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Abstract: Let (Bt , t ≥ 0) be the Brownian motion and Lx
t be the local time. In this paper we

use Malliavin calculus to give a new proof of the following theorem: For each fixed t > 0
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as h tends to zero, where η is a normal random variable with mean zero and variance one that is
independent of B. The techniques are based on ingredients: The Clark-Ocone formula of the pre-
dictable representation of a random variable and an asymptotic version of Ray-Knight’s theorem.
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