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Models

Def. 1 A conservative q-matrix Q = {qij , i, j ∈ Z+} is called
an Interacting Branching Collision q-matrix (IBC q-matrix) if
it takes the form:

qij =

{

i(i−1)
2 aj−i+2 + ibj−i+1 if j ≥ i− 2, i ≥ 2,

0 otherwise,
(1)

where aj ≥ 0 (j 6= 2) and − a2 =
∑

j 6=2 aj < +∞,

together with a0 > 0 and
∑∞

j=3 aj > 0. Also

bj ≥ 0 (j 6= 1) and − b1 =
∑

j 6=1

bj < +∞, (2)

together with b0 > 0, b−1 = 0 and
∑∞

j=2 bj > 0.
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Models

Def. 2 An Interacting Branching Collision Process (IBCP)
is a Z+-valued CTMC whose transition function P (t)
satisfies the forward equation

P ′(t) = P (t)Q (3)

where Q is an IBC q-matrix.
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Models

Def. 2 An Interacting Branching Collision Process (IBCP)
is a Z+-valued CTMC whose transition function P (t)
satisfies the forward equation

P ′(t) = P (t)Q (4)

where Q is an IBC q-matrix.

We see that
Q = Qb +Qc

where Qb and Qc are the conservative MBP and MCP
q-matrices, respectively. The former process is well-known
while the latter could be refereed to Chen et al JAP (2004).
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Two components:

The first component is an MBP whose properties can be
analysed by using the generating function of the sequence
{bj , j ≥ 0}:

B(s) =

∞
∑

j=0

bjs
j , |s| ≤ 1.

Note that B(0) = b0 > 0 and B(1) = 0.
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Two components:

The first component is an MBP whose properties can be
analysed by using the generating function of the sequence
{bj , j ≥ 0}:

B(s) =

∞
∑

j=0

bjs
j , |s| ≤ 1.

Note that B(0) = b0 > 0 and B(1) = 0.

Also B ′(1) =
∑∞

j=1 jbj+1 − b0 satisfies −∞ < B ′(1) ≤ +∞.
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Branching vs Collision: Revisited

Note also that the sign of B ′(1) determines the number of
zeros of B(s) in [0, 1].
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Branching vs Collision: Revisited

Note also that the sign of B ′(1) determines the number of
zeros of B(s) in [0, 1].

Lemma 1. The equation B(s) = 0 has at most two distinct
roots in [0, 1]. More specifically, if B ′(1) ≤ 0 then B(s) > 0 for
all s ∈ [0, 1) and 1 is the only root of the equation B(s) = 0 in
[0, 1], while if B ′(1) > 0 (including B ′(1) = +∞) then
B(s) = 0 has an additional root qb satisfying 0 < qb < 1 such
that B(s) > 0 for 0 ≤ s < qb and B(s) < 0 for qb < s < 1.
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Branching vs Collision: Revisited

Note also that the sign of B ′(1) determines the number of
zeros of B(s) in [0, 1].

Lemma 1. The equation B(s) = 0 has at most two distinct
roots in [0, 1]. More specifically, if B ′(1) ≤ 0 then B(s) > 0 for
all s ∈ [0, 1) and 1 is the only root of the equation B(s) = 0 in
[0, 1], while if B ′(1) > 0 (including B ′(1) = +∞) then
B(s) = 0 has an additional root qb satisfying 0 < qb < 1 such
that B(s) > 0 for 0 ≤ s < qb and B(s) < 0 for qb < s < 1.

