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Consider a family of probability measures {νy : y ∈ ∂D} on a bounded

open domain D ⊂ Rd with smooth boundary. For any starting point

x ∈ D, we run a a standard d-dimensional Brownian motion B(t) ∈
Rd until it first exits D at time τ , at which time it jumps to a

point in the domain D according to the measure νB(τ) at the exit

time, and starts the Brownian motion afresh. The same evolution is

repeated independently each time the process reaches the boundary.

The resulting diffusion process is called Brownian motion with jump

boundary (BMJ). The spectral gap of non-self-adjoint generator

of BMJ, which describes the exponential rate of convergence to

the invariant measure, is studied. The main analytic tool is Fourier

transforms with only real zeros. This is a joint work with Yuk Leung

and Rakesh to appear in Proc. AMS.
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Motivations

There are various motivating applications for the study of the BMJ
process (also called rebirth process in Grigorescu and Kang (2002)).

•A variant of the Fleming-Viot branching process introduced by
Burdzy, Holyst and March (2000).

•Connected to the study of the behavior of the double knock-out
barrier options in derivative markets in mathematical finance, Grig-
orescu and Kang (2002, 03, 03).

•Related to the study of Brownian flow on a finite interval with
jump boundary conditions, Kosygina (2006).

•Ergodicity of non-reversible Markov processes, Ben-Ari and Pinsky
(2007, 2007+).

•MCMC and Fourier transforms with only real zeros, Leung, Li and
Rakesh (2008).

•Neuron firing models in mathematical biology.
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Known Approaches on Spectral Analysis of BMJ

•The jump measures νy = δp for all y ∈ ∂[0,1] = {0,1} in R, i.e. the
jumps are deterministic and concentrated on a single point p ∈ (0,1),
the ergodicity of BMJ was studied by Grigorescu and Kang (2002,
06). The main tools used are Laplace transform methods and the
theory of analytic semigroups.

•The jump measures µy = µ for all y ∈ ∂D, i.e. the jumps follows
the same measure ν on D, the ergodicity of BMJ (as an interest-
ing special case) was systematically studied in Ben-Ari and Pinsky
(2007). They used a powerful functional analytic approach.

•The jump measures νy various for y ∈ ∂D, see Ben-Ari and Pinsky
(2007+) and Leung, Li and Rakesh (2008).

The key point of these papers is to give a formula for the invariant
probability measure and to describe the exponential rate at which
the distribution of the process converges to this invariant measure in
terms of the spectral gap of the generator of BMJ. Note that BMJ
is never reversible and hence powerful methods developed recently
for ergodic convergence rates of reversible Markov processes cannot
be applied directly.
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The Same Measure Case: νy = ν for All y ∈ ∂D

If p(t, x, ·) represents the transition probability measure for the BMJ

with the same jump measure ν, then it was shown in [BP07] that

p(t, x, ·) approaches a unique stationary invariant measure µ on D

with the density

µ(dy) =

∫
DG

D(x, y)dν(x)dy∫
D
∫
DG

D(x, y)dν(x)dy
=

GD(ν, y)dy∫
DG

D(ν, y)dy
.

Here, for every x ∈ D, the Green’s function GD(x, y) is the solution

of

1

2
∆xG

D(x, y) = −δ(x− y) x ∈ D

GD(x, y) = 0 x ∈ ∂D.

Equivalently, GD(x, y) =
∫∞
0 pD(t, x, y)dt is the 0-potential of the

transition sub-probability function pD(t, x, y) of the absorbed Brow-

nian motion on D.
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Earlier Results on Spectral Analysis of BMJ

Consider the eigenvalue problem (with a nonlocal boundary condi-

tion)

1

2
∆u = λu in D

u|∂D =
∫
D
u dν.

Clearly 0 is an eigenvalue for this problem; define the spectral gap

λ1(ν) = sup{<λ : 0 6= λ is an eigenvalue of equations above }.

Then [BP07] also characterized the rate of decay of p(t, x, ·) to µ as

lim
t→∞

1

t
sup

f∈L∞(D),‖f‖∞≤1
log ‖E xf(X(t))−

∫
D
fdµ‖∞ = λ1(ν) < 0
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Two Jump Measures

We now focus our attention on the BMJ when D = (a, b) with the

jump measures νa at a and νb at b. An important role is played by

the eigenvalues of the nonlocal eigenvalue problem

1

2
u′′ = λu on (a, b)

u(a) =
∫ b
a
u(x) dνa(x), u(b) =

∫ b
a
u(x) dνb(x).

