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Our story starts from the book “Brownian motion,
obstacles and random media” (A-S. Sznitman), where a
Brownian particle moves in a space full of obstacles randomly
located in the form of Poissonian cloud.

The central part of the book is to investigate the long term
asymptotic behaviors of the trajectory of the particle which
survives from being trapped by the obstacles.
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The (annealed) Gibbs measure of the form

dQt

dP
=

1
Zt

exp
{
− θ

∫ t

0
V (Bs)ds

}
is introduced to generates the trajectory of the Brownian particle
surviving from being trapped by the obstacles, where Bs is a
d-dim. Brownian motion,

V (x) =

∫
Rd

K (y − x)ω(dy) x ∈ Rd

is called (Piossonian) potential function and ω(dy) is a
independent (of Bs) Poissonian field on Rd with intensity 1.
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In Sznitman’s work, the shape function K (x) is assumed to
be non-negative bounded and locally supported.

By Newton’s law of universal gravitation, on the other
hand, some most natural ways to define the potential function
are

V (x) =

∫
Rd

ω(dy)

|y − x |2
and V (x) =

∫
Rd

ω(dy)

|y − x |
.

The first and second measure, respectively, the net attraction
and the net potential at the location x in a gravitational field
generated by the Poissonian stars.

Thus, we propose to take

K (x) = |x |−p.
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A disappointing fact is∫
Rd

ω(dy)

|y − x |p
≡ ∞ ∀p > 0

which is indicated by the easy computation

E
∫

Rd

ω(dy)

|y − x |p
=

∫
Rd

dy
|y − x |p

=

∫
Rd

dy
|y |p

=∞.
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Renormalization

Let p > 0 be fixed and for each N, let KN(x) ≥ 0 be
bounded and locally supported such that KN(x) ↑ |x |−p

(N →∞). Define the Gibbs measure Qt ,N as

dQN,t

dP
=

1
Zt

exp
{
− θ

∫ t

0
VN(Bs)ds

}
where

VN(x) =

∫
Rd

KN(y − x)ω(dy) x ∈ Rd

The key observation is that

E VN(x) =

∫
Rd

KN(y − x)dy =

∫
Rd

KN(y)dy = constantN .
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Renormalization

Write V N = VN(x)− E VN(x). By “renormalization”

dQN,t

dP
=

1
Zt

exp
{
− θ

∫ t

0
V N(Bs)ds

}
.

Notice that∫ t

0
V N(Bs)ds =

∫
Rd

[ ∫ t

0
KN(y − Bs)ds

][
ω(dx)− dx

]
“converges” to∫

Rd

[ ∫ t

0

ds
|x − Bs|p

][
ω(dx)− dx

]
=

∫
Rd
ξ(t , x)

[
ω(dx)− dx

]
.
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Renormalization

When
d
2
< p < min

{
d ,

d + 2
2

}
the conditional variance

Var
{∫

Rd
ξ(t, x)

[
ω(dx)− dx

]∣∣∣∣B} =

∫
Rd
ξ2(t, x)dx

= C
∫ t

0

∫ t

0

drds
|Br − Bs|2p−d <∞

where the second step follows from the relation∫
Rd

dx
|x− y|p|x− z|p

=
1

|y− z|2p−d .
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Renormalization

In the remaining of the talk, we assume that

d
2
< p < min

{
d,

d + 2
2

}
.

The Gibbs measure Qt given by

dQt

dP
=

1
Zt

exp
{
− θ

∫
Rd
ξ(t, x)

[
ω(dx)− dx

]}
is well defined and for fixed t > 0, ‖Qt,N − Qt‖V → 0 as N→∞.
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With the Gibbs measure being defined, a natural question
is to ask the long term behavior of this model. In particular, it is
interesting to see how differently our model behaves from the
model in Sznitman’s setting.