Moreover, B(s) = 0 does not have any other roots in the unit
complex disk.
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Regularity and Uniqueness

Regularity and Uniqueness for MBP:
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Regularity and Uniqueness

Regularity and Uniqueness for MBP:

Proposition 1. The MBP q-matrix Qb is regular iff one of
the following holds.
(i) B ′(1) < +∞.
(ii) B ′(1) = +∞ and

∫ 1

ε

1

−B(s)
ds = +∞

for some (or for all) ε ∈ (qb, 1), where qb < 1 is the smallest
nonnegative root of B(s) = 0, guaranteed by B ′(1) = +∞.
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Regularity and Uniqueness

Regularity and Uniqueness for MBP:

Proposition 1. The MBP q-matrix Qb is regular iff one of
the following holds.
(i) B ′(1) < +∞.
(ii) B ′(1) = +∞ and

∫ 1

ε

1

−B(s)
ds = +∞

for some (or for all) ε ∈ (qb, 1), where qb < 1 is the smallest
nonnegative root of B(s) = 0, guaranteed by B ′(1) = +∞.

Proposition 2. There always exists only one MBP which
satisfies the Kolmogorov forward equations.
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Extinction Probability

Extinction Probability of MBP:
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Extinction Probability

Extinction Probability of MBP:

Let {X(t), t ≥ 0} be the unique MBP and define the
extinction times τ b0 for states 0 by

τ b0 =

{

inf{t > 0, X(t) = 0} if X(t) = 0 for some t > 0

+∞ if X(t) 6= 0 for all t > 0

and denote the corresponding extinction probabilities by

qib = P{τ b0 < +∞|X(0) = i}.
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Branching vs Collision: Results

Proposition 3 The extinction probabilities of the MBP is
given by

qib = qib,

More specifically,

qib = 1, if B ′(1) ≤ 0,

qib = qib < 1, if 0 < B′(1) ≤ +∞.
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Branching vs Collision: Results

Proposition 3 The extinction probabilities of the MBP is
given by

qib = qib,

More specifically,

qib = 1, if B ′(1) ≤ 0,

qib = qib < 1, if 0 < B′(1) ≤ +∞.

In particular, the extinction probability is 1 for all i > 0 if and
only if

B ′(1) ≤ 0

i.e. iff the overall mean BIRTH rate ≤ the overall mean
DEATH rate .
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Branching vs Collision: Results

The second component is an MCP whose properties can
be analysed by using the generating function of the
sequence {aj , j ≥ 0}:

A(s) =

∞
∑

j=0

ajs
j , |s| ≤ 1.

This satisfies A(0) = a0 > 0 and A(1) = 0.
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Branching vs Collision: Results

The second component is an MCP whose properties can
be analysed by using the generating function of the
sequence {aj , j ≥ 0}:

A(s) =

∞
∑

j=0

ajs
j , |s| ≤ 1.

This satisfies A(0) = a0 > 0 and A(1) = 0.

Also

A ′(1) =

∞
∑

j=1

jaj+2 − 2a0 − a1

satisfies
−∞ < A ′(1) ≤ +∞.
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Branching vs Collision: Results

The sign of A ′(1) determines the number of zeros of A(s) in
[0, 1].
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Branching vs Collision: Results

The sign of A ′(1) determines the number of zeros of A(s) in
[0, 1].

Lemma 2 The equation A(s) = 0 has at most two distinct
roots in [0, 1]. More specifically, if A ′(1) ≤ 0 then A(s) > 0 for
all s ∈ [0, 1) and 1 is the only root of the equation A(s) = 0 in
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Branching vs Collision: Results

The sign of A ′(1) determines the number of zeros of A(s) in
[0, 1].

Lemma 2 The equation A(s) = 0 has at most two distinct
roots in [0, 1]. More specifically, if A ′(1) ≤ 0 then A(s) > 0 for
all s ∈ [0, 1) and 1 is the only root of the equation A(s) = 0 in
[0, 1], while if A ′(1) > 0 (including A ′(1) = +∞) then A(s) = 0
has an additional root qc satisfying 0 < qc < 1 such that
A(s) > 0 for 0 ≤ s < qc and A(s) < 0 for qc < s < 1.

