Introduction to Wasserstein Spaces

Shizan Fang
Stochastic research Center, Beijing Normal University
Beijing, 100875, China

June-July 2008

The topic on the heat equation

$$
\frac{\partial u_{t}}{\partial t}-\Delta u_{t}=0 \quad \text { on } \mathbb{R}^{d}
$$

is classical; but the porous medium equation

$$
\begin{equation*}
\frac{\partial u_{t}}{\partial t}-\left(\Delta u_{t}^{m}\right)=0 \quad m \neq 1 \tag{0.1}
\end{equation*}
$$

arises interests among probabiliste. More precisely, for $m>1-\frac{1}{d}, u_{0} \geq 0$ such that $\int u_{0} d x=$ 1 and $\int|x|^{2} u_{0} d x<+\infty$, then the weak solution to (0.1) can be interpreted as the solution to the following ordinary differential equation (ODE)

$$
\left\{\begin{array}{l}
\frac{d \rho_{t}}{d t}=-\nabla \psi\left(\rho_{t}\right) \tag{0.2}\\
\left.\rho_{t}\right|_{t=0}=u_{0} d x
\end{array}\right.
$$

where $\rho_{t} \in \mathbb{P}_{2}\left(\mathbb{R}^{d}\right)$ and $\psi: \mathbb{P}_{2}\left(\mathbb{R}^{d}\right) \mapsto \mathbb{R}$ is a convex functional. A quite general theory says that for two initial data ρ_{0}^{1} and ρ_{0}^{2}, then

$$
t \mapsto W_{2}\left(\rho_{t}^{1}, \rho_{t}^{2}\right) \text { is decreasing. }
$$

In particular, (0.2) admits a unique solution. The purpose of this lecture is to understand the geometric structure of $\mathbb{P}_{2}\left(\mathbb{R}^{d}\right)$.

1 Wasserstein Space $\left(\mathbb{P}_{2}\left(\mathbb{R}^{d}\right), W_{2}\right)$

1.1 Wasserstein distance

Let

$$
\mathbb{P}_{2}\left(\mathbb{R}^{d}\right)=\left\{\mu \text { is a probability measure on } \mathbb{R}^{d} ; m_{2}(\mu):=\int_{\mathbb{R}^{d}}|x|^{2} d \mu(x)<+\infty\right\}
$$

For $\mu, \nu \in \mathbb{P}_{2}\left(\mathbb{R}^{d}\right)$, we define

$$
W_{2}^{2}(\mu, \nu)=\inf \left\{\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|x-y|^{2} d \gamma(x, y): \gamma \in \mathscr{C}(\mu, \nu)\right\},
$$

where $\mathscr{C}(\mu, \nu)=\left\{\gamma \in \mathbb{P}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right):\left(\pi_{1}\right)_{*} \gamma=\mu,\left(\pi_{2}\right)_{*} \gamma=\nu\right\}$, here $\pi_{1}: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is the projection on the first component, while π_{2} is on the second one. It is sometimes convenient to use another more probabilistic formulation:

$$
W_{2}^{2}(\mu, \nu)=\inf \left\{\mathbb{E}\left(|X-Y|^{2}\right): \operatorname{law}(X)=\mu, \operatorname{law}(Y)=\nu\right\}
$$

For $\mu, \nu \in \mathbb{P}_{2}\left(\mathbb{R}^{d}\right), W_{2}(\mu, \nu)<+\infty$, since

$$
\begin{aligned}
\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|x-y|^{2} d \gamma(x, y) & \leq 2\left(\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|x|^{2} d \gamma(x, y)+\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|y|^{2} d \gamma(x, y)\right) \\
& =2\left(m_{2}(\mu)+m_{2}(\nu)\right)<\infty
\end{aligned}
$$

Proposition 1.1 There is a $\gamma_{0} \in \mathscr{C}(\mu, \nu)$ such that

$$
W_{2}^{2}(\mu, \nu)=\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|x-y|^{2} d \gamma_{0}(x, y)
$$