In this talk, we discuss the long term asymptotics of the
partition function Zt given as

E exp
{
− θ

∫
Rd
ξ(t, x)

[
ω(dx)− dx

]}
with θ > 0 being dependent or independent of t.
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Brownian motion in Brownian potential
We first consider the model of Brownian motion in

Brownian potential, whose trajectory is generated by the Gibbs
measure

dQt

dP
=

1
Zt

exp
{
− θ

∫
Rd
ξ(t, x)W(dx)

}
where W(x) (x ∈ Rd) is a Brownian sheet independent of Bs.

Heuristically,∫
Rd
ξ(t, x)W(dx) =

∫ t

0
U(Bs)ds

with the (Brownian) potential function

U(x) =

∫
Rd

W(dy)

|y− x|p
x ∈ Rd.

Chen (Dept of Mathematics, UTK) Brownian motion in Piossonian potential
Part of the talk is based on the collaborative works with Alexey Kulik and Jay Rosen. 11

/ 37



Brownian motion in Brownian potential

This model is concerned with a Brownian particle (carrying
one unit electronic charge with fixed sign) moving in an
electronic field, where W(x) symbols the spatial distribution of a
cloud of electronic charges with random ±-signs..

According to Coulomb’s law, U(x) represents the net force
and the net potential, when p = 2 and p = 1, respectively, at the
location x in the field.
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Brownian motion in Brownian potential

The mathematical difference between gravitational and the
electronic fields can be substantial due to the fact one has sign
flapping and another doesn’t. On the other hand, the
renormalization in Poissonian case may link two models
together.

Theorem (Chen-Kulik (2010))

t−
d+4−2p

2

∫
Rd
ξ(t, x)

[
ω(dx)− dx

] d−→
∫

Rd
ξ(1, x)W(dx)
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Brownian motion in Brownian potential

Theorem (Chen-Rosen (2010))

lim
t→∞

t−
d+4−2p
d+2−2p log E exp

{
θ

∫
Rd
ξ(t, x)W(dx)

}

= Λθ
4

d+2−2p

(
πd/2

2

Γ2
(

d−p
2

)
Γ
(

2p−d
2

)
Γ2
(p

2

)
Γ(d− p)

) 2
d+2−2p

where

Λ = sup
g∈Fd

{∫∫
Rd×Rd

g2(x)g2(y)

|x− y|2p−d dxdy− 1
2

∫
Rd
|∇g(x)|2dx

}
and Fd =

{
g ∈ L2(Rd); ‖g‖2 = 1, ∇g ∈ 2(Rd)

}
.
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Super-critical case

The setting of Poissonian potential is far more complicated
due to lack of self-similarity. There are three regimes according
to the scale of θ = θ(t).

Theorem (Chen-Kulik (2010))

lim
t→∞

1
bt

log E exp
{
− bp/d

t

t
θ

∫
Rd
ξ(t, x)

[
ω(dx)− dx

]}
= θd/p

∫
Rd

[
exp{−|x|−p} − 1 + |x|−p

]
dx

for any θ > 0 and positive bt with bt/t
d

d+2 →∞.
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Super-critical case

Remark 1. Taking bt = td/p gives

lim
t→∞

t−d/p log E exp
{
− θ

∫
Rd
ξ(t, x)

[
ω(dx)− dx

]}
= θd/p

∫
Rd

[
exp{−|x|−p} − 1 + |x|−p

]
dx

Notice that
d
p
<

d + 4− 2p
d + 2− 2p

We see a substantial difference between Poisonian and
Brownian settings.
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Super-critical case

Remark 2. Recall (Donsker-Varadhan, Sznitman) that when the
shape function K(x) is bounded and locally supported,

lim
t→∞

t−
d

d+2 log E exp
{
− θ

∫ t

0
V(Bs)ds

}
= −d + 2

2
ω

2
d+2
d

(2λd

d

) d
d+2

where ωd is the volume of the d-dimensional unit ball, and λd is
the principal eigenvalue of (1/2)∆ on the d-dimensional unit ball
with zero boundary values.

In particular, we observe a shape-insensitivity in above
result.

