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In August 2006, Perelman was awarded the Fields medal at ICM
2006 Madrid. He refused to receive it.
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Hamilton’s Ricci flow (RF)

Let M be a compact manifold with a Riemannian metric g. Let g(¢) be
the solution of the Ricci flow equation given by

0 .
ag(t) = —2Rlcg(,).
More precisely, forall i,j =1,...,n,
agi(t) )
o = ~2Ri(a(h).

which is a nonlinear 2nd order weakly parabolic equation of systems,

where Ric = (Rj) =the Ricci tensor of g. The scalar curvature of g(t)
satisfies the nonlinear reaction-diffusion heat equation
OR

— = Ric|?.
5t AR + |Ric|



Hamilton’s theorems

Theorem (Hamilton 1982)

Given a compact Riemannian manifold (M, g,), there exists a
T > 0 such that the Ricci flow equation

0 .
872‘9(2‘) = —2Rlcg(1), t>0

has a unique solution g(t, x) in [0, T) x M such that

9(0) = go.




Hamilton’s theorems

Theorem (Hamilton 1982)

Let M be a 3-dimensional compact manifold, g, a Riemannian

metric on M with positive Ricci curvature. Then the normalized
Ricci flow equation

0 2r _
atQ(l‘) = Fg(t) — 2Ricgy(y),
where _
o (7
V(M)’

has a global solution g(t) on [0, cc) x M such that

9(0) = go.

Moreover, g(t) converges to a Riemannian metric of constant
positive Ricci (and hence sectional) curvature.
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Perelman’s modified Ricci flow (MRF)

In 2002, G. Perelman modified Hamilton’s Ricci flow equation.
Let M = {g : Riemannian metrics on M}. Define

F:Mx Co(M)— R
Flg,f) = /(R+ VHR)e v,
JM

R = TrRic = the scalar curvature of g.



Theorem (Perelman 2002 Arxiv)
The gradient flow of F on M x C>(M), with condition

dm = e’ /detgdx being fixed,
is given by the modified Ricci flow (MRF)

9
ot
0
Zf = —Af-R.
ot

g = —2(Ricg + V?f),




Perelman’s modified Ricci flow

Theorem (Perelman 2002 Arxiv)

Let (g(t), f(t)) be the solution of the Ricci flow (obtained via a
time-dependent change of diffeomorphism on (MRF))

&g — —2Ric.
0f = —Af+4|VI?-R.
Then
9 Fg(t). £(1)) 2/ |Ric + V2f2e~"dv.
dt Ju

In particular, F(g(t), f(t)) is nondecreasing in time and the
monotonicity is strict except that

Ric + V2f = 0 (steady Ricci soliton).




Perelman’s modified Ricci flow

(M, g) is called a Ricci soliton if there exist a function
f € C>*(M) and some A € R such that

Ric + V2f = \Ag,

A > 0, shrinkingRiccisoliton
A =0, steady Ricci soliton

A < 0, expandingRiccisoliton.

Theorem (Hamilton 95, Ivey 93)

Every compact Riemannian Ricci steady or expanding soliton
must be Einstein.



Perelman’s W-entropy functional

To study shrinking soliton, Perelman introduced the following
important entropy functional

—f

_ 2 B e
W(g,f,T)_/M[T(RHw )+ =] G



Theorem (Perelman 2002 Arxiv)
Let g(t), f(t), 7(t) be the solution of

g = —2Ric,
of = —Af+|Vf|2—F?+£,
or = —1.
Then
o'
/M de:constant,
and
d gpR e

W(g, f,7) = 27/ ‘Ric+ V2f
M

at 27 (4mT)n/2 i




In particular, W(g, f, 7) is nondecreasing in time and the
monotonicity is strict unless that (M, g) is a shrinking Ricci
soliton

Ric +v2f = 2.

T



Perelman’s W-entropy functional

What is the hidden insight when Perelman introduced the
W-entropy functional? Is there some relationship between
Perelman’s entropy and Boltzmann’s entropy?

_f
_ 2 B €
W(g. f,T)_/M[T(RHw )+ ]

What is the role of the Gaussian heat kernel in Perelman’s
W-entropy functional?

What is the role of the dimension n = dimM in Perelman’s
W-entropy functional?



Bakry-Emery Ricci tensor 1984

Let M be a Riemannian manifold, ¢ € C>*(M). Let
L=A—-V¢-V,

and
du=e'dv

Then, Vf, g € Cg°(M), it holds

/M<Vf,Vg>du:/M(Lf)gdu:/Mf(Lg)dp.

