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1. Introduction of the exit measure of Super-diffusions

1) Intuitive definition (Branching Particle Systems)

ξ: A diffusion in Rd with generator L.

Consider a system of particles with undergo random motion and
branching on Rd according to the following rules:

a). At time t = 0, we have finite number of particles which are
distributed according to the law of the Poisson point process on Rd

with intensity nµ. (Each particle has mass 1/n)
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b). Each particle survives with probability exp (−nt) at time t.

c). At the end of its lifetime, a dying particle gives birth to k offsprings
with probability pn

k , k = 0, 1, 2, · · · .

d). During its lifetime, the motion of each particle is governed by the
process ξ.

e). All particle’s lifetime, motions, and branching are independent of
one another.
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For a Borel set B ∈ Rd, put

Xn
t (B) =

1

n
(# of particles which are alive at time t and located in B).

Suppose D is a domain. For Borel set B ∈ B(∂D), put

Xn
D(B) =

1

n
(# of particles whose exit point from D is in B).

Under certain conditions (see remark below), it can be proved that
as n → ∞,

Xn
t =⇒ Xt Xn

D =⇒ XD (weakly).

We call X = {Xt, XD; Pµ} a super-diffusion (enhanced model).

Xt describes the mass distribution of particles at time t.
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XD is called the exit measure from D, which describes the mass
distribution of exit points.

Remark Main conditions on pn = (pn
k , k = 0, 1, 2, · · · ):

p
(n)
k = 0 if k = 1 or k ≥ n + 1,

and
n∑

k=0

kp
(n)
k = 1 and lim

n→∞
sup
k≥0

|p(n)
k − pk| = 0,

where {pk, k = 0, 1, 2, · · · } is the limiting offspring distribution
which is assumed to satisfy following conditions:

p1 = 0,
∞∑

k=0

kpk = 1 and m2 :=
∞∑

k=0

k2pk < ∞.
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2) (Dynkin’s definition)The Laplace functional of XD is given by

Pµ exp(−〈f, XD〉) = exp(−〈u, µ〉), f ∈ bB(Rd),

where u is the unique solution to the following integral equation:

u(x) +

∫ τD

0
u2(ξs)ds = Πx

[
f(ξτD)

]
. (1)

Differential form:  Lu = u2, in D,

u|∂D = f(x).
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But this method does not work for super-diffusions in a random medium
due to interaction between particles, which destroys the multiplicative
property:

Pµ1+µ2 exp(−〈f, XD〉)

= Pµ1 exp(−〈f, XD〉) · Pµ2 exp(−〈f, XD〉),

which can be formally written as

(XD, Pµ1+µ2) = (XD, Pµ1) + (XD, Pµ2) in law .

It is well-known that the log-Laplace functional technique is based on
the multiplicative property.
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Question: How to define exit measure XD for super-diffusions in
random medium.
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3) (Le Gall and Mytnik’s definition) In Le Gall and Mytnik (2005), the
exit measure of a super-Brwonian motion was obtained by an ap-
proximation method.

B = (Bt, Πx): A Brownian motion in Rd starting from x.

KD(x, z): the Poisson kernel of Brownian motion B in D;
GD(x, y): the Green function of Brownian motion B in D.

A fact: KD(x, z) is half the normal derivative of the mapping y →
GD(x, y) at z ∈ ∂D, in other words,

GD(x, y) ∼ 2ρ(y)KD(x, z), y → z along the normal direction.
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BM Super-BM

δBt
Xt

δBτD
( exit measure ) : XD( exit measure ) :

Πx〈φ, δBτD
〉

=
∫
D KD(x, z)φ(z)σ(dz)

How to describe

〈φ, XD〉?

Occupation time measure:

OD :=
∫ τD
0 δBt

dt =
∫ ∞
0 δξt

dt YD :=
∫ ∞
0 XD

t dt

Πx〈φ, OD〉 =
∫
D GD(x, y)φ(y)dy YD can be described
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Here

ξt :=

 Bt, t < τD,

∂, t ≥ τD,

XD
t is the super-Breonian motion in D (with underling motion ξ).
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For every ε > 0 set

Fε = {x ∈ D; ρ(x, ∂D) ≤ ε}.

Then we have
1

ε2
Πx

[∫ ∞

0
IFε(ξt)φ(ξt)dt

]
=

1

ε2

∫
Fε

GD(x, y)φ(y)dy

→
∫

∂D
KD(x, z)φ(z)σ(dz).