Our result is drastically different from the one for the case
of local shape.
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Critical case

Theorem (Chen-Kulik (2010))

lim
t→∞

t−
d

d+2 log E exp
{
− t−

d+2−p
d+2 θ

∫
Rd
ξ(t, x)

[
ω(dx)− dx

]}
= sup

g∈Fd

{∫
Rd
ϕ

(
θ

∫
Rd

g2(y)

|x− y|p
dy
)

dx− 1
2

∫
Rd
|∇g(x)|2dx

}
where ϕ(a) = e−a − 1 + a (a ≥ 0).

Remark. At the deviation scale td/(d+2),

t−
d+2−p

d+2

∫
Rd
ξ(t, x)

[
ω(dx)− dx

]
≈ C

∫
Rd

V(Bs)ds
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Sub-critical case

Theorem (Chen-Kulik (2010))

lim
t→∞

1
bt

log E exp
{
− b−1/2

t

(bt

t

) d+4−2p
4
θ

∫
Rd
ξ(t, x)

[
ω(dx)− dx

]}

= Λθ
4

d+2−2p

(
πd/2

2

Γ2
(

d−p
2

)
Γ
(

2p−d
2

)
Γ2
(p

2

)
Γ(d− p)

) 2
d+2−2p

for bt satisfying bt →∞, bt = o
(

td/(d+2)
)

.

Remark. For small scale bt, Poisonian potential meets Brownian
potential.
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Sketch of the proof

Proof of

lim
t→∞

1
bt

log E exp
{
− bp/d

t

t
θ

∫
Rd
ξ(t, x)

[
ω(dx)− dx

]}
= θd/p

∫
Rd

[
exp{−|x|−p} − 1 + |x|−p

]
dx

under bt/t
d

d+2 →∞.
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Sketch of the proof

By Fubini’s theorem

E exp
{
− bp/d

t

t
θ

∫
Rd
ξ(t, x)

[
ω(dx)− dx

]}
= E exp

{∫
Rd
ϕ
(bp/d

t

t
θξ(t, x)

)
dx
}

where ϕ(a) = e−a − 1 + a (a ∈ R+) is a non-negative convex
function.
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Sketch of the proof

Recall that

ξ(t, x) =

∫ t

0

ds
|x− Bs|p

By Jensen inequality,∫
Rd
ϕ
(bp/d

t

t
θξ(t, x)

)
dx ≤ 1

t

∫ t

0

[ ∫
Rd
ϕ
( θbp/d

t

|x− Bs|p
)

dx
]

ds

=

∫
Rd
ϕ
(θbp/d

t

|x|p
)

dx = θd/pbt

∫
Rd
ϕ
( 1
|x|p
)

This leads to the desired upper bound.
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Sketch of the proof

On the other hand, let ε > 0 be fixed. On the event
{sups≤t |Bs| ≤ t1/(d+2)},

ξ(t, x) =

∫ t

0

ds
|x− Bs|p

∼
∫ t

0

ds
|x|p

= t|x|−p

uniformly for all x satisfying |x| ≥ εθ1/pb1/d
t as t→∞
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Sketch of the proof

Hence

E exp
{∫

Rd
ϕ
(bp/d

t

t
θξ(t, x)

)
dx
}

≥ exp
{∫

{|x|≥εθ1/pb1/d
t }

ϕ
(θbp/d

t

|x|p
)

dx
}

P
{

sup
s≤t
|Bs| ≤ t1/(d+2)

}
= exp

{
θd/pbt

∫
{|x|≥ε}

ϕ
( 1
|x|p
)

dx
}

P
{

sup
s≤t
|Bs| ≤ t1/(d+2)

}
Finally, the lower bound follows from the classic small ball

estimate

P
{

sup
s≤t
|Bs| ≤ t1/(d+2)

}
≥ exp

{
− Ct

d
d+2

}
= exp

{
o(bt)

}
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Sketch of the proof

Proof of

lim
t→∞

t−
d

d+2 log E exp
{
− t−

d+2−p
d+2 θ

∫
Rd
ξ(t, x)