Proof. By the above remark, $W_{2}^{2}(\mu, \nu)=\inf \left\{\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|x-y|^{2} d \gamma(x, y): \gamma \in \mathscr{C}(\mu, \nu)\right\}$ is finite, therefore for each $n \geq 1$, there exists $\gamma_{n} \in \mathscr{C}(\mu, \nu)$ such that

$$
\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|x-y|^{2} d \gamma_{n}(x, y) \leq W_{2}^{2}(\mu, \nu)+\frac{1}{n}
$$

Let $\varepsilon>0$, there exists a compact set $K \subset \mathbb{R}^{d}$ such that

$$
\mu\left(K^{c}\right)+\nu\left(K^{c}\right) \leq \varepsilon
$$

Now $(K \times K)^{c} \subset\left(K^{c} \times \mathbb{R}^{d}\right) \cup\left(\mathbb{R}^{d} \times K^{c}\right)$,

$$
\begin{aligned}
\gamma_{n}\left((K \times K)^{c}\right) & \leq \gamma_{n}\left(K^{c} \times \mathbb{R}^{d}\right)+\gamma_{n}\left(\mathbb{R}^{d} \times K^{c}\right) \\
& =\mu\left(K^{c}\right)+\nu\left(K^{c}\right)<\varepsilon
\end{aligned}
$$

Therefore the family $\left\{\gamma_{n} ; n \geq 1\right\}$ is tight. Up to a subsequence, γ_{n} converges to $\gamma \in \mathbb{P}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$. Then $\gamma \in \mathscr{C}(\mu, \nu)$, in fact for any $\varphi \in C_{b}\left(\mathbb{R}^{d}\right)$,

$$
\int \varphi(x) d \mu(x)=\int \varphi(x) d \gamma_{n}(x, y) \rightarrow \int \varphi(x) d \gamma(x, y)
$$

so $\left(\pi_{1}\right)_{*} \gamma=\mu$. In the same way, $\left(\pi_{2}\right)_{*} \gamma=\nu$.
Let $R>0$. We have

$$
\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}\left(|x-y|^{2} \wedge R\right) d \gamma_{n}(x, y) \leq W_{2}^{2}(\mu, \nu)+\frac{1}{n}
$$

letting $n \rightarrow \infty$ gives

$$
\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}\left(|x-y|^{2} \wedge R\right) d \gamma(x, y) \leq W_{2}^{2}(\mu, \nu)
$$

Letting $\mathbb{R} \rightarrow+\infty$, we get the results.

In what follows, we denote by

$$
\begin{aligned}
\mathscr{C}_{0}(\mu, \nu) & =\{\text { optimal coupling of } \mu \text { and } \nu\} \\
& =\left\{\gamma_{0} \in \mathscr{C}(\mu, \nu): W_{2}^{2}(\mu, \nu)=\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|x-y|^{2} d \gamma_{0}(x, y)\right\} .
\end{aligned}
$$

In fact, $\mathscr{C}_{0}(\mu, \nu)$ is a convex subset of $\mathscr{C}(\mu, \nu)$.
Kantorovich problem: when $\mathscr{C}_{0}(\mu, \nu)$ has only one element?
Minge problem: when $\gamma_{0}=(I \times T)_{*} \mu$? How is about the regularity of T ?
Roughly speaking, the Wasserstein distance is realized for two highly correlated random variables (X, Y).

Proposition 1.2 W_{2} is the distance on $\mathbb{P}_{2}\left(\mathbb{R}^{d}\right)$.
Proof.(i) Let $T: x \rightarrow(x, x)$ and $\gamma=T_{*} \mu$. Then $\gamma \in \mathscr{C}(\mu, \mu)$ and

$$
W_{2}^{2}(\mu, \nu) \leq \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|x-y|^{2} d \gamma(x, y)=\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|x-y|^{2} d \mu(x)=0
$$

Conversely, if $W_{2}(\mu, \nu)=0$, take a $\gamma_{0} \in \mathscr{C}_{0}(\mu, \nu)$ such that $\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|x-y|^{2} d \gamma(x, y)=0$. It follows that γ is supported by the diagonal; so that

$$
\int \varphi(x) d \mu(x)=\int \varphi(x) d \gamma(x, y)=\int \varphi(y) d \gamma(x, y)=\int \varphi(y) d \nu(y)
$$