Suppose X = (Xt, t ≥ 0) is a super-Brownian motion in D. More
precisely, the underlying spatial motion ξ is a Brownian motion killed
when it exits D. It is reasonable to have

Xε
D(dy) :=

1

ε2

∫ ∞

0
IFε(y)Xt(dy)dt =⇒ XD( as ε → 0).
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2. Super-diffusion in random medium (Ren, song and Wang 08)

Suppose that for each k ∈ N, zk is the strong solution of the follow-
ing equation:

zk(t) − zk(0) =

∫ t

0
c(zk(s))dBk(s)

+

∫ t

0

∫
Rd

h(y − zk(s))W (dy, ds), (2)

where {Bk, k ≥ 1} are independent Rd-valued, standard Brownian
motions, W is a Brownian sheet or space-time white noise on Rd.
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Assume that the diffusion matrix (apq)1≤p,q≤d defined by

apq(x) :=
d∑

r=1

cpr(x)cqr(x), (3)

is uniformly elliptic and bounded on Rd. Assume further that h =

(h1, · · · , hd) ∈ L1(Rd) ∩ L2(Rd). Put

ρpq(x, y) :=

∫
Rd

hp(u − x)hq(u − y)du, p, q = 1, · · · , d.

(4)
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Notations:
(D(A), A): Generator of z1 killed when it leaves D(denoted as ξ ).
For φ ∈ D(A),

Aφ(x) =
d∑

p,q=1

1
2(apq(x)+ρpq(0, 0))∂p∂qφ(x), x ∈ D. (5)

MF (D): the set of all finite measures on D;
MF,c(D) := {ν ∈ MF (D) : supp(ν) ⊂ D}.

KD(x, z): the Poisson kernel of ξ in D;

GD(x, y): the Green function of ξ in D.
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For any measure µ ∈ MF,c(D), there is a unique solution X =

(Xt, t ≥ 0) (called super-diffusion in random medium) to the mar-
tingale problem:

Xt(φ) − X0(φ)

=
d∑

p=1

∫ t

0

∫
Rd

〈
hp(y − ·)∂pφ(·), Xs

〉
W (dy, ds)

+

∫ t

0

∫
D

φ(x)M(dx, ds)

+

∫ t

0

〈
d∑

p,q=1

1
2(apq(·) + ρpq(·, ·))∂p∂qφ(·), Xs

〉
ds (6)

for every t > 0 and φ ∈ C∞
c (D), where M is a square-integrable
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martingale measure with

〈M(φ)〉t = γσ2
∫ t

0
〈φ2, Xu〉du for every t > 0 and φ ∈ C∞

c (D).

Here

Mt(φ) :=

∫ t

0

∫
D

φ(y)M(ds, dy) (7)

is a square-integrable, continuous {Ft}-martingale, and

Wt(φ) :=
d∑

p=1

∫ t

0

∫
Rd

〈
hp(y − ·)∂pφ(·), Xs

〉
W (dy, ds),

Ft := σ{Xs(f), Ms(f), Ws(φ), f ∈ B(D), φ ∈ C1(D), s ≤ t}.

Moreover, Wt(φ) and Mt(φ) are orthogonal.
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3. Absolute continuity of the exit measure XD

Recall that

Fε = {x ∈ D; ρ(x, ∂D) ≤ ε}.

Xε
D(dy) :=

1

ε2

∫ ∞

0
IFε(y)Xt(dy)dt.

The following theorem provides a stochastic integral representation
for the exit measure of a super-diffusion in random medium and its
density when it exists.
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Theorem 1 (i) Then for every ϕ ∈ C(D),

〈ϕ, Xε
D〉 → 〈ϕ, XD〉 Pµ − a.s. and in L2(Ω, Pµ),

where

〈φ, XD〉

= 〈HDφ, µ〉 +

∫ ∞

0

∫
D

HDφ(x)dM(s, x)

+
d∑

p=1

∫ ∞

0

∫
Rd

〈hp(z − ·)∂p(HDφ), Xs〉W (dz, ds). (8)
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(ii) Suppose d < 3. For every y ∈ ∂D, define

xD(y)

= 〈KD(·, y), µ〉 +

∫ ∞

0

∫
D

KD(x, y)dM(s, x)

d∑
p=1

∫ ∞

0

∫
Rd

〈hp(z − ·)∂p(KD(·, y)), Xs〉W (dz, ds).(9)