The equation A(s) = 0 has a unique root ηc in (−1, 0).
Moreover, A(s) = 0 does not have any other roots in the unit
complex disk.
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Regularity and Uniqueness

Regularity and Uniqueness for MCP:

Proposition 4 The MCB q-matrix Qc is regular if and only if

A ′(1) ≤ 0.
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Regularity and Uniqueness

Regularity and Uniqueness for MCP:

Proposition 4 The MCB q-matrix Qc is regular if and only if

A ′(1) ≤ 0.

Proposition 5 There exists only one Qc-function, the Feller
minimal Qc-function, which satisfies the Kolmogorov
forward equations and hence there exists only one MCP.
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Regularity and Uniqueness

Regularity and Uniqueness for MCP:

Proposition 4 The MCB q-matrix Qc is regular if and only if

A ′(1) ≤ 0.

Proposition 5 There exists only one Qc-function, the Feller
minimal Qc-function, which satisfies the Kolmogorov
forward equations and hence there exists only one MCP.
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Extinction Probability

Extinction Probability of MCP:
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Extinction Probability

Extinction Probability of MCP:

Let {Y (t), t ≥ 0} be the unique MCP and define the
extinction times τ c0 and τ c1 for states 0 and 1 by

τ c0 =

{

inf{t > 0, Y (t) = 0} if Y (t) = 0 for some t > 0

+∞ if Y (t) 6= 0 for all t > 0

τ c1 =

{

inf{t > 0, Y (t) = 1} if Y (t) = 1 for some t > 0

+∞ if Y (t) 6= 1 for all t > 0

and denote the corresponding extinction probabilities by

qi0 = P{τ c0 < +∞|Y (0) = i} and qi1 = P{τ c1 < +∞|Y (0) = i}.
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Extinction Probability

Proposition 6 (i) If A ′(1) ≤ 0 then

qi0 = (ηic − ηc)/(1− ηc)

qi1 = (1− ηic)/(1− ηc)

qi∞ = 0

(ii) If 0 < A ′(1) ≤ +∞ then

qi0 = (qcη
i
c − ηcq

i
c)/(qc − ηc),

qi1 = (qic − ηic)/(qc − ηc)

and qi∞ =
(

qc(1− ηic)− ηc(1− qic)− (qic − ηic)
)

/(qc − ηc).
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Extinction Probability

where qc is the smallest root of A(s) = 0 in [0, 1]
and ηc is the unique root of A(s) = 0 in (−1, 0).
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Extinction Probability

where qc is the smallest root of A(s) = 0 in [0, 1]
and ηc is the unique root of A(s) = 0 in (−1, 0).

In particular, the overall extinction probability qi0 + qi1 is 1 if
and only if

A ′(1) ≤ 0

i.e. iff the overall mean BIRTH rate ≤ the overall mean
DEATH rate .
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Extinction Probability

where qc is the smallest root of A(s) = 0 in [0, 1]
and ηc is the unique root of A(s) = 0 in (−1, 0).

In particular, the overall extinction probability qi0 + qi1 is 1 if
and only if

A ′(1) ≤ 0

i.e. iff the overall mean BIRTH rate ≤ the overall mean
DEATH rate .

Huge publications for MBP in literatures, see, in particular,
T. E. Harris (1963), Athreya and Ney (1972), Asmussen and
Hering(1983) and Athreya and Jagers (1996). For MCP, see
A.V.Kalinkin (2002) and Chen, Pollett, Li and Zhang (2004,
2008).
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IBCP: PDE

Progress on IBCP (I): Regularity, Uniqueness and PDE
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IBCP: PDE

Progress on IBCP (I): Regularity, Uniqueness and PDE

Let {Z(t), t ≥ 0} be the unique IBCP and let

P (t) = {pij(t)}

and
R(λ) = {rij(λ)}

denote its transition function and resolvent, respectively.
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IBCP: PDE

Theorem 3.1 (PDF) Suppose P (t), R(λ) are the Q-function
and Q-resolvent of IBCP, respectively. Then

