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1. Introduction of the exit measure of Super-diffusions
1) Intuitive definition (Branching Particle Systems)
¢: A diffusion in R® with generator L.

Consider a system of particles with undergo random motion and
branching on R% according to the following rules:

a). At time t = 0, we have finite number of particles which are
distributed according to the law of the Poisson point process on R
with intensity nu. (Each particle has mass 1/n)



b). Each particle survives with probability exp (—nt) at time t.

c). At the end of its lifetime, a dying particle gives birth to k offsprings
with probability py;, k = 0,1,2,- - -.

d). During its lifetime, the motion of each particle is governed by the
process &.

e). All particle’s lifetime, motions, and branching are independent of
one another.



For a Borel set B € R%, put

1
X{'(B) = ;(# of particles which are alive at time ¢ and located in B’

Suppose D is a domain. For Borel set B € B(9D), put

1
Xp(B) = E(# of particles whose exit point from D is in B).

Under certain conditions (see remark below), it can be proved that
as n — oo,

X!"= X3 Xp=— Xp (weakly).
We call X = { X}, Xp; Py} a super-diffusion (enhanced model).

X describes the mass distribution of particles at time t.



X p is called the exit measure from D, which describes the mass
distribution of exit points.

Remark Main conditions on p™ = (p;,k = 0,1,2,---):

p™ =0 ifk=1ork>n+1,
and
n
Z kpgn) =1 and lim sup |pgn) — pr| = 0,
k=0 R >

where {pr,k = 0,1,2,---} is the limiting offspring distribution
which is assumed to satisfy following conditions:

o0 o0
p1 = 0, kakzland mo ‘— Zkzpk<00-



2) (Dynkin’s definition)The Laplace functional of X p is given by

Pu eXp(_<f9 XD)) — eXp(_<ua /J'>)a S bB(Rd)a
where w is the unique solution to the following integral equation:

u@) + [ ut(a)ds = Tz [£(Erp)] (1)
Differential form:
Lu = u?, inD,

ulgp = f(x)-



But this method does not work for super-diffusions in a random medium
due to interaction between particles, which destroys the multiplicative

property:

Py +ps exp(—(f, XD))
— PMl eXp(_<.f9 XD>) ‘ PHZ eXp(—(f, XD>)9
which can be formally written as

(Xp, PH1‘|‘H2) = (Xp, PNI) + (X p, P.UZ) in law .

It is well-known that the log-Laplace functional technique is based on
the multiplicative property.



Question: How to define exit measure X p for super-diffusions in
random medium.



3) (Le Gall and Mytnik’s definition) In Le Gall and Mytnik (2005), the
exit measure of a super-Brwonian motion was obtained by an ap-
proximation method.

B = (By,II;): A Brownian motion in R? starting from .

K p(x, z): the Poisson kernel of Brownian motion B in D;
G p(x,y): the Green function of Brownian motion B in D.

A fact: Kp(«x, z) is half the normal derivative of the mapping y —
Gp(x,y) at z € 9D, in other words,

Gp(xz,y) ~ 2p(y)Kp(x,z), y — =z alongthe normal direction.



BM
OB,
B, ( exitmeasure ) :
Hm<¢9 5BTD>

= [pKp(x,z)p(z)o(dz)
Occupation time measure:
Op = fJD op,dt = fooo 5€tdt
H:B<¢7 OD> — fD GD(wa y)d)(y)dy

Super-BM
Xt
X p( exit measure ) :

How to describe
<¢9 XD> &

Yp := fooo Xtht

Y p can be described



Here

Bta t < D,
87 t 2 TD,

Et =

XtD is the super-Breonian motion in D (with underling motion &).



For every e > 0 set
Fe = {z € D; p(z,0D) < €}.

Then we have

A | [ In@ood| = 5 [ @ vsway

— / Kp(z,2)¢(z)o (dz).
oD

Suppose X = (X, t > 0) is a super-Brownian motion in D. More
precisely, the underlying spatial motion & is a Brownian motion killed
when it exits D. It is reasonable to have

1 o0
Xp(dy) := 6—2/0 Ir (y)X¢(dy)dt — Xp(ase — 0).



2. Super-diffusion in random medium (Ren, song and Wang 08)

Suppose that for each k € N, z. is the strong solution of the follow-
Ing equation:

t
2(8) — 2(0) = /0 c(z(5))dBy(s)
t
[ b= 2(s)W(dy.ds), @

where { By, k > 1} are independent R9-valued, standard Brownian
motions, W is a Brownian sheet or space-time white noise on RY.



Assume that the diffusion matrix (apq)1<p,q<d defined by

d
apg(x) := Z cpr(x)cqr(x), (3)
r=1

is uniformly elliptic and bounded on R%. Assume further that h =
(hi,--+ ,hg) € LY(R%) N L2(RY). Put

qu(wa y) = /]Rd hp(u — w)hq(u — y)dua p,q=1,.--.,d.
(4)



Notations:
(2(A), A): Generator of z1 killed when it leaves D(denoted as & ).
Forp € Z(A),

d
Ap(x) = Y 3(apg(x)+ppq(0,0))8pdyd(x), « € D. (5)
p,q=1
Mg (D): the set of all finite measures on D;
Mp (D) := {v € Mg(D) : supp(v) C D}.
Kp(x, z): the Poisson kernel of £ in D;
G p(x,y): the Green function of £ in D.