[
ω(dx)− dx

]}
= sup

g∈Fd

{∫
Rd
ϕ

(
θ

∫
Rd

g2(y)

|x− y|p
dy
)

dx− 1
2

∫
Rd
|∇g(x)|2dx

}
where we recall that ϕ(a) = e−a − 1 + a
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Sketch of the proof

E exp
{
− t−

d+2−p
d+2 θ

∫
Rd
ξ(t, x)

[
ω(dx)− dx

]}
= E exp

{∫
Rd
ϕ
(

t−
d+2−p

d+2 θξ(t, x)
)

dx
}

= E exp
{

t
d

d+2

∫
Rd
ϕ
(
θt−

d
d+2 ξ(t

d
d+2 , x)

)
dx
}

Thus, the desired conclusion follows from the following
Donsker-Varadhan type of theorem with t being replaced by
td/(d+2).
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Sketch of the proof

Theorem (Chen-Kulik (2010))
Let ψ: R+ −→ R+ be a non-decreasing, differentiable and convex
function such that ψ(0) = 0 and that∫ 1

0
a−

d+p
p ψ(a)da <∞

Then

lim
t→∞

1
t

log E exp
{

t
∫

Rd
ψ
(1

t
ξ(t, x)

)
dx
}

= sup
g∈Fd

{∫
Rd
ψ

(∫
Rd

g2(y)

|x− y|p
dy
)

dx− 1
2

∫
Rd
|∇g(x)|2dx

}
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Sketch of the proof

Proof of

lim
t→∞

t−
d+4−2p
d+2−2p log E exp

{
θ

∫
Rd
ξ(t, x)W(dx)

}

= Λθ
4

d+2−2p

(
πd/2

2

Γ2
(

d−p
2

)
Γ
(

2p−d
2

)
Γ2
(p

2

)
Γ(d− p)

) 2
d+2−2p

where

Λ = sup
g∈Fd

{∫∫
Rd×Rd

g2(x)g2(y)

|x− y|2p−d dxdy− 1
2

∫
Rd
|∇g(x)|2dx

}
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Sketch of the proof
By Fubini’s theorem,

E exp
{
θ

∫
Rd
ξ(t, x)W(dx)

}
= E exp

{
θ2

2

∫
Rd
ξ2(t, x)dx

}
Taking ψ(a) = (θ2/2)a2 in the previous theorem leads to

lim
t→∞

1
t

log E exp
{
θ2

2t

∫
Rd
ξ2(t, x)dx

}
= sup

g∈Fd

{
θ2

2

∫
Rd

[ ∫
Rd

g2(y)

|y− x|p
dy
]2

dx− 1
2

∫
Rd
|∇g(x)|2dx

}

= Λθ
4

d+2−2p

(
πd/2

2

Γ2
(

d−p
2

)
Γ
(

2p−d
2

)
Γ2
(p

2

)
Γ(d− p)

) 2
d+2−2p
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Sketch of the proof

By scaling,

E exp
{
θ2

2t

∫
Rd
ξ2(t, x)dx

}
= E exp

{
θ2

2

∫
Rd
ξ2
(

t
d+2−2p
d+4−2p , x

)
dx
}

Replacing t
d+2−2p
d+4−2p by t gives

lim
t→∞

t−
d+4−2p
d+2−2p log E exp

{
θ2

2

∫
Rd
ξ2(t, x)dx

}

= Λθ
4

d+2−2p

(
πd/2

2

Γ2
(

d−p
2

)
Γ
(

2p−d
2

)
Γ2
(p

2

)
Γ(d− p)

) 2
d+2−2p

This completes the proof.
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Sketch of the proof

Proof of

lim
t→∞

1
bt

log E exp
{
− b−1/2

t

(bt

t

) d+4−2p
4
θ

∫
Rd
ξ(t, x)

[
ω(dx)− dx

]}

= Λθ
4

d+2−2p

(
πd/2

2

Γ2
(

d−p
2

)
Γ
(

2p−d
2

)
Γ2
(p

2

)
Γ(d− p)

) 2
d+2−2p

under bt = o
(

td/(d+2)
)