∂Fi(t, s)

∂t
=

A(s)

2

∂2Fi(t, s)

∂s2
+ B(s)

∂Fi(t, s)

∂s

and

λGi(λ, s)− si =
A(s)

2

∂2Gi(λ, s)

∂s2
+B(s)

∂Gi(λ, s)

∂s
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IBCP: PDE

where

Fi(t, s) =

∞
∑

j=0

pij(t)s
j , (i ≥ 2),

and

Gi(λ, s) =

∞
∑

j=0

rij(λ)s
j , (i ≥ 2).
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IBCP: Regularity

Theorem 3.2. (Regularity ) Assume that B′(1) < ∞. The
IBCP q-matrix Q is regular iff A′(1) ≤ 0.
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IBCP: Regularity

Theorem 3.2. (Regularity ) Assume that B′(1) < ∞. The
IBCP q-matrix Q is regular iff A′(1) ≤ 0.

Idea of proof : Three steps:
Step (i): "IF" part for case B′(1) ≤ 0: Easy!
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IBCP: Regularity

Theorem 3.2. (Regularity ) Assume that B′(1) < ∞. The
IBCP q-matrix Q is regular iff A′(1) ≤ 0.

Idea of proof : Three steps:
Step (i): "IF" part for case B′(1) ≤ 0: Easy!

Step (ii): "IF" part for case 0 < B′(1): Use the similar
techniques as used in MBP.
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IBCP: Regularity

Theorem 3.2. (Regularity ) Assume that B′(1) < ∞. The
IBCP q-matrix Q is regular iff A′(1) ≤ 0.

Idea of proof : Three steps:
Step (i): "IF" part for case B′(1) ≤ 0: Easy!

Step (ii): "IF" part for case 0 < B′(1): Use the similar
techniques as used in MBP.

Step (iii): "ONLY IF" part: Use Comparison Technique
(comparing with B-D-P) similarly as used in Chen et al JAP
[2004].
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IBCP: Uniqueness

Theorem 3.3. (Uniqueness ) There always exists only one
Q-function which satisfies the forward equations. That is
that there always exists only one IBCP.
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Progress on IBCP (II): Extinction

Let {Z(t), t ≥ 0} be the unique IBCP and define the
extinction time τ by

τ =

{

inf{t > 0, Z(t) = 0} if Z(t) = 0 for some t > 0

+∞ if Z(t) 6= 0 for all t > 0

and denote the corresponding extinction probabilities by

ai = P{τ < +∞|Z(0) = i}
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Progress on IBCP (II): Extinction

By the "experience" of MBP and MCP, it seems that we
SHOULD have ai = 1 iff

A ′(1) +B ′(1) ≤ 0

i.e. ai = 1 iff overall mean BIRTH rate ≤ overall mean
DEATH rate .
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Progress on IBCP (II): Extinction

By the "experience" of MBP and MCP, it seems that we
SHOULD have ai = 1 iff

A ′(1) +B ′(1) ≤ 0

i.e. ai = 1 iff overall mean BIRTH rate ≤ overall mean
DEATH rate .

However, this guessing is INCORRECT, since the
"contributions" made to the extinction by the two
components are NOT equivalent ! Also, recall the two
components INTERACT with each other! In fact, the
extinction probabilities are much much more complicated
than originally "expected"!!!
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Extinction of IBCP: Regular Case

Recall IBCP is regular iff A′(1) ≤ 0.
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Extinction of IBCP: Regular Case

Recall IBCP is regular iff A′(1) ≤ 0.

Theorem 4.1 If A′(1) ≤ 0 and B′(1) ≤ 0, then

ai ≡ 1 (i ≥ 1)

.
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Extinction of IBCP: Regular Case

Recall IBCP is regular iff A′(1) ≤ 0.

