i} Y_{n:i} - n(\mu_1 \mu_2 + \sigma_1 \sigma_2)}{\sqrt{n}} \xrightarrow{\textit{dist}} N(0, \sigma^2)$$

where

$$\sigma^2 = \mu_1^2 \sigma_2^2 + \mu_2^2 \sigma_1^2 + (1 + \rho^2) \sigma_1^2 \sigma_2^2 + 2 \mu_1 \mu_2 \sigma_1 \sigma_2 \rho.$$

Thank you for your attention!