
Phase Transition on the Degree Sequence
of a Mixed Random Graph Process

Xianyuan WU

Capital Normal University

wuxy@mail.cnu.edu.cn

The 6th workshop on Markov Process and Related Topics

Anhui Normal University & Beijing Normal University

July 21-24, 2008

Phase Transition on the Degree Sequence of a Mixed Random Graph Process – p. 1/27



Outline

1, Scale-Free Real-World Networks

Phase Transition on the Degree Sequence of a Mixed Random Graph Process – p. 2/27



Outline

1, Scale-Free Real-World Networks

2, Other Real-World Networks

Phase Transition on the Degree Sequence of a Mixed Random Graph Process – p. 2/27



Outline

1, Scale-Free Real-World Networks

2, Other Real-World Networks

3, Models lead to Power Law Degree Sequence

Phase Transition on the Degree Sequence of a Mixed Random Graph Process – p. 2/27



Outline

1, Scale-Free Real-World Networks

2, Other Real-World Networks

3, Models lead to Power Law Degree Sequence

4, A Model Lead to Critical Phenomenon

Phase Transition on the Degree Sequence of a Mixed Random Graph Process – p. 2/27



Outline

1, Scale-Free Real-World Networks

2, Other Real-World Networks

3, Models lead to Power Law Degree Sequence

4, A Model Lead to Critical Phenomenon

5, Our Model and Main results

Phase Transition on the Degree Sequence of a Mixed Random Graph Process – p. 2/27



Outline

1, Scale-Free Real-World Networks

2, Other Real-World Networks

3, Models lead to Power Law Degree Sequence

4, A Model Lead to Critical Phenomenon

5, Our Model and Main results

6, Comparing Argument

Phase Transition on the Degree Sequence of a Mixed Random Graph Process – p. 2/27



1, Scale-Free Real-World Networks

For the real-world network of World Wide Web/Internet,
experimental studies by Albert, Barabási & Jeong
(1999) etc. demonstrated that the proportion of vertices
of a given degree follows an approximate inverse power
law, i.e.,

the number of vertices of degree k

the total unmber of vertices
≈ Ck−α

for some constants C and α.
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1, Scale-Free Real-World Networks

For the real-world network of World Wide Web/Internet,
experimental studies by Albert, Barabási & Jeong
(1999) etc. demonstrated that the proportion of vertices
of a given degree follows an approximate inverse power
law, i.e.,

the number of vertices of degree k

the total unmber of vertices
≈ Ck−α

for some constants C and α.

The degree distribution of real-world networks (Internet)
is heavy-tailed.
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For the classical random graph model Gn,p introduced
by Erdös & Rényi (1959), the proportion of vertices of a
given degree follows an approximate Poisson law, i.e.,

the number of vertices of degree k

the total unmber of vertices
≈

λk

k!
e−λ,

where λ = np.
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For the classical random graph model Gn,p introduced
by Erdös & Rényi (1959), the proportion of vertices of a
given degree follows an approximate Poisson law, i.e.,

the number of vertices of degree k

the total unmber of vertices
≈

λk

k!
e−λ,

where λ = np.

The degree distribution of classical random graph
model Gn,p is light-tailed.
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2, Other real-world networks.

Guassian distribution can be observed in the
acquaintance network of Mormons Bernard et al. (1988).
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Guassian distribution can be observed in the
acquaintance network of Mormons Bernard et al. (1988).

Exponential distribution can be observed in the
powergrid of southern California Watts & Strogatz
(1998).

The degree distribution of the network of world airports
Amaral et al. (2000) interpolates between Gaussian and
exponential distributions.
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2, Other real-world networks.

Guassian distribution can be observed in the
acquaintance network of Mormons Bernard et al. (1988).

Exponential distribution can be observed in the
powergrid of southern California Watts & Strogatz
(1998).

The degree distribution of the network of world airports
Amaral et al. (2000) interpolates between Gaussian and
exponential distributions.

The degree distribution of the citation network in high
energy physics Lehmann, Lautrup & Jackson (2003)
interpolates between exponential and power law
distributions.
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An example: a model which exhibits more than one D.S.

For a general model of collaboration networks in Zhou
et al. (2005) indicate that:

while a relevant parameter α increases from 0 to 1.5,
four kinds of degree distributions appear as:

1, exponential,

2, arsy-varsy,

3, semi-power law and

4, power law

in turn.
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3, Models lead to Power Law D. S.