Theorem 4.1 If A′(1) ≤ 0 and B′(1) ≤ 0, then

ai ≡ 1 (i ≥ 1)

.
Theorem 4.2 If A′(1) < 0 and 0 < B′(1) < +∞ then

ai = 1 (i ≥ 1).
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Extinction of IBCP: Regular Case

Recall IBCP is regular iff A′(1) ≤ 0.

Theorem 4.1 If A′(1) ≤ 0 and B′(1) ≤ 0, then

ai ≡ 1 (i ≥ 1)

.
Theorem 4.2 If A′(1) < 0 and 0 < B′(1) < +∞ then

ai = 1 (i ≥ 1).

Remaining case: A′(1) = 0 and 0 < B′(1) < +∞

Beijing Normal University 19-23 July 2010 - Page 23



Extinction of IBCP: Regular Case

In order to consider the remaining case of A′(1) = 0 and
0 < B′(1) < +∞
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Extinction of IBCP: Regular Case

In order to consider the remaining case of A′(1) = 0 and
0 < B′(1) < +∞

we need to introduce a "testing" function

H(y) = exp

{

2

∫ y

0

B(x)

A(x)
dx

}

which possesses many interesting and important properties
(but omitted here).
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Extinction of IBCP: Regular Case

Now define

J =

∫ 1

ηc

H(y)

A(y)
dy

and

J0 =

∫ 1

0

H(y)

A(y)
dy

then either 0 < J < +∞ or J = +∞.
and J = +∞ iff J0 = +∞
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J =

∫ 1

ηc

H(y)

A(y)
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and

J0 =

∫ 1

0

H(y)

A(y)
dy

then either 0 < J < +∞ or J = +∞.
and J = +∞ iff J0 = +∞

Note that Checking J0 is easier.
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Extinction of IBCP: Regular Case

Theorem 4.3 Suppose A′(1) = 0 and 0 < B′(1) < ∞.

(i) If J0 = +∞, then

ai = 1 (i ≥ 1)

.

(ii) If J0 < ∞ then

ai = J−1 ·

∫ 1

ηc

yiH(y)

A(y)
dy, i ≥ 1

.
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Extinction of IBCP: Regular Case

The following conclusion is useful since it reduces the
possibly hard job in checking of J , or even J0.
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Extinction of IBCP: Regular Case

The following conclusion is useful since it reduces the
possibly hard job in checking of J , or even J0.
Theorem 4.4 Suppose A′(1) = 0, 0 < B′(1) < +∞ and
A′′(1) < ∞.
(i) If A′′(1) ≥ 4B′(1) then J0 = +∞ and thus

ai = 1

.
(ii) If A′′(1) < 4B′(1) (including B′(1) = +∞) then J0 < ∞
and thus ai < 1 and

ai = J−1 ·

∫ 1

ηc

yiH(y)

A(y)
dy, i ≥ 1

.
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Extinction of IBCP: Irregular Case

Recall IBCP is irregular iff

A′(1) > 0

or, equivalently, iff
qc < 1
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Extinction of IBCP: Irregular Case

For irregular case it is necessary to further classify into a
few sub-categories
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Extinction of IBCP: Irregular Case

For irregular case it is necessary to further classify into a
few sub-categories

An irregular IBC q-matrix Q is called super-explosive if

qb < qc < 1

critical-explosive if
qb = qc < 1

or sub-explosive if
qc < qb ≤ 1
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Extinction of IBCP: Irregular Case

The critical-explosive case (qb = qc < 1) is simple. Indeed,
by using the PDE in Theorem 3.1 , we immediately obtain
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Extinction of IBCP: Irregular Case

The critical-explosive case (qb = qc < 1) is simple. Indeed,
by using the PDE in Theorem 3.1 , we immediately obtain

Theorem 5.1 If qb = qc, then ai = qib.
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Extinction of IBCP: Irregular Case

The critical-explosive case (qb = qc < 1) is simple. Indeed,
by using the PDE in Theorem 3.1 , we immediately obtain

Theorem 5.1 If qb = qc, then ai = qib.