•Note that, for D = (a, b), we have the well known formula

GD(x, y) =
2

b− a
(b−max(x, y)) (min(x, y)− a), x, y ∈ (a, b).
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Thm: (LLR08). Let X(t) be the BMJ process on (a, b) associated

to the probability measures νa, νb and let ma, mb be the means of

νa, νb. Then X(t) has a unique invariant measure µ given by

dµ(y) =
(b−mb)G

D(νa, y) + (ma − a)GD(νb, y)

(b−mb)
∫ b
a G

D(νa, y)dy + (ma − a)
∫ b
a G

D(νb, y)dy

and the rate of convergence to µ is characterized by

lim
t→∞

1

t
sup

f∈L∞(a,b),‖f‖∞≤1
log ‖E xf(X(t))−

∫ b
a
fdµ‖∞ = λ1(νa, νb) < 0

where (the spectral gap)

λ1(νa, νb) = sup{<λ : 0 6= λ is an eigenvalue of equations above }.

•The invariant measure is a “mixed” Green’s function (normalized).

via associated “mixed” harmonic measure.
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Earlier Results on Spectral Gap of BMJ

•If the jump measure ν is such that the nonzero eigenvalue with the
largest real part is real, then

λ1(ν) < λD0 < 0

where λD0 is the principal eigenvalue of 1
2∆ with Dirichlet boundary

condition.

•If the jump measure ν = md =Lebesgue measure on the cube
domain D = (0,1)d, then

λ1(md) = λD1 = −
(d+ 3)π2

2
for d ≤ 10;

and

λD0 = −
dπ2

2
> λ1(md) > −

(d+ 3)π2

2
= λD1 for d ≥ 11.

where λD1 < λD0 is the second eigenvalue of 1
2∆ with Dirichlet bound-

ary condition.

•There is a deterministic jump measure ν = δa on the cube domain
D = (0,1)2 with a ∈ (0,1)d such that λ1(δa) < λD1 = −5π2/2.
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•If the single jump measure ν = δp, 0 < p < 1, is a point measure in

one-dimensional interval domina D = (0,1), then λ1(δp) = −2π2 =

λD1 .

•For all single jump measure ν in one-dimension interval domain

(0,1), λ1(ν) ≥ λD1 = −2π2.

•If the nonzero eigenvalue with the largest real part is real for the

jump measure ν in one-dimension interval domain D = (0,1), then

λ1(ν) = −2π2 = λD1 .

Ex-Conjecture: For one-dimension interval domain D = (0,1)

λ1(ν) = −2π2 = λD1

for all single jump measure ν, see Ben-Ari and Pinsky (2007).
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Main Results in LLR (2008)

Thm 1. For two jump measures ν0 and ν1 in one-dimension interval
domain D = (0,1), all eigenvalues associated with

1

2
∆u = λu inD, u(0) =

∫
D
udν0, u(1) =

∫
D
udν1

are real and non-positive. As a consequence

sup
ν0,ν1

λ1(ν0, ν1) = λD0 = −
π2

2

and if ν0 = ν1 = ν then

λ1(ν, ν) = λD1 = −2π2.

Here λD0 , λD1 are the largest and the second largest Dirichlet eigen-
values for ∆/2 on (0,1).

•The 2/3 Conj:

inf
ν0,ν1

λ1(ν0, ν1) = λD2 = −
9π2

2

where λD2 is the third largest Dirichlet eigenvalue; The equality can
be attained at ν0 = δ2/3 and ν1 = δ1/3.
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•Convexity Conj: For all h ∈ [0,1]

hλ1(ν0, ν1) + (1−h)λ1(ν′0, ν
′
1) ≤ λ1(hν0 + (1−h)ν′0, hν1 + (1−h)ν′1).

Thm 2. For single jump measure ν on the open unit ball B =

{|x| < 1} in Rd (d > 1 odd) such that r−dµ({x ∈ Rd : |x| < r}) is an

increasing function of r on [0,1), the eigenvalue problem

1

2
∆u = λu in B, u|∂B =

∫
B
u(x)dν

has only real eigenvalues.

•For single point measure δp with |p| = 1/4 on B in R3, there are

complex eigenvalues.

Conj. of LLR (2008): The principle eigenvalue for BMJ is always

real.
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Why λ1(ν) = −2π2 if it is real?