.
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Sketch of the proof

By Fubini,

E exp
{
− b−1/2

t

(bt

t

) d+4−2p
4
θ

∫
Rd
ξ(t, x)

[
ω(dx)− dx

]}
= E exp

{∫
Rd
ϕ

(
θb−1/2

t

(bt

t

) d+4−2p
4
ξ(t, x)

)
dx
}

Here we recall ϕ(a) = e−a − 1 + a. By the fact ϕ(a) ≤ (1/2)a2,

E exp
{∫

Rd
ϕ

(
θb−1/2

t

(bt

t

) d+4−2p
4
ξ(t, x)

)
dx
}

≤ E exp
{
θ2

2
b−1

t

(bt

t

) d+4−2p
2
∫

Rd
ξ2(t, x)dx

}
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Sketch of the proof

By scaling right hand side is equal to

E exp
{
θ2

2

∫
Rd
ξ2
(

b
d+2−2p
d+4−2p
t , x

)
dx
}

Replacing t by b
d+2−2p
d+4−2p
t in the LDP for ψ(a) = (θ2/2)a2,

lim sup
t→∞

1
bt

log E exp
{∫

Rd
ϕ

(
θb−1/2

t

(bt

t

) d+4−2p
4
ξ(t, x)

)
dx
}

≤ Λθ
4

d+2−2p

(
πd/2

2

Γ2
(

d−p
2

)
Γ
(

2p−d
2

)
Γ2
(p

2

)
Γ(d− p)

) 2
d+2−2p

This gives the upper bound.
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Sketch of the proof

On the other hand,∫
Rd
ϕ

(
θb−1/2

t

(bt

t

) d+4−2p
4
ξ(t, x)

)
dx

d
=
( t

bt

)d/2
∫

Rd
ϕ

((
btt−

d
d+2

) d+2
4
θb−1

t ξ(bt, x)

)
dx

It is straightforward to verify that for any > 0, the function
q(c) = c−2ϕ(ca) is decreasing on R+. Noticing that btt−

d
d+2 → 0,

ϕ

((
btt−

d
d+2

) d+2
4
θb−1

t ξ(bt, x)

)
≥
(

btt−
d

d+2

) d+2
2
(θ
ε

)2
ϕ
(
εb−1

t ξ(bt, x)
)

for any fixed ε > 0 and large t.
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Sketch of the proof
Summarizing what we have,

E exp
{∫

Rd
ϕ

(
θb−1/2

t

(bt

t

) d+4−2p
4
ξ(t, x)

)
dx
}

≥ E exp
{

bt

(θ
ε

)2
∫

Rd
ϕ
(
εb−1

t ξ(bt, x)
)

dx
}

Using our general theorem with t being replaced by bt and

with ψε(a) =
(
θ
ε

)2
ϕ
(
εa),

lim inf
t→∞

1
bt

log E exp
{∫

Rd
ϕ

(
θb−1/2

t

(bt

t

) d+4−2p
4
ξ(t, x)

)
dx
}

≥ sup
g∈Fd

{
θ2
∫

Rd
ψε

(∫
Rd

g2(y)

|x− y|p
dy
)

dx− 1
2

∫
Rd
|∇g(x)|2dx

}
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Sketch of the proof

Notice ψε(a) ↑ (1/2)a2 as ε→ 0+. Letting ε→ 0+ on the
right hand side

lim inf
t→∞

1
bt

log E exp
{∫

Rd
ϕ

(
θb−1/2

t

(bt

t

) d+4−2p
4
ξ(t, x)

)
dx
}

≥ sup
g∈Fd

{
θ2

2

∫
Rd

[ ∫
Rd

g2(y)

|x− y|p
dy
]2

dx− 1
2

∫
Rd
|∇g(x)|2dx

}

= Λθ
4

d+2−2p

(
πd/2

2

Γ2
(

d−p
2

)
Γ
(

2p−d
2

)
Γ2
(p

2

)
Γ(d− p)

) 2
d+2−2p

That gives the lower bound.
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Thank you!
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