Theorem 5.2 If Q is critical-explosive, then the mean
conditional extinction time

Ei[τ0|τ0 < ∞]

is given by

Ei[τ0|τ0 < ∞] = q−i
c

∫ qc

0

[
2

H(s)

∫ s

ηc

(1− (
y

qc
)i)

H(y)

A(y)
dy]ds
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Extinction of IBCP: Irregular Case

The super-explosive case is also not difficult.
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Extinction of IBCP: Irregular Case

The super-explosive case is also not difficult.

Theorem 5.3 If qb < qc < 1 (super-explosive). Then the
extinction probability ai starting from i ≥ 1, is

ai =

∫ qc
ηc

yiH(y)
A(y)

dy
∫ qc
ηc

H(y)
A(y) dy

. (6)

.
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Extinction of IBCP: Irregular Case

The super-explosive case is also not difficult.

Theorem 5.3 If qb < qc < 1 (super-explosive). Then the
extinction probability ai starting from i ≥ 1, is

ai =

∫ qc
ηc

yiH(y)
A(y)

dy
∫ qc
ηc

H(y)
A(y) dy

. (7)

.
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Extinction of IBCP: Irregular Case

However, the sub-explosive is surprisingly subtle. First we
consider a subcase.
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Extinction of IBCP: Irregular Case

However, the sub-explosive is surprisingly subtle. First we
consider a subcase.

Theorem 5.4 Suppose that qc < qb ≤ 1 (sub-explosive).
Further assume

A′(qc) + 2B(qc) = 0

Then

ai = qic + iσqn−1
c (9)

where the positive constant σ is independent of i and given
by

σ = −
B(qc)

B′(qc)
.
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Extinction of IBCP: Irregular Case

Closed form could also be provided for another subcase of
A′(qc) + 2B(qc) < 0
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Closed form could also be provided for another subcase of
A′(qc) + 2B(qc) < 0

Theorem 5.5 Suppose the IBC q-matrix Q is sub-explosive
and

A′(qc) + 2B(qc) < 0

Then

ai =

∫ qc
ηc

yiB′(y)−iyi−1B(y)
A1(y)

e
∫ y

0

B1(x)

A1(x)
dx
dy

∫ ρc
ξc

B′(y)
A1(y)

e
∫ y

0

B1(x)

A1(x)
dx
dy

.
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Closed form could also be provided for another subcase of
A′(qc) + 2B(qc) < 0

Theorem 5.5 Suppose the IBC q-matrix Q is sub-explosive
and

A′(qc) + 2B(qc) < 0

Then

ai =

∫ qc
ηc

yiB′(y)−iyi−1B(y)
A1(y)

e
∫ y

0

B1(x)

A1(x)
dx
dy

∫ ρc
ξc

B′(y)
A1(y)

e
∫ y

0

B1(x)

A1(x)
dx
dy

.

Note that two new functions A1(x) and B1(x) appear.
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Extinction of IBCP: Irregular Case

Closed form could also be provided for another subcase of
A′(qc) + 2B(qc) < 0

Theorem 5.5 Suppose the IBC q-matrix Q is sub-explosive
and

A′(qc) + 2B(qc) < 0

Then

ai =

∫ qc
ηc

yiB′(y)−iyi−1B(y)
A1(y)

e
∫ y

0

B1(x)

A1(x)
dx
dy

∫ ρc
ξc

B′(y)
A1(y)

e
∫ y

0

B1(x)

A1(x)
dx
dy

.

Note that two new functions A1(x) and B1(x) appear.

