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Abstract: Let X be a finite space and π be an underlying probability on X . For any real-
valued function f defined on X , we are interested in calculating the expectation of f under π.
Let X0, X1, . . . , Xn, . . . be a Markov chain generated by some transition matrix P with invariant
distribution π. The time average, 1

n

∑n−1
k=0 f(Xk), is a reasonable approximation to the expectation,

Eπ[f(X)]. Which matrix P minimizes the asymptotic variance of 1
n

∑n−1
k=0 f(Xk)? The answer

depends on f . Rather than a worst-case analysis, we will identify the set of P ’s that minimize the
average asymptotic variance, averaged with respect to a uniform distribution on f .
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