Hence $\mu=\nu$.
(ii) Consider the map $T:(x, y) \rightarrow(y, x)$. For any $\gamma \in \mathscr{C}_{0}(\mu, \nu)$ and $\varphi \in C_{b}\left(\mathbb{R}^{d}\right)$, define $\hat{\gamma}=T_{*} \gamma$ and $\tilde{\varphi}(x, y)=\varphi(x)$. Then

$$
\begin{aligned}
\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \varphi(x) d \hat{\gamma}(x, y) & =\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \tilde{\varphi}(x, y) d \hat{\gamma}(x, y)=\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \tilde{\varphi}(T(x, y)) d \gamma(x, y) \\
& =\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \varphi(y) d \gamma(x, y)=\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \varphi(y) d \nu(y)
\end{aligned}
$$

so $\left(\pi_{1}\right)_{*} \hat{\gamma}=\nu$. In the same way, $\left(\pi_{2}\right)_{*} \hat{\gamma}=\mu$. Therefore $\hat{\gamma} \in \mathscr{C}(\nu, \mu)$ and

$$
W_{2}^{2}(\nu, \mu) \leq \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|x-y|^{2} d \hat{\gamma}(x, y)=\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|x-y|^{2} d \gamma(x, y)=W_{2}^{2}(\mu, \nu)
$$

Changing the roles, we get the equality.
(iii) Let $\mu_{1}, \mu_{2}, \mu_{3} \in \mathbb{P}\left(\mathbb{R}^{d}\right)$. Let $\gamma_{1} \in \mathscr{C}_{0}\left(\mu_{1}, \mu_{2}\right), \gamma_{2} \in \mathscr{C}_{0}\left(\mu_{2}, \mu_{3}\right)$. Then by the result below, $\exists \lambda \in \mathbb{P}\left(\mathbb{R}^{d} \times \mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ such that

$$
\left(\pi_{1}, \pi_{2}\right)_{*} \lambda=\gamma_{1}, \quad\left(\pi_{2}, \pi_{3}\right)_{*} \lambda=\gamma_{2}
$$

Consider $\gamma=\left(\pi_{1}, \pi_{3}\right)_{*} \lambda$. Then

$$
\begin{aligned}
\int \varphi(x) d \gamma(x, z) & =\int \varphi(x) d \lambda(x, y, z)
\end{aligned}=\int \varphi(x) d \gamma_{1}(x, y)=\int \varphi d \mu_{1}, ~=\int \varphi(z) d \lambda(x, y, z)=\int \varphi(z) d \gamma_{2}(y, z)=\int \varphi d \mu_{3} .
$$

Thus $\gamma \in \mathscr{C}\left(\mu_{1}, \mu_{3}\right)$, we have

$$
\begin{aligned}
W_{2}\left(\mu_{1}, \mu_{3}\right) & \leq\left(\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|x-y|^{2} d \gamma(x, y)\right)^{\frac{1}{2}} \\
& =\left(\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}\left|x_{1}-x_{3}\right|^{2} d \lambda\left(x_{1}, x_{2}, x_{3}\right)\right)^{\frac{1}{2}} \\
& \leq\left\|d\left(x_{1}, x_{2}\right)\right\|_{L^{2}(\lambda)}+\left\|d\left(x_{2}, x_{3}\right)\right\|_{L^{2}(\lambda)} \\
& =\left\|d\left(x_{1}, x_{2}\right)\right\|_{L^{2}\left(\gamma_{1}\right)}+\left\|d\left(x_{2}, x_{3}\right)\right\|_{L^{2}\left(\gamma_{2}\right)} \\
& =W_{2}\left(\mu_{1}, \mu_{2}\right)+W_{2}\left(\mu_{2}, \mu_{3}\right),
\end{aligned}
$$

here $d(x, y)=|x-y|$.
Theorem 1.1 Let E_{1}, E_{2}, E_{3} be Polish space. Let $\gamma^{12} \in \mathbb{P}\left(E_{1} \times E_{2}\right)$, $\gamma^{23} \in \mathbb{P}\left(E_{2} \times E_{3}\right)$. Suppose that $\nu:=\left(\pi_{2}\right)_{*} \gamma^{12}=\left(\pi_{1}\right)_{*} \gamma^{23}$. Then there exists a $\lambda \in \mathbb{P}\left(E_{1} \times E_{2} \times E_{3}\right)$, such that $\left(\pi_{1}, \pi_{2}\right)_{*} \lambda=\gamma^{12},\left(\pi_{2}, \pi_{3}\right)_{*} \lambda=\gamma^{23}$.

