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1. Introduction: GBMP Model
We consider a generalized Markov branching process
(GMBP) with the infinitesimal generator Q = (qij) given by

qij =











hj , if i = 0,

iαpj−i+1, if i ≥ 1 and j ≥ i − 1,

0, otherwise,

(1)

or in matrix form

Q =

















h0 h1 h2 h3 · · · · · ·

p0 p1 p2 p3 · · · · · ·

0 2αp0 2αp1 2αp2 · · · · · ·

0 0 3αp0 3αp1 · · · · · ·
...

...
...

...
...

...

















,
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1. Introduction: GBMP Model

where α > 0; h0 < 0, hj ≥ 0 for j ≥ 1; p1 < 0, pj ≥ 0 for j 6= 1.

We assume that Q is irreducible and conservative and we
make the convention that the GMBP is the minimal
Q-process. The GMBP is called sublinear, linear or
superlinear according to α < 1, α = 1 or α > 1, respectively.

Studies on GMBP have been focusing on criteria for
uniqueness and ergodicity, see for example, Chen, R.R.
(1997), Zhang Y.H. (2001), Chen, A.Y. (2002), Lin, X.,
Zhang, H.J.(2006). Very little on performance properties is
available, which are often key issues in applications.
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1. Introduction: truncated Model
The truncated generator (n)Q of Q is given by

(n)Q =





















h0 h1 h2 · · · hn−2
∑

∞

k=n−1 hk

p0 p1 p2 · · · pn−2
∑

∞

k=n−1 pk

0 2αp0 2αp1 · · · 2αpn−3
∑

∞

k=n−2 2αpk

0 0 3αp0 · · · 3αpn−4
∑

∞

k=n−3 3αpk
...

...
... . . . ...

...
0 0 0 · · · (n − 1)αp0 −(n − 1)αp0





















,

which is obtained by augmenting the last column of the
n× n north-west corner of Q into a (conservative) generator.
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1. Introduction: truncated model

A truncated model arises if practically there is a limitation in
population capacity, and also it is important if we use it as
an approximation to the infinite-state branching process. In
the literature, truncation approximations of stationary
distribution are a well-known topic for discrete-time Markov
chains (see e.g. Zhao,Y.Q. (1996), Tweedie, R.L. (1998)).
However, little work is available for a continuous-time model.
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1. Introduction: what to be studied

We are specifically interested in exact:

(a) tail asymptotics in the stationary distribution for a stable
system;

(b) divergence rate in the partial sum of the
(non-probability) invariant measure for a non-stable
system;

(c) convergence rate to zero of the error in the stationary
probability distributions between the truncated model
and the corresponding original stable system;

(d) convergence rate to zero of the stationary probability for
any fixed state for the truncated system obtained from a
corresponding non-stable branching process.
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2. Basics: lemma 1
Let ν be the invariant measure of Q (i.e. νQ = 0) and (n)ν be
the invariant measure of truncated matrix (n)Q (i.e.,

(n)ν(n)Q = 0).
Lemma 1

(n)νi =
νi

Sν(n)
, i = 0, 1, . . . , n − 1, (2)

and if
∑

∞

k=0 νk = 1, then

‖(n)ν − ν‖1 :=
n−1
∑

k=0

∣

∣

(n)νk − νk

∣

∣ + S̄ν(n) = 2S̄ν(n), (3)

where Sx(n) =
∑n−1

j=0 xj and S̄x(n) =
∑

∞

j=n xj are defined for
a sequence of real numbers xn.
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2. Basics: Remark 1

Remark 1

(i) (a) is closely related to (c)
According to (3), if the branching process is stable, then
properties of asymptotics in the error are immediate
results from the corresponding properties of
asymptotics in the stationary distribution.

(ii) (b) is closely related to (d)
According to (2), if the branching process is unstable,
then properties of asymptotics for (n)νi for a fixed i are
immediate consequences of that for the partial sum
Sν(n) of the invariant measure of Q.
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2. Basics: Lemma 2

The study on asymptotics of the branching process is
carried out by converting it into the study for the transition
matrix of M/G/1 form as described below.

Lemma 2 ν is an invariant measure of Q if and only if π (
π0 = ν0 and πk = kανk, k ∈ N) is an invariant measure of the
stochastic matrix P (referred to M/G/1 form) given by

P =

















b0 b1 b2 b3 · · ·

a0 a1 a2 a3 · · ·

0 a0 a1 a2 · · ·

0 0 a0 a1 · · ·

· · · · · · · · · · · · · · ·

















,
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2. Basics: Remark 2

where b0 = 1 + h0, bi = hi for i 6= 0, a1 = 1 + p1 and ai = pi for
i 6= 1.