For any measure u € Mp (D), there is a unique solution X =
(X¢, t > 0) (called super-diffusion in random medium) to the mar-
tingale problem:

Xt(¢) — Xo(gb)
d t
B 1)2231/0 /Rd <hp(y - °)8P¢(')’ Xs> W(dy, dS)
t
+/0 /D ¢(x)M (dz, ds)
t d
+, < 2 3(apq() + Ppa(-s-)0pPad ("), Xs> ds (6)

p,q=1
foreveryt > 0 and ¢ € C2°(D), where M is a square-integrable



martingale measure with

t
(M (¢))s = o2 /0 (6%, Xu)du  foreveryt > 0and ¢ € C(L

Here

t
My($) = /0 /qu(y)M(ds,dy) (7)

is a square-integrable, continuous {F; }-martingale, and
d t
Wi@) =3 [ [ (hnly = )0p(), Xe) W (dy, ds),
p=1

Fi = o{Xs(f), Ms(f), Ws(9), f € B(D),¢ € C*(D),s < t}.
Moreover, W¢(¢) and My(¢) are orthogonal.



3. Absolute continuity of the exit measure X p

Recall that
Fe = {z € D;p(x,0D) < €}.

Xp(dy) = Eiz/ooo Ir, (y) Xt(dy)dt.

The following theorem provides a stochastic integral representation
for the exit measure of a super-diffusion in random medium and its
density when it exists.



Theorem 1 (i) Then for every ¢ € C (D),
(¢, Xp) — (¢, Xp) P, —as. andin L?(9, Pu),

where

<¢9 XD> -
= (Hpo,p) + /O /D Hpo(x)dM (s, x)

d 00
+p§1'/0 /Rd<hp(z - .)8P(HD¢)9XS>W(dZ9 d8)°(8)



(i) Suppose d < 3. For everyy € 0D, define

xp(y) »
— (Kp(y),m) + /0 /DKD<w,y>dM<s,w>

d o0
Z /0 /]Rd<hp(z - )ap(KD(a y)),XS>W(dZ, dS).(Q)
p=1

Then, zp(y) > 0, Py-a.s. foreveryy € 8D. Finally,

Xp(dy) =zp(y)o(dy), Pu— a.s.

where o is the surface measure on 0D normalized to have total
measure 1.



4. Regularity of the density of exit measure

Note that, by definition (4), ppq(x, ) = ppq(0,0). In this section
we assume that (apq())1<p,q<q does not depends on spacial po-
sition x, then

d

Ap(x) = Z %(apq + ppq(0,0))0p0qd(x), x € D, (10)
p,q=1

where (apq)1<p,q<d is @ constant and positive definite matrix.

The next result gives the regularity of the density of X p in a random
medium.



Theorem 2 Assume that d = 2 and the underling motion is a dif-
fusion with constant diffusion matrix. For p € Mg (D), the pro-
cesses (xp(y),y € D) under P,, has a continuous version.

Open question: If (apq(T))1<p,q<a does depend on spacial posi-
tion &, does the density « p has continuous version?



Put
) = /O N | Kp@y)am(s,a),

and

d o'e)
LRy | ] @D ko= =), Xe) W (dz, ds).

To prove that (xp(y),y € D) under P, has a continuous version
we only need to prove that (z},(y),y € 0D) and (z%,(y),y €
0D) under P,, have continuous versions separately.



Lemma 3 There exists a constant C such that, for yy,y2 € 0D,

Pu((zp(y1) — zp(y2))?) < Clyr — yal*.
The processes (a:})(y), y € 0D) has a continuous version.

Proof:

Kyl,y2(°) = KD('a yl) — KD('a yZ)-
Then

rh(y1) — zp(y2) :/Ooo /DKyl,w(:c)dM(s,:c). (11)

By the Burkholder-Davis-Gundy inequality

o0 2
Pul(h(un) — oh(w2)) < P ([ TUKE, 0 Xapds )



Note that

., ( [ (82 o xas)

< sup Gp(Kp(-,y1) — Kp(-,y2))?(x)
wESUpp(H)
- sup Gp [GD(KD(wyl) — Kp(-,y2))?| ()
xeD

< Cly1 —y2||y1 — y2|



Lemma 4 There exists a constant C' such that, for y1,y2 € 0D,

P.((z%(y1) — 5 (y2))?) < Cly1 — ya|*.

The processes (az%(y), y € 0D) has a continuous version.



Proof: By the Burkholder-Davis-Gundy inequality,

Pu((zh(y1) — H(y2))?h)

d .o . &
< Or( X [ [ 00y hp(z = ). Xo) dsdz)
p—170 JR?

<
< Clyr — w2+

Clyr —y2| sup |GpOi(Kp(,y1) — Kp(-,y2))(x)|

xeESUPP (1)
' sup Gp|Gpd;(Kp(-,y1) — Kp(:,y2))| (z)
xre

+Cly1 — y2| Sgg Gp [Gpd;(Kp(-,y1) — Kp(+y2))]* ().
xr



Lemma 5 Assume thatd = 2 and A has constant coefficients. For
any compact subset K of D and+ = 1,2, we have, for zq,z9 €
oD,

sup |Gpd;(Kp(s21) — Kp(-22))(#)] < Clz1 - 2|/
e

sup G |Gpdi(Kp(+s21) = Kp(+22))] (2) < Clz1 - 2|1/
e

and

sup G [Gpdi(Kp(+s21) - Kp(-22)))% (@) < Clz1 — 2a]-
e
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