Then, xD(y) ≥ 0, Pµ-a.s. for every y ∈ ∂D. Finally,

XD(dy) = xD(y)σ(dy), Pµ − a.s.

where σ is the surface measure on ∂D normalized to have total
measure 1.
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4. Regularity of the density of exit measure

Note that, by definition (4), ρpq(x, x) = ρpq(0, 0). In this section
we assume that (apq(x))1≤p,q≤d does not depends on spacial po-
sition x, then

Aφ(x) =
d∑

p,q=1

1
2(apq + ρpq(0, 0))∂p∂qφ(x), x ∈ D, (10)

where (apq)1≤p,q≤d is a constant and positive definite matrix.

The next result gives the regularity of the density of XD in a random
medium.
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Theorem 2 Assume that d = 2 and the underling motion is a dif-
fusion with constant diffusion matrix. For µ ∈ MF,c(D), the pro-
cesses (xD(y), y ∈ ∂D) under Pµ has a continuous version.

Open question: If (apq(x))1≤p,q≤d does depend on spacial posi-
tion x, does the density xD has continuous version?
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Put

x1
D(y) =

∫ ∞

0

∫
D

KD(x, y)dM(s, x),

and

x2
D(y) =

d∑
p=1

∫ ∞

0

∫
Rd

〈∂p(KD(·, y))hp(z − ·), Xs〉W (dz, ds).

To prove that (xD(y), y ∈ ∂D) under Pµ has a continuous version
we only need to prove that (x1

D(y), y ∈ ∂D) and (x2
D(y), y ∈

∂D) under Pµ have continuous versions separately.
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Lemma 3 There exists a constant C such that, for y1, y2 ∈ ∂D,

Pµ((x1
D(y1) − x1

D(y2))
4) ≤ C|y1 − y2|2.

The processes (x1
D(y), y ∈ ∂D) has a continuous version.

Proof:

Ky1,y2(·) := KD(·, y1) − KD(·, y2).

Then

x1
D(y1) − x1

D(y2) =

∫ ∞

0

∫
D

Ky1,y2(x)dM(s, x). (11)

By the Burkholder-Davis-Gundy inequality

Pµ((x1
D(y1) − x1

D(y2))
4) ≤ CPµ

(∫ ∞

0
〈K2

y1,y2
, Xs〉ds

)2

.
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Note that

Pµ

(∫ ∞

0
〈K2

y1,y2
, Xs〉ds

)2

≤ C sup
x∈supp(µ)

GD(KD(·, y1) − KD(·, y2))
2(x)

· sup
x∈D

GD

[
GD(KD(·, y1) − KD(·, y2))

2
]
(x)

≤ C |y1 − y2| · |y1 − y2|.
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Lemma 4 There exists a constant C such that, for y1, y2 ∈ ∂D,

Pµ((x2
D(y1) − x2

D(y2))
4) ≤ C|y1 − y2|2.

The processes (x2
D(y), y ∈ ∂D) has a continuous version.
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Proof: By the Burkholder-Davis-Gundy inequality,

Pµ((x2
D(y1) − x2

D(y2))
4)

≤ CPµ

 d∑
p=1

∫ ∞

0

∫
Rd

〈∂p(Ky1,y2)hp(z − ·), Xs〉2dsdz)

2

≤ · · ·
≤ C|y1 − y2|2 +

C|y1 − y2| sup
x∈supp(µ)

|GD∂i(KD(·, y1) − KD(·, y2))(x)|

· sup
x∈D

GD |GD∂i(KD(·, y1) − KD(·, y2))| (x)

+C|y1 − y2| sup
x∈D

GD [GD∂i(KD(·, y1) − KD(·, y2))]
2 (x).
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Lemma 5 Assume that d = 2 and A has constant coefficients. For
any compact subset K of D and i = 1, 2, we have, for z1, z2 ∈
∂D,

sup
x∈K

|GD∂i(KD(·, z1) − KD(·, z2))(x)| ≤ C|z1 − z2|1/2;

sup
x∈D

GD |GD∂i(KD(·, z1) − KD(·, z2))| (x) ≤ C|z1 − z2|1/2;

and

sup
x∈D

GD [GD∂i(KD(·, z1) − KD(·, z2))]
2 (x) ≤ C|z1 − z2|.
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————————
Thank you!

————————

E-mail: yxren@math.pku.edu.cn