Proof. We have $\pi_{2}: E_{1} \times E_{2} \rightarrow E_{2}$ and $\left(\pi_{2}\right)_{*} \gamma^{12}=\nu$. Let $\gamma_{y}^{12}(d x)$ be the conditional probability on E_{1} of γ^{12} given $\left\{\pi_{2}=y\right\}$. Note that $\gamma_{y}^{12} \in \mathbb{P}\left(E_{1}\right)$ is defined only for γ-a.s., y. In term of probability, γ^{12} is the joint law of a couple of random variables $(X, Y), \nu$ is the law of Y and γ_{y}^{12} is the conditional law of X given $\{Y=y\}$. That is,

$$
\begin{equation*}
\int_{E_{1} \times E_{2}} f(x, y) d \gamma^{12}(x, y)=\int_{E_{2}}\left(\int_{E_{1}} f(x, y) \gamma_{y}^{12}(d x)\right) d \nu(y) . \tag{1.1}
\end{equation*}
$$

For γ^{23}, we write, in the same way,

$$
\begin{equation*}
\int_{E_{2} \times E_{3}} \varphi(y, z) d \gamma^{23}(y, z)=\int_{E_{2}}\left(\int_{E_{3}} \varphi(y, z) \gamma_{y}^{23}(d z)\right) d \nu(y) . \tag{1.2}
\end{equation*}
$$

Define a measure $\lambda \in \mathbb{P}\left(E_{1} \times E_{2} \times E_{3}\right)$ by

$$
\begin{equation*}
\int_{E_{1} \times E_{2} \times E_{3}} \varphi(x, y, z) d \lambda(x, y, z)=\int_{E_{2}}\left(\int_{E_{1} \times E_{3}} \varphi(x, y, z) \gamma_{y}^{12}(d x) \gamma_{y}^{23}(d z)\right) d \nu(y) . \tag{1.3}
\end{equation*}
$$

If $\varphi(x, y, z)=\varphi(x, y)$,

$$
\begin{equation*}
\int_{E_{1} \times E_{3}} \varphi(x, y) \gamma_{y}^{12}(d x) \gamma_{y}^{23}(d z)=\int_{E_{1}} \varphi(x, y) \gamma_{y}^{12}(d x) . \tag{1.4}
\end{equation*}
$$

This implies that $\left(\pi_{1}, \pi_{2}\right)_{*} \lambda=\gamma^{12}$. In the same way, we see that $\left(\pi_{2}, \pi_{3}\right)_{*} \lambda=\gamma^{23}$.
Theorem 1.2 Let $\mu_{n}, \mu \in \mathbb{P}_{2}\left(\mathbb{R}^{d}\right)$, then $\lim _{n \rightarrow \infty} W_{2}\left(\mu_{n}, \mu\right)=0$ if and only if i) $\mu_{n} \rightarrow \mu$ weakly;
ii) (μ_{n}) has uniformly integrable 2-moment, i.e.,

$$
\lim _{R \rightarrow+\infty} \sup _{n}\left(\int_{|x| \geq R}|x|^{2} d \mu_{n}(x)\right)=0 .
$$

Proof. We first prove the converse part. By Skorohod representation theorem, there is a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a sequence of random variables X_{n} and X such that

$$
\operatorname{law}\left(X_{n}\right)=\mu_{n}, \operatorname{law}(X)=\mu
$$

and X_{n} converges to X almost surely. The condition ii) implies that $\left\{\left|X_{n}-X\right|^{2} ; n \geq 1\right\}$ is uniformly integrable; thus, we have

$$
W_{2}^{2}\left(\mu_{n}, \mu\right) \leq \mathbb{E}\left(\left|X_{n}-X\right|^{2}\right) \rightarrow 0
$$