In 1984, Bakry and Emery introduced the notion of Ricci tensor
associated with L on (M, g) is defined by

Ric(L) = Ric + V2.



Bakry-Emery Ricci tensor associated to OU operator

On R” with standard Gaussian measure

|x|2

dyn(x. 1) = 2 4
“/n(X-/)*WX’
we have
L=A-x-V,
and

9

Ric(L) = Ric + V3f = oF



Entropy functional for linear heat equation

Recall Perelman’s W-entropy functional for Ricci flow:

—f

_/ N e
Wia, f,T)_/M 7R+ VIR) + £ —n i

Let (M, g) be a compact Riemannian manifold. When the
Riemannian metric on M does not change, L. Ni (2004) studied
the monotonicity of the following W-entropy functional

—f

W(f, 7) = /M (9P + 11 (4:T)n/2dv.



Entropy formula for heat equation

Let u be a positive solution of

(8t — A)U =0.
Denote
u= 764
N (4rt)n/2’

Inspired by Perelman’s work, L. Ni (2004) first observed that the
W-entropy functional can be understood in the following way:



Theorem (Ni 2004)

Let
n n
Hn(u,t) = /Mulog udv — (§ log(4nt) + §> 7
=
- 2 gy
W(u, t)—/M(th\ +f n) (4ﬂ)n/2d‘/-
Then

d n
aHn(U, )= — /M (A logu + 27) uav,




Theorem (P. Li-S.T. Yau 1986)
Let u > 0 be a positive solution of the heat equation

0
(61‘_A>UO'

Ric > 0.

Suppose that

Then the Li-Yau Harnack differential inequality holds

n
Al — >0.
ogu+2t_0

Equivalently, we have

[Vul® o _n
u? u — 2t

In the case M = R", we have
n

2t_0‘

Alogu+




Theorem (Ni 2004)
Let u(x, t) be a positive solution of the heat equation

0
<8t_A>U_O'

e ! dr
u(t,x) = W, ar

Let f, T be defined by
1.

Then
—f
dv

d B o, 917, o e
—W(F ) = 2/MT <‘v fo E‘ +RIO(VEV) ) e
In particular, if M has non-negative Ricci curvature, i.e.,

Ric > 0, then W(f, 1) is decreasing along the heat equation.




Entropy functional for diffusion operator

Let (M, g) be a compact Riemannian manifold, ¢ € C?(M). Let

L=A—-V¢-V, du=e “av.

Let
u= 764
N (4rt)ym/2
be a positive solution of
(0t — Lu=0.

Inspired by the works of Perelman and Ni, we have the following



Entropy functional for diffusion operators

Theorem (X.-D. Li 2006)

Let
m m
Hm(u,t) = /MU|OgUdM—(2I09(47rt)+2),
» —f
W(u,t) = /M(t]Vf\ +f—m)(4ﬂ)m/2d,u_
Then
9 (1) = —/ (Llo u+T)ud
gihmet) = = | (Llogu+ 5t ) udg,

9 tH(u, 1)).




Theorem (Li-Yau 86, ..., X.-D. Li 05, Bakry-Ledoux 06)
Let u be a positive solution of the heat equation

0
(8tL>UO'

Veave .
m-—n

Suppose that
Ricm. o(L) := Ric + V3¢ —

Then the Li-Yau Harnack differential inequality holds
Llogu + of > 0.

Equivalently, we have

[Vul® o _m
u? u — 2t

In the case M = R", ¢ = 0, we have
m

Llogu+2t = 0.




Theorem (X.-D. Li 2006)
Let u be a positive solution of the heat equation

(at — L) u=0.
Let f be defined by
e—f
u(t,x) = @)
Then
aw(u,t) ‘ 2, 92 .
= = —2/MT (\v fo 27’ udp + Ricm n(L)(VF, V)

udpu



Theorem (X.-D. Li 2006)
Suppose that there exists a constant m > n such that

_Yoave ., ,,

Ricm.n(L) := Ric + V¢ 2

Then W(u, t) is monotone decreasing along the heat equation
(8t = L)U =0, ie,
dw(u,t)

<0.
dt =




We introduce the optimal constant in the Log-Sobolev inequality

w(r) = I ;Jgi _ Wlu.)

. du
_ 2 _ 2 2 2
= inf {/M [4T|VU| u“logu® — mu ] (4M)m/2}

where inf is taken among all the v such that

U2
./,\‘/,(47”_)”’/2(1#1

Corollary (X.-D. Li 2006)

Suppose that Ricm n(L) > 0. Then T — (1) is decreasing
along the heat diffusion (0. — L)u = 0.