Why Power Law?: Some new models were introduced to
explain the underlying causes for the emergence of power
law degree distributions:

‘LCD model’ of Bollobás & O. Riordan (2004);
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Why Power Law?: Some new models were introduced to
explain the underlying causes for the emergence of power
law degree distributions:

‘LCD model’ of Bollobás & O. Riordan (2004);

the generalization of ‘LCD’ model due to Buckley &
Osthus (2004);

‘copying’ models of Kumar et al (2000);

the very general models defined by Copper & Frieze
(2003);

the other model with random deletions defined by
Copper, Frieze & Vera (2004).
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3, Models lead to Power Law D. S.

Why Power Law?: Some new models were introduced to
explain the underlying causes for the emergence of power
law degree distributions:

‘LCD model’ of Bollobás & O. Riordan (2004);

the generalization of ‘LCD’ model due to Buckley &
Osthus (2004);

‘copying’ models of Kumar et al (2000);

the very general models defined by Copper & Frieze
(2003);

the other model with random deletions defined by
Copper, Frieze & Vera (2004).

“hard copying" model of Ning, Wu & Cai (2008). etc.
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4, A Model Leads to Critical Phenomenon

Our Problem:

Does it exist some dynamically evolving random graph
process which brings forth various degree distributions
by continuous changing of its parameters only?
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4, A Model Leads to Critical Phenomenon

Our Problem:

Does it exist some dynamically evolving random graph
process which brings forth various degree distributions
by continuous changing of its parameters only?

Our goal:

Answer the above problem in a mathematically rigorous
manner.
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The First Result (A simplified version!)

Model 1 [Wu, Dong, Liu and Cai (2008)]:

{Gt = (Vt, Et), t ≥ 1}, Write et = |Et|, vt = |Vt|.

Let G1 = {x1}
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Model 1 [Wu, Dong, Liu and Cai (2008)]:

{Gt = (Vt, Et), t ≥ 1}, Write et = |Et|, vt = |Vt|.

Let G1 = {x1}

At Time-Step t ≥ 2, to define Gt from Gt−1, one of the
two following substeps is executed.
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The First Result (A simplified version!)

Model 1 [Wu, Dong, Liu and Cai (2008)]:

{Gt = (Vt, Et), t ≥ 1}, Write et = |Et|, vt = |Vt|.

Let G1 = {x1}

At Time-Step t ≥ 2, to define Gt from Gt−1, one of the
two following substeps is executed.

With probability α > 0 we add a vertex xt to Gt−1. We
then add m random edges incident with xt. When a
edge is added, the random neighbour w of xt is chosen
in the manner of preferential attachment, namely,

P(w = v) =
dv(t − 1)

2et−1
,

where dv(t − 1) denotes the degree of vertex v in Gt−1.
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With probability 1 − α ≥ 0 we delete min{m, et−1}
randomly chosen edges from Et−1.

Remark 1: This is the simplest case we have handled and
we use it to state the result more clear.

Remark 2: In our setting, {et : t ≥ 1} is Markovian and

E(et) ≈ (2α − 1)mt.

Now, Let Dk(t) be the number of vertices with degree k ≥ 0

in Gt and let Dk(t) be the expectation of Dk(t). The main
results for Model 1 follow as
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Theorem: Let αc =
2

3
, then it is a critical point for the

degree sequence of the model satisfying:
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Theorem: Let αc =
2

3
, then it is a critical point for the

degree sequence of the model satisfying:
1. if α > αc, then there exists constant C1 = C1(m,α)

such that,

lim
t→∞

Dk(t)

t
= C1k

−1−β + O(k−2−β);
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Theorem: Let αc =
2

3
, then it is a critical point for the

degree sequence of the model satisfying:
1. if α > αc, then there exists constant C1 = C1(m,α)

such that,

lim
t→∞

Dk(t)

t
= C1k

−1−β + O(k−2−β);

2. if 4
7 < α < αc, then there exists constant

C2 =C2(m,α) such that

lim
t→∞

Dk(t)

t
= C2γ

kk−1+β + O(γkk−2+β);
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3 if α = αc, then there exists constant Cc = Cc(m,α) such
that,

lim
t→∞

Dk(t)

t
= Ccuc(k).

Where

uc(k) =

∫ 1

0
tk−1e−

1

1−t dt

and

β =
4α − 2

3α − 2
, γ =

α

2(1 − α)
.

Phase Transition on the Degree Sequence of a Mixed Random Graph Process – p. 12/27



Remark 3: With help of computer calculation, uc(k)
satisfies

lim
k→∞

ln uc(k)/(−k) = lim
k→∞

(− ln k)/ln uc(k) = 0.
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Remark 3: With help of computer calculation, uc(k)
satisfies

lim
k→∞

ln uc(k)/(−k) = lim
k→∞

(− ln k)/ln uc(k) = 0.