Now suppose $W_{2}^{2}\left(\mu_{n}, \mu\right) \rightarrow 0$, we prove first the weak convergence of μ_{n} to μ.
(1) If φ is 1-Lipschitz, i.e.,

$$
|\varphi(x)-\varphi(y)| \leq|x-y|
$$

then

$$
\left|\int \varphi d \mu-\int \varphi d \nu\right| \leq \int|x-y| d \gamma(x, y) \leq\left(\int|x-y|^{2} d \gamma(x, y)\right)^{\frac{1}{2}}
$$

Taking the infinimum over $\gamma \in \mathscr{C}(\mu, \nu)$ on the right side, we get

$$
\left|\int \varphi d \mu-\int \varphi d \nu\right| \leq W_{2}(\mu, \nu)
$$

Therefore for any 1-Lipschitz function φ,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{d}} \varphi d \mu_{n}=\int_{\mathbb{R}^{d}} \varphi d \mu \tag{1.5}
\end{equation*}
$$

By considering $\frac{\varphi}{\|\varphi\|_{L i p}},(1.5)$ holds for any lipschtiz function, in particular for $\varphi \in C_{c}^{1}\left(\mathbb{R}^{d}\right)$.
(2) Let $\varphi \in C_{b}\left(\mathbb{R}^{d}\right)$, consider the cut-off function $\chi_{R} \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ such that $0 \leq \chi_{R} \leq 1$ and

$$
\chi_{R}(x)= \begin{cases}1 & \text { if }|x| \leq R \\ 0 & \text { if }|x| \geq 2 R\end{cases}
$$

Then $\varphi_{R}:=\varphi \cdot \chi_{R} \in C_{c}\left(\mathbb{R}^{d}\right)$. We have

$$
\begin{aligned}
\left|\int \varphi d \mu_{n}-\int \varphi_{R} d \mu_{n}\right| & \leq \int|\varphi|\left(1-\varphi_{R}\right) d \mu_{n} \\
& \leq\|\varphi\|_{\infty} \cdot \mu_{n}\{|x|>R\} \leq\|\varphi\|_{\infty} \cdot \frac{m_{2}\left(\mu_{n}\right)}{R^{2}}
\end{aligned}
$$

Let $\varepsilon>0, \exists R_{0}$ such that

$$
\mu_{n}\{|x|>R\} \leq \frac{\varepsilon}{\|\varphi\|_{\infty}}, \quad \forall n \geq 1
$$

so

$$
\begin{equation*}
\sup _{n}\left|\int \varphi d \mu_{n}-\int \varphi_{R} d \mu_{n}\right| \leq \varepsilon, \forall R \geq R_{0} \tag{1.6}
\end{equation*}
$$

Now take $\psi \in C_{c}^{1}\left(\mathbb{R}^{d}\right)$ such that $\left\|\varphi_{R}-\psi\right\|_{\infty} \leq \varepsilon$, we have

$$
\sup _{n}\left|\int \varphi_{R} d \mu_{n}-\int \psi d \mu_{n}\right| \leq \varepsilon,
$$

but

$$
\begin{equation*}
\left|\int \psi d \mu_{n}-\int \psi d \mu\right| \leq \varepsilon \text { for } n \geq n_{0} \tag{1.7}
\end{equation*}
$$

Combining (1.6), (1.7), we get

$$
\begin{aligned}
\left|\int \varphi d \mu_{n}-\int \varphi d \mu\right| \leq & \left|\int \varphi d \mu_{n}-\int \varphi_{R} d \mu_{n}\right|+\left|\int \varphi_{R} d \mu_{n}-\int \psi d \mu_{n}\right| \\
& +\left|\int \psi d \mu_{n}-\int \psi d \mu\right|+\left|\int \psi d \mu-\int \varphi_{R} d \mu\right| \\
& +\left|\int \varphi_{R} d \mu-\int \varphi d \mu\right| \leq 5 \varepsilon \text { for } n \geq n_{0} .
\end{aligned}
$$