Every solution of the equation 1
2u
′′ = λu is of the form

u(x) = A cos(zx) +B sin(zx),

where λ = −z2/2 for some z ∈ C. Note that here λ,A,B and z are, in

general, complex numbers. The boundary condition u(0) = u(1) =∫ 1
0 u(x)dν(x) can be rewritten as

A
∫ 1

0
(1− cos(zx))dν(x)−B

∫ 1

0
sin(zx)dν(x) = 0

A(1− cos z)−B sin z = 0

Set the determinant to be zero, we obtain∫ 1

0
sin

z(1− x)

2
· sin

z

2
· sin

zx

2
dν(x) = 0

Assume z is real. Since sin z(1−x)
2 ·sin z

2 ·sin zx
2 > 0, for z ∈ (0,2π) and

x ∈ (0,1), while the reverse inequality holds for z ∈ (−2π,0) and x ∈
(0,1), the integral equation has no solution for z ∈ (−2π,2π)− {0}.
On the other hand, sin z(1−x)

2 · sin z
2 · sin zx

2 = 0 for z = ±2π. Thus,

λ = z2/2 = 2π2 is the smallest positive nonzero solution to the

eigenvalue problem. The case ν = δp is simple.
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Fourier Transforms with Only Real Zeros

Pólya (1918) showed various finite Fourier transforms which are

entire functions vanish only on the real axis. This seminal paper

has led to a host of interesting problems in combinatorics and in

probability, such as the decomposition of the hypergeometric r.v.

In particular, Pólya showed that both real and imaginary parts of the

finite Fourier transform of a non-negative non-decreasing function

f(x) on [0,1] defined by P (t) + iQ(t) :=
∫ 1
0 e

ixtf(x)dx have only real

zeros. Later, Szegö (1936) refined Pólya’s method and showed that

the zeros of an arbitrary real combination of P and Q are all real

and they distribute regularly on the real line.

In addition, for distribution function F (t) with F (0) = 0, F (1) = 1,

the function
∫ 1
0 cos(zt)F (t)dt has only real roots iff

∑n
k=0

m2k
(n−k)!(2k)!z

k

has only real roots for all n, where m2k =
∫ 1
0 t

2kF (t)dt.
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A Little History on Fourier Transforms with Only Real Zeros

Pólya (1918) suggested that determining the class of functions
whose Fourier transforms have only real zeros would be a ‘rather
artificial question’ if it were not for the Riemann Hypothesis. For
<(s) > 1, the Riemann zeta function is defined by ζ(s) =

∑∞
n=1 n

−s.
It has an analytic continuation, and the function

ξ(s) =
1

2
s(s− 1)π−s/2Γ(s/2)ζ(s)

is entire. The Riemann Hypothesis states that all the zeros of ξ(s)
satisfy <(s) = 1/2.

It is well known, see Titchmarsh, that

Ξ(z) = ξ(
1

2
+ iz) =

∫ ∞
−∞

φ(x)eizxdx

where

φ(x) =
∞∑
n=1

(
4n4π2e9x/2 − 6n2πe5x/2

)
exp(−n2πe2x).

In other words, the Riemann Hypothesis is true if and only if the
Fourier transform Ξ(z) has only real zeros.
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Fourier Transforms with Only Real Zeros and Probability

Our method here is based on the paper of Pólya (1918) and we

have to show (with a lot of work) the following general result.

Thm 3. For any probability measure µ defined on [−1,1] with

µ((−1,1)) > 0, the zeros of the entire function

cos(z)−
∫ 1

−1
cos(xz) dν(x)

are all real.

•Proper Discretization.

•Transformation back into trigonometric functions again.

•Domination of high frequency trigonometric functions
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Discrete Setting

Consider Markov Chain transition matrix

P =



t1
1
2 + t2 t3 t4 · · · tn−1 tn

1
2 0 1

2 0 · · · 0 0

0 1
2 0 1

2 0 · · · 0
... ... ... ... · · · ... ...
0 0 0 · · · 1

2 0 1
2

s1 s2 s3 · · · sn−2
1
2 + sn−1 sn


where

n∑
i=1

ti =
n∑
i=1

si =
1

2
, ti, si ≥ 0

•Can you tell that all eigenvalues of P are real?

•Can you tell that exact half of them are positive?
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Related Problems

•W.V. Li and J. Peng (2008+), Brownian motion with holding and

jump boundary,

•Jump-in Levy processes, W. Chu, W.V. Li and Y. Ren.

•Distribution of the maximum eigenvalue in the discrete setting.

•Comparisons with symmetrized (reversible) case.

•Markov vs Gaussian processes (Isomorphism, Gaussian free fields,

etc);
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