Remark 4: In this case α = 1, the model has a power
law degree sequence as Ck−3, which coincides with the
result of Bollobás, Riordan, Spencer & Tusnády (2001).
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Remark 3: With help of computer calculation, uc(k)
satisfies

lim
k→∞

ln uc(k)/(−k) = lim
k→∞

(− ln k)/ln uc(k) = 0.

Remark 4: In this case α = 1, the model has a power
law degree sequence as Ck−3, which coincides with the
result of Bollobás, Riordan, Spencer & Tusnády (2001).

Model 1 exhibits critical phenomenon
on its degree distribution!
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5, Our Model and Main Results

Two Motivations:

To properly model the following WWW-typed networks:
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5, Our Model and Main Results

Two Motivations:

To properly model the following WWW-typed networks:
1. Excepting for all the isolated vertices (nodes), the

network has only one connected component;
2. There is no loop and multi-edge in the network;
3. While a new vertex (node) is added, the number of

added new edges (links) between it and the existing
vertices is finite but unbounded; and

4. Edges (links) are added in the preferential
attachment manner.

To reconcile the ER theory of random graphs and
various models of complex networks and develop a
coherent or modern theory of random theory and
complex networks.
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The Model (Model 2)

Fix some constants 0 ≤ α ≤ 1 and µ, ζ > 0. Define random
graph process {Gα

t = (Vt, Et) : t ≥ 1} as follows.

Time-Step 1. Let Gα
1 consists of vertices x0, x1 and the

edge 〈x0, x1〉.
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The Model (Model 2)

Fix some constants 0 ≤ α ≤ 1 and µ, ζ > 0. Define random
graph process {Gα

t = (Vt, Et) : t ≥ 1} as follows.

Time-Step 1. Let Gα
1 consists of vertices x0, x1 and the

edge 〈x0, x1〉.

Time-Step t ≥ 2. We add a new vertex xt to Gα
t−1 and then

1. with probability α, we add random edges incident
with xt in the preferential attachment manner: for
any 0 ≤ i ≤ t − 1, edge 〈xi, xt〉 is added

independently with probability
µdα

xi
(t−1)

2et−1

∧ 1;
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The Model (Model 2)

Fix some constants 0 ≤ α ≤ 1 and µ, ζ > 0. Define random
graph process {Gα

t = (Vt, Et) : t ≥ 1} as follows.

Time-Step 1. Let Gα
1 consists of vertices x0, x1 and the

edge 〈x0, x1〉.

Time-Step t ≥ 2. We add a new vertex xt to Gα
t−1 and then

1. with probability α, we add random edges incident
with xt in the preferential attachment manner: for
any 0 ≤ i ≤ t − 1, edge 〈xi, xt〉 is added

independently with probability
µdα

xi
(t−1)

2et−1

∧ 1;

2. with probability 1 − α, we add random edges incident
with xt in the classical manner: for any 0 ≤ i ≤ t − 1,
edge 〈xi, xt〉 is added independently with probability
(ζ ∧ t)/t.
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Two Special Cases:
Case 1: α = 0: {G0

t : t ≥ 1} is an evolving version of the
ER model and we call it classical process! Clearly, at
each step, edges are added in an equal probability, this
coincides with the essential feature of ER model Gn,p.
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Case 2: α = 1: {G1
t : t ≥ 1} ( write as {Gt} ) is a good

Candidate for modeling the WWW-typed networks.
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The process {Gt : t ≥ 1} can also be

looked as a modification of the classical

process {G0
t : t ≥ 1} in a preferential

attachment way.
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The process {Gt : t ≥ 1} can also be

looked as a modification of the classical

process {G0
t : t ≥ 1} in a preferential

attachment way.

{Gt : t ≥ 1} is a good candidate which
fits the two motivations of us.
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Main Results

Results for {Gt : t ≥ 1}:
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Main Results

Results for {Gt : t ≥ 1}:
Theorem 1.1: For any 0 < µ ≤ 2, there exists positive

constants C1 and C2 such that

C1k
−3 ≤ lim inf

t→∞

Dk(t)

t
≤ lim sup

t→∞

Dk(t)

t
≤ C2k

−3

for all k ≥ 1.
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Main Results

Results for {Gt : t ≥ 1}:
Theorem 1.1: For any 0 < µ ≤ 2, there exists positive

constants C1 and C2 such that

C1k
−3 ≤ lim inf

t→∞

Dk(t)

t
≤ lim sup

t→∞

Dk(t)

t
≤ C2k

−3

for all k ≥ 1.
Theorem 1.2: Assume that 0 < µ ≤ 2. Then for any

small enough ν > 0, we have

E(|Ct|) = (1 − e−µ)t + O(t
1

2−ν ),

where Ct be the giant component of Gt and |Gt| be
its size.
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Results for the mixed process {Gα
t : t ≥ 1}, 0 < α < 1:
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Results for the mixed process {Gα
t : t ≥ 1}, 0 < α < 1:

Theorem 1.3: For any 0 < α < 1, 0 < µ ≤ 2 and ζ > 0,
there exists positive constants Cα

1 and Cα
2 such that

Ca
1k−β ≤ lim inf

t→∞

Dk(t)

t
≤ lim sup

t→∞

Dk(t)

t
≤ Cα

2 k−β

for all k ≥ 1, where β = 1 + 2

(
1 +

(1 − α)ζ

αµ

)
.
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Results for the mixed process {Gα
t : t ≥ 1}, 0 < α < 1:

Theorem 1.3: For any 0 < α < 1, 0 < µ ≤ 2 and ζ > 0,
there exists positive constants Cα

1 and Cα
2 such that

Ca
1k−β ≤ lim inf

t→∞

Dk(t)

t
≤ lim sup

t→∞

Dk(t)

t
≤ Cα

2 k−β

for all k ≥ 1, where β = 1 + 2

(
1 +

(1 − α)ζ

αµ

)
.

Remark 5: Note that at any Time-Step t > ζ, the mean
number of added new edges is ξ := αµ + (1 − α)ζ

and
(1 − α)ζ

αµ
be the limit ratio of the number of the

two kinds of edges in Gα
t .
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Results for the classical process {G0
t : t ≥ 1}:

Theorem 1.4: For random graph process {G0
t : t ≥ 1},

there exists positive constants C0
1 and C0

2 such that

C0
1

(
ζ

1 + ζ

)k

≤ lim inf
t→∞

Dk(t)

t
≤ lim sup

t→∞

Dk(t)

t
≤ C0

2

(
ζ

1 + ζ

)k

for all k ≥ 0.
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Results for the classical process {G0
t : t ≥ 1}:

Theorem 1.4: For random graph process {G0
t : t ≥ 1},

there exists positive constants C0
1 and C0

2 such that

C0
1

(
ζ

1 + ζ

)k

≤ lim inf
t→∞

Dk(t)

t
≤ lim sup

t→∞

Dk(t)

t
≤ C0

2

(
ζ

1 + ζ

)k

for all k ≥ 0.

Remark 6: In this paper, the condition 0 < µ ≤ 2 is
purely technical, and it is conjectured that our results
hold for any µ > 0.

Phase Transition on the Degree Sequence of a Mixed Random Graph Process – p. 20/27



Results for the classical process {G0
t : t ≥ 1}:

Theorem 1.4: For random graph process {G0
t : t ≥ 1},

there exists positive constants C0
1 and C0

2 such that

C0
1

(
ζ

1 + ζ

)k

≤ lim inf
t→∞

Dk(t)

t
≤ lim sup

t→∞

Dk(t)

t
≤ C0

2

(
ζ

1 + ζ

)k

for all k ≥ 0.

Remark 6: In this paper, the condition 0 < µ ≤ 2 is
purely technical, and it is conjectured that our results
hold for any µ > 0.

Remark 7: Theorems 1.1, 1.3 and 1.4 exhibit a phase
transition on the degree distributions of the mixed
model {Gα

t : t ≥ 1} while α varies from 0 to 1.
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6, Comparing Argument (For model {Gt})
By bounding et and ∆t, the maximum degree of Gt properly,
we can get the following recurrence for Dk(t):






Dk(t + 1) = Dk(t) +
k − 1

2

Dk−1(t)

t
−

k

2

Dk(t)

t

+O(t−1/5) + fk(t), t + 1 ≥ k ≥ 0, t ≥ 1;

D0(1) = 0; D1(1) = 2; Dk(t) = 0, k > t ≥ 1;

D−1(t) = 0, t ≥ 1.
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6, Comparing Argument (For model {Gt})
By bounding et and ∆t, the maximum degree of Gt properly,
we can get the following recurrence for Dk(t):






Dk(t + 1) = Dk(t) +
k − 1

2

Dk−1(t)

t
−

k

2

Dk(t)

t

+O(t−1/5) + fk(t), t + 1 ≥ k ≥ 0, t ≥ 1;

D0(1) = 0; D1(1) = 2; Dk(t) = 0, k > t ≥ 1;

D−1(t) = 0, t ≥ 1.