Definition of A1(x) and B1(x) ??
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Extinction of IBCP: Irregular Case

Hence for sub-explosive case, if A′(qc) + 2B(qc) < 0, we
need to define A1(x) and B1(x) as follows
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need to define A1(x) and B1(x) as follows

A0(s) =
A(s)
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Extinction of IBCP: Irregular Case

Hence for sub-explosive case, if A′(qc) + 2B(qc) < 0, we
need to define A1(x) and B1(x) as follows

A0(s) =
A(s)

2

B0(s) = B(s)

A1(s) = A0(s)B0(s)

B1(s) = B0(s)[B0(s) + A′
0(s)]−A0(s)B

′
0(s)
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Extinction of IBCP: Irregular Case

How about the final sub-case of A′(qc) + 2B(qc) > 0 of
sub-explosive IPCP??
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How about the final sub-case of A′(qc) + 2B(qc) > 0 of
sub-explosive IPCP??

By Lemmas 2.1 and 3.1 we know qc < qb ≤ 1
(sub-explosive)implies

A′(qc) < 0

and
B(qc) > 0
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How about the final sub-case of A′(qc) + 2B(qc) > 0 of
sub-explosive IPCP??

By Lemmas 2.1 and 3.1 we know qc < qb ≤ 1
(sub-explosive)implies

A′(qc) < 0

and
B(qc) > 0

One thus could find the smallest positive integer k such that

kA′(qc) + 2B(qc) ≤ 0.
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Extinction of IBCP: Irregular Case

Now, recursively define, by using A0(s) and B0(s) as before
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Extinction of IBCP: Irregular Case

Now, recursively define, by using A0(s) and B0(s) as before

An+1(s) = An(s)Bn(s)
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Now, recursively define, by using A0(s) and B0(s) as before

An+1(s) = An(s)Bn(s)

Bn+1(s) = Bn(s)[Bn(s) + A′
n(s)]−An(s)B

′
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Extinction of IBCP: Irregular Case

Now, recursively define, by using A0(s) and B0(s) as before

An+1(s) = An(s)Bn(s)

Bn+1(s) = Bn(s)[Bn(s) + A′
n(s)]−An(s)B

′
n(s)

We may get the following conclusion (details omitted
including the definitions of Dm,k etc.
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Extinction of IBCP: Irregular Case

Under some mild conditions, we have
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Extinction of IBCP: Irregular Case

Under some mild conditions, we have

Theorem 5.5 Suppose that Q is a sub-explosive
IBC-q-matrix satisfying

A′(qc) + 2B(qc) > 0

and that
−2B(qc)/A

′(qc)

is not an integer. Let

m = min{k ≥ 1; kA′(qc) + 2B(qc) < 0}

.
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IBC-q-matrix satisfying

A′(qc) + 2B(qc) > 0

and that
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Extinction of IBCP: Irregular Case

Then
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Extinction of IBCP: Irregular Case

Then

ai =

∑m∧i
k=0

i!
(i−k)!

∫ qc
ηc

yi−kDm,k(y)
Am(y)

eHm(y)dy
∫ qc
ηc

Dm,0(y)
Am(y) e

Hm(y)dy
. (12)
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Extinction of IBCP: Irregular Case

Then

ai =

∑m∧i
k=0

i!
(i−k)!

∫ qc
ηc

yi−kDm,k(y)
Am(y)

eHm(y)dy
∫ qc
ηc

Dm,0(y)
Am(y) e

Hm(y)dy
. (13)

Remark: If

−2B(qc)/A
′(qc)

is an integer, the problem is much simpler.
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Challenges from IBCP:Open Qs

Still little is known about IBCP. Many important as well as
interesting questions are hunting for their masters and
homes. The following are some pets.
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Question 1 (PDE) More information from PDE (3.1) or
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Challenges from IBCP:Open Qs

Still little is known about IBCP. Many important as well as
interesting questions are hunting for their masters and
homes. The following are some pets.

Question 1 (PDE) More information from PDE (3.1) or
ODE (3.2)?