Remark 2 It should be noticed that P can be positive
recurrent, null recurrent, or transient even if the GMBP is
positive recurrent. Therefore, asymptotic analysis for
invariant measures of P , not necessarily probability
measure, is necessary for our study. The asymtotic analysis
of invariant measures for non-stable P is not a
well-addressed topic, which will be our focus.

Define H(z) P (z) B(z) A(z) and Π(z) for hk, pk, bk, ak and
πk, respectively.
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organiztion of the following parts

In the following, we will investigate exact asymptotics in ν

through π for the three cases: P ′(1−) < 0, P ′(1−) = 0 and
0 < P ′(1−) ≤ ∞, which are further divided into subcases
according to properties of the boundary transitions.

Among all the cases, we exclude this case: P ′(1−) < 0 and
H ′(1−) < ∞ in our study because the corresponding
discrete-time P is positive recurrent, which is a classical
topic in the literature studies, for example, readers may
refer to Møller, J.R. (2001), Li Q. L. and Zhao, Y.Q. (2005) .
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3. Negative drift: P ′(1−) < 0, H ′(1−) = ∞

To characterizatize the asymptotic property, we need the
following assumption.

Assumption 1 Assume that f(z) is a nonnegative function
such that f(z) ∼ c

(1−z)θ , as z → 1− for some c > 0 and

0 < θ < 1, where f(x) ∼ g(x) means lim f(x)
g(x) = 1.

A remark on the assumption will be given at the end of this
section.

Wuhu, Anhui talk 22/07/2008 - Page 13



3. Theorem 1
Theorem 1 Suppose that P ′(1−) < 0 and H ′(z) satisfies
Assumption 1.
(i) If α < θ, then

Sν(n) ∼
cθν0

(θ − α)(1 − θ)Γ(1 + θ)P ′(1−)
nθ−α,

and for any fixed i

(n)νi ∼
(θ − α)(1 − θ)Γ(1 + θ)P ′(1−)νi

cθν0
n−(θ−α).

(ii) If α = θ, then

Sν(n) ∼
cθν0

(1 − θ)Γ(1 + θ)P ′(1−)
log n,
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3. Theorem 1
and for any fixed i

(n)νi ∼
(1 − θ)Γ(1 + θ)P ′(1−)νi

cθν0
(log n)−1.

(iii) If α > θ, then the branching process is positive
recurrent,

S̄ν(n) ∼
cθν0

(α − θ)(1 − θ)Γ(1 + θ)P ′(1−)
nθ−α,

and

‖(n)ν − ν‖1 ∼
2cθν0

(α − θ)(1 − θ)Γ(1 + θ)P ′(1−)
nθ−α.
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3. Proof of Theorem 1

The proof of this theorem is based on the following lemmas.

lemma 3 Suppose that A′(1−) < 1. If the function B′(z)
satisfies Assumption 1, then

Sπ(n) ∼
cπ0

(1 − θ)(1 − A′(1−))Γ(1 + θ)
nθ.

Proof of this lemma needs to use Tauberian theorem.
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3. Proof of Theorem 1
lemma 4 Suppose that

∑n
k=1 kαxk ∼ nγ logβ n for the

sequence of real numbers xk, where γ > 0 and α, β ∈ R.

(i) If γ > α, then Sx(n) ∼ γ
γ−α

nγ−α logβ n.

(ii) If γ = α, then

Sx(n) ∼
γ

β + 1
logβ+1 n, if β > −1,

and

Sx(n) ∼
−γ

β + 1
logβ+1 n, if β < −1.

(iii) If γ < α, then the series
∑

∞

k=1 xk converges, and
S̄x(n) ∼ γ

α−γnγ−α logβ n.
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3. Remark on the assumption

Remark 3

(i) Assumption 1 covers many important cases, including
the most commonly used distribution: zeta distribution
P [X = k] = k−θ

ζ(θ) when 1 < θ < 2, where k ∈ N+, X

denotes an ordinary non-negative random variable and
ζ(x) is the Riemann zeta function.

(ii) It is reasonable to restrict the value of θ in Assumption 1
to θ < 1, since otherwise θ ≥ 1, from Tauberian theorem,
the sereis

∑

∞

k=0 bk diverges.
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4. Zero drift: P ′(1−) = 0

In the section, we divide our discussion into two
subsections according to

H ′(1−) < ∞ or H ′(1−) = ∞

for the branching process. Each subsection is further
divided into two parts depending on whether

P ′′(1−) < ∞ or P ′′(1−) = ∞.