Now we prove ii). For $\varepsilon>0, \xi \in \mathbb{R}$, we see that

$$
(1+\xi)^{2}-(1+\varepsilon) \xi^{2}=-\varepsilon\left(\xi-\frac{1}{\varepsilon}\right)^{2}+\left(1+\frac{1}{\varepsilon}\right) \leq 1+\frac{1}{\varepsilon}:=C_{\varepsilon}
$$

so for $a, b \in \mathbb{R}$,

$$
(a+b)^{2} \leq(1+\varepsilon) a^{2}+C_{\varepsilon} b^{2}
$$

Take $\gamma_{n} \in \mathscr{C}_{0}\left(\mu_{n}, \mu\right)$, we have

$$
\int_{\mathbb{R}^{d}}|x|^{2} d \mu_{n}=\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|x|^{2} d \gamma_{n} \leq(1+\varepsilon) \int_{\mathbb{R}^{d}}|y|^{2} d \mu+C_{\varepsilon} W_{2}^{2}\left(\mu_{n}, \mu\right)
$$

It follows that

$$
\limsup _{n \rightarrow+\infty} \int|x|^{2} d \mu_{n} \leq(1+\varepsilon) \int|x|^{2} d \mu
$$

Letting $\varepsilon \downarrow 0$, we get the following

$$
\begin{equation*}
\limsup _{n \rightarrow+\infty} \int_{\mathbb{R}^{d}}|x|^{2} d \mu_{n}(x) \leq \int_{\mathbb{R}^{d}}|x|^{2} d \mu(x) \tag{1.8}
\end{equation*}
$$

Let $\delta>0, \exists n \geq n_{0}$ such that when $n \geq n_{0}$,

$$
\begin{equation*}
\int_{\mathbb{R}^{d}}|x|^{2} d \mu_{n}(x) \leq \int_{\mathbb{R}^{d}}|x|^{2} d \mu+\delta \tag{1.9}
\end{equation*}
$$

On the other hand, for $R>0$ given, $x \mapsto 1_{\{|x|<R\}}\left(|x|^{2}\right) \wedge M$ is lower semi-continuous, then

$$
\liminf _{n \rightarrow \infty} \int_{|x|<R}|x|^{2} \wedge M d \mu_{n}(x) \geq \int_{|x|<R}|x|^{2} \wedge M d \mu(x)
$$

or

$$
\liminf _{n \rightarrow \infty} \int_{|x|<R}|x|^{2} d \mu_{n}(x) \geq \int_{|x|<R}|x|^{2} \wedge M d \mu(x)
$$

Letting $M \uparrow+\infty$ leads to

$$
\liminf _{n \rightarrow \infty} \int_{|x|<R}|x|^{2} d \mu_{n}(x) \geq \int_{|x|<R}|x|^{2} d \mu(x)
$$

Or for $n \geq n_{0}$,

$$
\begin{equation*}
\int_{|x|<R}|x|^{2} d \mu_{n}(x) \geq \int_{|x|<R}|x|^{2} d \mu(x)-\varepsilon \tag{1.10}
\end{equation*}
$$

It follows that

$$
\begin{aligned}
\int_{|x| \geq R}|x|^{2} d \mu_{n}(x) & =\int_{\mathbb{R}^{d}}|x|^{2} d \mu_{n}(x)-\int_{|x|<R}|x|^{2} d \mu_{n}(x) \\
& \leq \int_{\mathbb{R}^{d}}|x|^{2} d \mu(x)-\int_{|x|<R}|x|^{2} d \mu(x)+2 \varepsilon \\
& =\int_{|x| \geq R}|x|^{2} d \mu(x)+2 \varepsilon
\end{aligned}
$$

Thus

$$
\sup _{n \geq n_{0}} \int_{|x| \geq R}|x|^{2} d \mu_{n}(x) \leq \int_{|x| \geq R}|x|^{2} d \mu(x)+2 \varepsilon
$$

. Then we have

$$
\lim _{R \rightarrow \infty} \sup _{n \geq 1} \int_{|x| \geq R}|x|^{2} d \mu_{n} \leq 2 \varepsilon
$$

Let $\varepsilon \downarrow 0$, we get the desired result.