Li-Yau-Hamilton-Perelman Harnack inequality

Let
2 e’
W(g,f,T):/,\A[T(R+|Vf )+f—ni| de,
and
v = [r(2Af — |Vf|? + R) + f — nju.
Then
W(g,f, )= / vdv,
Jm
gW( f )—/D*udv
dt g7 77— - M )
where 5

In 2002, Perelman proved a Li-Yau-Hamilton Harnack inequality
for the fundamental solution of the conjugate backward heat
equation of the Ricci flow.



Li-Yau-Hamilton-Perelman Harnack inequality

Theorem (Perelman 2002)
Let g(t) be the solution to the Ricci flow on M x (0, T), i.e.,

0tg = —2Ricy.
Let ]
-

H=——"—_

(4mt)m/2

be the fundamental solution to the conjugate backward heat
equation
oiu = —Au — Ru.

Then
vy = [r(2Af — |Vf2+ R) + f — n]H < 0.




In 2004/2006, Ni proved the Li-Yau-Hamilton-Perelman
Harnack for the heat equation (0; — A)u = 0 with Ric > 0:

vy = [r(2Af — |Vf?) + f— n]H < 0,

where

(4rt)m/2
is the fundamental solution to the heat equation

ot = Au.



Conjecture

Let M be a complete Riemannian manifold, ¢ € Cp(M) N C?(M)
be bounded C?-function. Let

e—f

(4rt)ym/2
be the fundamental solution to the heat equation
o:u = Lu.

Suppose that
Ric + V3¢ > 0.

Then, there exists ty > 0 such that, for all t > 1y, the
Li-Yau-Hamilton-Perelman Harnack inequality holds:

vy = [r(2Lf — |Vf]?) + f — m]H < 0.




Difficulty

Following Perelman’s argument, let h(t), t € [0, T] be the
positive solution of the heat equation

dth= —Lh, h(T)=h.

To prove the above conjecture, it is enough to verify that
lim tim:) Wh(t) <0

for all positive continuous function h > 0 on M, where

Wh(T):/Mh(T)I/H(T)dV.



Wi(7) = /M {T (vHZ’Z - 2L:> ~ (logH + 7 log(4nr) + m)} Hhd

By Li-Yau Harnack inequality, if Ricm n(L) > 0, then

VH2 _LH _m

H?2 H — 27

Thus

Wh(r) < —7 / LHhd — / (tog H+ 7 log(4xr) + ') Hhal.
The difficulty is to obtain the Gaussian lower bound estimate of
the heat kernel for symmetric diffusion operators on complete
Riemannian manifolds with weighted volume measure.



Remark

Let M =R", ¢ = 0, m > n. Then Ric + V2¢ = 0. In this case,
we can verify that

Wi(r) = (n=m) [ Hx.y.m)hly. Oy

m-—n

5 log(4nm)H(x, y,7)h(y,r)dy.
Rn

We can verify that the above conjecture is true with a certain
fo > 0 but it can not be true for {; = 0. Indeed, we have

lim tim; Wh(t) = +oo.

Question
What happens when Ricm (L) > 0 but ¢ is unbounded?




Harnack inequality to conjugate heat equation
Let g(t), t € [0, T) be the solution to the Ricci flow, u be a
positive solution to the conjugate heat equation

oiu = —Au-— Ru.

Let - = T — t. Define

n n
Hp(u, 1) = /M ulog udv — (E log(4r7) + 5) )
By Perelman (2002) we have

dH, ' n
a- —/M (AIogu—R+ Z) udv.

Moreover, following Ni (2004) and Topping (2006),

W(u,r) = (;_(TH,,(U./ 7))



Differential Harnack inequality for Ricci flow

Recently, several authors (Kuang-Zhang 07, Cao 08, etc) have
studied the Li-Yau-Hamilton differential Harnack inequality for
the conjugate heat equations. The following differential
Harnack inequality has been proved very recently.

Theorem (X.-D. Li 2008)

Let g(t) be the solution to the Ricci flow on an n-dimensional
compact manifold M and on [0, T). Let u be a positive solution
to the forward heat equation

oiu = Au — Ru.

Suppose that (M, g(t)) has non-negative Ricci curvature. Then,
there exists a constant C > 0 such that for all = € (0, 1),

\Vu\z dru _R< (1+5)+
u? u 2T

n(1+e1C.




Recall that Perelman (2002) has proved

dHn_ ' n
g /M (AlogufF?+ Z) udv.

To end this talk, | would like to raise the following

Question

Under which condition, can we prove the following differential
Harnack inequality

AIogu—R+£20 ?
27



Thank you !



Thank you !
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