While fk(t) is replaced by fk, a real number, then the
recurrence can be solved by a standard way. The main
technique of this paper is to develop a comparing
argument to solve the above recurrence.
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By studying the property of fk(t), the probability that
exactly k edges are added at time t, we get its lower
bound f̃k(t) and upper bounds f̂k(t). Then we prove
that

D̃k(t) ≤ Dk(t) ≤ D̂k(t), ∀ k ≥ −1, t ≥ 1,

where D̃k(t), D̂k(t) satisfying the above recurrence with
fk(t) replaced by f̃k(t), f̂k(t) respectively.
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By studying the property of fk(t), the probability that
exactly k edges are added at time t, we get its lower
bound f̃k(t) and upper bounds f̂k(t). Then we prove
that

D̃k(t) ≤ Dk(t) ≤ D̂k(t), ∀ k ≥ −1, t ≥ 1,

where D̃k(t), D̂k(t) satisfying the above recurrence with
fk(t) replaced by f̃k(t), f̂k(t) respectively.

f̃k(t) and f̂k(t) have the following form:

f̃k(t) =






0, k ≥ 1, t ≥ 1,

f̃k, k = 0, t ≥ 1;

f̂k(t) =






f̂k, t ≥ k,

0, 1 ≤ t < k.
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And f̃k, f̂k have the following form:

f̃k =






0, k ≥ 1,

ρ, k = 0;

and f̂k =






Ck−4, k ≥ 1,

e−µ, k = 0,

where ρ > 0 be a constant.
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And f̃k, f̂k have the following form:

f̃k =






0, k ≥ 1,

ρ, k = 0;

and f̂k =






Ck−4, k ≥ 1,

e−µ, k = 0,

where ρ > 0 be a constant.

Using a standard argument, we can prove the following:

lim
t−→∞

D̃k(t)

t
= d̃k, lim

t−→∞

D̂k(t)

t
= d̂k.
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Where d̃k, d̂k be the solutions of the following
recurrences in k respectively:
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Where d̃k, d̂k be the solutions of the following
recurrences in k respectively:






d̃k =
k − 1

2
d̃k−1 −

k

2
d̃k + f̃k, k ≥ 0,

d̃−1 = 0;

Phase Transition on the Degree Sequence of a Mixed Random Graph Process – p. 24/27



Where d̃k, d̂k be the solutions of the following
recurrences in k respectively:






d̃k =
k − 1

2
d̃k−1 −

k

2
d̃k + f̃k, k ≥ 0,

d̃−1 = 0;






d̂k =
k − 1

2
d̂k−1 −

k

2
d̂k + f̂k, k ≥ 0,

d̂−1 = 0.
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The recurrence in k with the form





dk =
k − 1

2
dk−1 −

k

2
dk + φk, k ≥ 0,

d−1 = 0;

can be directly solved as: d−1 = 0, d0 = φ0, d1 = 2
3φ1 and

dk =
k∑

j=1

2j(j + 1)

k(k + 1)(k + 2)
φj =

1

k(k + 1)(k + 2)

k∑

j=1

2j(j + 1)φj ,

for all k ≥ 2. Applied to {f̃k} and {f̂k}, the summation in
the right hand side of the above equation converges as
k → ∞, thus, d̃k and d̂k decay as k−3.
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Now we have:
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Now we have:

1. D̃k(t) ≤ Dk(t) ≤ D̂k(t), ∀ k ≥ −1, t ≥ 1; and
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Now we have:

1. D̃k(t) ≤ Dk(t) ≤ D̂k(t), ∀ k ≥ −1, t ≥ 1; and

2. limt−→∞

D̃k(t)
t = d̃k, limt−→∞

bDk(t)
t = d̂k. And finally
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1. D̃k(t) ≤ Dk(t) ≤ D̂k(t), ∀ k ≥ −1, t ≥ 1; and

2. limt−→∞

D̃k(t)
t = d̃k, limt−→∞

bDk(t)
t = d̂k. And finally

3. d̃k and d̂k decay as k−3.
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Now we have:

1. D̃k(t) ≤ Dk(t) ≤ D̂k(t), ∀ k ≥ −1, t ≥ 1; and

2. limt−→∞

D̃k(t)
t = d̃k, limt−→∞

bDk(t)
t = d̂k. And finally

3. d̃k and d̂k decay as k−3.

We then finish the comparing argument and get
Theorem 1.1. Namely, for some constants C1 and C2,

C1k
−3 ≤ lim inf

t→∞

Dk(t)

t
≤ lim sup

t→∞

Dk(t)

t
≤ C2k

−3

for all k ≥ 1.
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Thank You Very Much!
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