Theorem 1.3 The space $\left(\mathbb{P}_{2}\left(\mathbb{R}^{d}\right), W_{2}\right)$ is complete.
Proof. Let $\left\{\mu_{n} ; n \geq 1\right\}$ be a Cauchy sequence in $\left(\mathbb{P}_{2}\left(\mathbb{R}^{d}\right), W_{2}\right)$. Then for $\varepsilon>0, \exists n_{0}$ such that

$$
\begin{equation*}
W_{2}\left(\mu_{n}, \mu_{m}\right) \leq \varepsilon, \quad \text { for } \quad n, m \geq n_{0} \tag{1.11}
\end{equation*}
$$

Note that

$$
W_{2}\left(\mu_{n}, \mu_{1}\right) \leq W_{2}\left(\mu_{n}, \mu_{n_{0}}\right)+W_{2}\left(\mu_{n_{0}}, \mu_{1}\right)
$$

so

$$
\sup _{n} W_{2}\left(\mu_{n}, \mu_{1}\right)<\infty
$$

which implies that

$$
m:=\sup _{n} m_{2}\left(\mu_{n}\right)<+\infty
$$

Therefore the family $\left\{\mu_{n} ; n \geq 1\right\}$ is tight, since

$$
\mu_{n}(\{|x|>R\}) \leq \frac{1}{R^{2}} \int|x|^{2} d \mu_{n} \leq \frac{m}{R^{2}}
$$

There exists a subsequence $\left\{\mu_{n_{k}}\right\}$ such that $\mu=\lim _{k \rightarrow \infty} \mu_{n_{k}}$ weakly. Let $\gamma_{n, n_{k}} \in \mathscr{C}_{0}\left(\mu_{n}, \mu_{n_{k}}\right)$. Then, as in the proof of Proposition 1.1, the family $\left\{\gamma_{n, n_{k} ; k \geq 1}\right\}$ is tight. Up to a subsequence of $n_{k}, \gamma_{n, n_{k}} \rightarrow \gamma_{n, \infty}$ weakly. Now for $\varphi \in C_{b}\left(\mathbb{R}^{d}\right)$,

$$
\int \varphi d \mu=\lim _{k \rightarrow \infty} \int \varphi d \mu_{n_{k}}=\lim _{k \rightarrow \infty} \int \varphi d \gamma_{n, n_{k}}=\int \varphi d \gamma_{n, \infty}
$$

so $\left(\pi_{2}\right)_{*} \gamma_{n, \infty}=\mu$ and $\gamma_{n, \infty} \in \mathscr{C}\left(\mu_{n}, \mu\right)$.
Let $R>0$.

$$
\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|x-y|^{2} \wedge R d \gamma_{n, \infty}=\lim _{k \rightarrow \infty} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|x-y|^{2} \wedge R d \gamma_{n, n_{k}},
$$

but for $n \geq n_{0}, k$ big enough

$$
\begin{aligned}
\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|x-y|^{2} \wedge R d \gamma_{n, n_{k}} & \leq \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|x-y|^{2} d \gamma_{n, n_{k}} \\
& =W_{2}^{2}\left(\mu_{n}, \mu_{n_{k}}\right) \leq \varepsilon^{2},
\end{aligned}
$$

so

$$
\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|x-y|^{2} \wedge R d \gamma_{n, \infty} \leq \varepsilon^{2}
$$

Letting $R \uparrow \infty$, gives

$$
W_{2}\left(\mu_{n}, \mu\right) \leq \varepsilon \quad \text { for } n \geq n_{0}
$$

2 Geometric properties

Let $\mu, \nu \in \mathbb{P}_{2}\left(\mathbb{R}^{d}\right)$. Pick $\gamma \in \mathscr{C}_{o}(\mu, \nu)$. Define

$$
\mu_{t}:=\left((1-t) \pi_{1}+t \pi_{2}\right)_{*} \gamma, \quad t \in[0,1]
$$

that is

$$
\int_{\mathbb{R}^{d}} \varphi d \mu_{t}=\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \varphi((1-t) x+t y) d \gamma(x, y) .
$$