The exact polynomial decay rates for all kinds of cases are
shown in this section.
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4.1.1. H ′(1−) < ∞, P ′′(1−) < ∞

Theorem 2 Suppose that P ′(1−) = 0, H ′(1−) < ∞ and
P ′′(1−) < ∞.

(i) If the branching process is sublinear (i.e. α < 1), then

Sν(n) ∼
H ′(1−)ν0

(1 − α)P ′′(1−)
n1−α.

(ii) If the branching process is linear (i.e., α = 1), then

Sν(n) ∼
H ′(1−)ν0

P ′′(1−)
log n.

(iii) If the branching process is suplinear (i.e., α > 1), then it

is positive recurrent, and Sν(n) ∼ H ′(1−)ν0

(α−1)P ′′(1−)n
1−α.
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4.1.2. H ′(1−) < ∞, P ′′(1−) = ∞

Theorem 3 Suppose that P ′(1−) = 0, H ′(1−) < ∞ and
P ′′(z) satisfies Assumption 1.

(i) If α < 1 − θ, then

Sν(n) ∼
(2 − θ)(1 − θ)2H ′(1−)ν0

c(1 − θ − α)Γ(2 − θ)
n1−θ−α.

(ii) If α = 1 − θ, then

Sν(n) ∼
(2 − θ)(1 − θ)2H ′(1−)ν0

cΓ(2 − θ)
log n.

(iii) If α > 1 − θ, then the branching process is positive

recurrent, and Sν(n) ∼ (2−θ)(1−θ)2H ′(1−)ν0

c(α−1+θ)Γ(2−θ) n1−θ−α.
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4.2.1. H ′(1−) = ∞, P ′′(1−) < ∞.
Theorem 4 Suppose that P ′(1−) = 0 and P ′′(1−) < ∞.
Assume further that H ′(z) satisfies Assumption 1.

(1) If α < 1 + θ, then

Sν(n) ∼
2c(1 + θ)ν0

(1 − θ)(1 + θ − α)Γ(2 + θ)P ′′(1−)
n1+θ−α.

(2) If α = 1 + θ, then

Sν(n) ∼
2c(1 + θ)ν0

(1 − θ)Γ(2 + θ)P ′′(1−)
log n.

(3) If α > 1 + θ, then the branching process is positive

recurrent, and Sν(n) ∼ 2c(1+θ)ν0

(1−θ)(α−θ−1)Γ(2+θ)P ′′(1−)n
1+θ−α.
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4.2.2. H ′(1−) = ∞, P ′′(1−) = ∞.
Theorem 5 Suppose that P ′(1−) = 0, H ′(z) satisfies
Assumption 1 for constants c > 0 and 0 < θ < 1, and P ′′(z)
satisfies Assumption 1 for other constants 0 < θ1 < 1 and
c1 > 0.

(i) If α < θ + 1 − θ1, then

Sν(n) ∼
c(1 − θ1)(2 − θ1)(θ + 1 − θ1)ν0

c1(1 − θ)(θ + 1 − θ1 − α)Γ(2 + θ − θ1)
nθ+1−θ1−α,

(ii) If α = θ + 1 − θ1, then

Sν(n) ∼
c(1 − θ1)(2 − θ1)(θ + 1 − θ1)ν0

c1(1 − θ)Γ(2 + θ − θ1)
log n,
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4.2.2. H ′(1−) = ∞, P ′′(1−) = ∞.
(iii) If α > θ + 1 − θ1, then the branching process is positive

recurrent,

Sν(n) ∼
c(1 − θ1)(2 − θ1)(θ + 1 − θ1)ν0

c1(1 − θ)(α − θ − 1 + θ1)Γ(2 + θ − θ1)
nθ+1−θ1−α,
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5. Positive drift: 0 < P ′(1−) ≤ ∞

We show below νn diverge to ∞ at a semi-geometric (an
geometric function multiplied by a power function) rate,
which is an interesting phenomenon.

Theorem 6 If 0 < P ′(1−) ≤ ∞, then the branching process
is not positive recurrent, and

νn ∼ −
H(z0)ν0

P ′(z0−)
n−αz−n

0 ,

Sν(n) ∼ −
z0H(z0)ν0

(1 − z0)P ′(z0−)
n−αz−n

0 ,

where z0 ∈ (0, 1) is the unique solution to the equation
P (z) = 0.
*** The proof needs different argument.
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