We are quite confident that the sequence of unknown
functions Fi(t, s) (i ≥ 1) can be expressed in terms of two
independent functions, called u(t, s) and v(t, s), say. The
questions are
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Challenges from IBCP:Open Qs

(i) Who are the good "candidates" for u(t, s) and v(t, s)?
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(ii) what kind of relations and functions do u(t, s) and v(t, s)
satisfy?
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Challenges from IBCP:Open Qs

(i) Who are the good "candidates" for u(t, s) and v(t, s)?

(ii) what kind of relations and functions do u(t, s) and v(t, s)
satisfy?

(iii) How to express Fi(t, s) in terms of u(t, s) and v(t, s)?

This may need hard but highly rewarding job and worth
trying.
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Challenges from IBCP:Open Qs

Question 2 Interaction between the two components.
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Challenges from IBCP:Open Qs

Question 2 Interaction between the two components.

Clarity the effect, scheme and mechanism of the interaction
between MBP and MCP!
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Challenges from IBCP:Open Qs

Question 2 Interaction between the two components.

Clarity the effect, scheme and mechanism of the interaction
between MBP and MCP!

Design and control of the interaction!

Beijing Normal University 19-23 July 2010 - Page 41



Challenges from IBCP:Open Qs

Question 3 Extinction time and explosion Time
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Challenges from IBCP:Open Qs

Question 3 Extinction time and explosion Time

Mean extinction time?
Conditional mean extinction time? Under what conditions
do they finite?
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Question 3 Extinction time and explosion Time

Mean extinction time?
Conditional mean extinction time? Under what conditions
do they finite?

Explosion probability and explosion time?
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Challenges from IBCP:Open Qs

Question 3 Extinction time and explosion Time

Mean extinction time?
Conditional mean extinction time? Under what conditions
do they finite?

Explosion probability and explosion time?

Distributions and conditional distributions of extinction time
and explosion time? Also, other hitting times?
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Challenges from IBCP:Open Qs

More importantly and interestingly

Question 4 Decay parameter and QSD .

Until now we know nothing about them. Hence answer even
some of the following is of significance .

Beijing Normal University 19-23 July 2010 - Page 43



Challenges from IBCP:Open Qs

More importantly and interestingly

Question 4 Decay parameter and QSD .

Until now we know nothing about them. Hence answer even
some of the following is of significance .

Decay parameter (exact value or at least good bounds)?
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More importantly and interestingly

Question 4 Decay parameter and QSD .

Until now we know nothing about them. Hence answer even
some of the following is of significance .

Decay parameter (exact value or at least good bounds)?

Invariant measure and /or vector?

QSD? Conditional limiting distributions?
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Challenges from IBCP:Open Qs

Question 5 Generalizations!
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(i) Weighted MBCP (i.e. replace C2
i by general w1i(i ≥ 2)

and i by w2i(i ≥ 1)?
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Question 5 Generalizations!

(i) Weighted MBCP (i.e. replace C2
i by general w1i(i ≥ 2)

and i by w2i(i ≥ 1)?

(ii) Immigration and emigration (both state-dependent and
/or state-independent)?
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Challenges from IBCP:Open Qs

Question 5 Generalizations!

(i) Weighted MBCP (i.e. replace C2
i by general w1i(i ≥ 2)

and i by w2i(i ≥ 1)?

(ii) Immigration and emigration (both state-dependent and
/or state-independent)?

(iii) Effect of immigration and/or emigration on extinction
probabilities, unconditional and/or conditional mean
extinction times, explosions and QSD and conditional
limiting distributions.
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Challenges from MBCP:Open Qs

(iv) IBCP with continuous-state space.
Recall continuous-state space MBP for both jump and
diffusion types.
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Challenges from IBCP:Open Qs

Last (for the time being) but not least.
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Challenges from IBCP:Open Qs

Last (for the time being) but not least.

Question 6 Applications !
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Challenges from IBCP:Open Qs

Last (for the time being) but not least.

Question 6 Applications !

Particularly in probability modelling of Biological,
computing, and social (financial modelling, say) Sciences.
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