Then, $\mu_{0}=\left(\pi_{1}\right)_{*} \gamma=\mu$ and $\mu_{1}=\left(\pi_{2}\right)_{*} \gamma=\nu$. Note that it is easy to see that $\mu_{t} \in \mathbb{P}_{2}\left(\mathbb{R}^{d}\right)$.
Proposition 2.1 We have for $0 \leq s<t \leq 1, W_{2}\left(\mu_{s}, \mu_{t}\right)=(t-s) W_{2}(\mu, \nu)$.
Proof. Define $\gamma_{s, t} \in \mathscr{C}\left(\mu_{s}, \mu_{t}\right)$ by

$$
\begin{equation*}
\gamma_{s, t}=\left((1-s) \pi_{1}+s \pi_{2},(1-t) \pi_{1}+t \pi_{2}\right)_{*} \gamma, \quad \gamma \in \mathscr{C}_{o}(\mu, \nu) \tag{2.12}
\end{equation*}
$$

or

$$
\begin{equation*}
\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} f(x, y) d \gamma_{s, t}=\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} f((1-s) x+s y,(1-t) x+t y) d \gamma(x, y) . \tag{2.13}
\end{equation*}
$$

Then

$$
\begin{align*}
W_{2}^{2}\left(\mu_{s}, \mu_{t}\right) & \leq \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|x-y|^{2} d \gamma_{s, t} \\
& =\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \mid(1-s) x+s y-((1-t) x+t y)^{2} d \gamma(x, y) \\
& =(t-s)^{2} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|x-y|^{2} d \gamma(x, y) \\
& =(t-s)^{2} W_{2}^{2}(\mu, \nu) . \tag{2.14}
\end{align*}
$$

This implies that

$$
W_{2}\left(\mu_{s}, \mu_{t}\right) \leq(t-s) W_{2}(\mu, \nu)
$$

If for some $s_{0}<t_{0}$, it holds

$$
W_{2}\left(\mu_{s_{0}}, \mu_{t_{0}}\right)<\left(t_{0}-s_{0}\right) W_{2}(\mu, \nu),
$$

then

$$
\begin{align*}
W_{2}(\mu, \nu) & =W_{2}\left(\mu_{0}, \mu_{1}\right) \leq W_{2}\left(\mu_{0}, \mu_{s_{0}}\right)+W_{2}\left(\mu_{s_{0}}, \mu_{t_{0}}\right)+W_{2}^{2}\left(\mu_{t_{0}}, \mu_{1}\right) \\
& <s_{0} W_{2}(\mu, \nu)+\left(t_{0}-s_{0}\right) W_{2}(\mu, \nu)+\left(1-t_{0}\right) W_{2}(\mu, \nu)=W_{2}(\mu, \nu) . \tag{2.15}
\end{align*}
$$

This is a contradiction. Therefore

$$
W_{2}\left(\mu_{s}, \mu_{t}\right)=(t-s) W_{2}(\mu, \nu) .
$$

Note that the above proposition implies that for $0 \leq t_{1}<t_{2}<t_{3} \leq 1$,

$$
W_{2}\left(\mu_{t_{1}}, \mu_{t_{3}}\right)=W_{2}\left(\mu_{t_{1}}, \mu_{t_{2}}\right)+W_{2}\left(\mu_{t_{2}}, \mu_{t_{3}}\right) .
$$

Definition 2.1 Let $\left(\mu_{t}\right)_{t \in[0,1]}$ be a curve in $\mathbb{P}_{2}\left(\mathbb{R}^{d}\right)$. We say that it is absolutely continuous in $\mathcal{A C}_{2}$ if $W_{2}\left(\mu_{s}, \mu_{t}\right) \leq \int_{s}^{t} m(\tau) d \tau, \quad s<t, m \in L^{2}([0,1])$.

Example 2.1 Let $Z: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be a C^{1} vector field with bounded derivative. The differential equation

$$
\begin{equation*}
\frac{d X_{t}}{d t}=Z\left(X_{t}\right),\left.\quad X_{t}\right|_{t=0}=x \tag{2.16}
\end{equation*}
$$

defines a flow of diffeomorphism $U_{t}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ by $U_{t}(x)=X_{t}$ with $\left.X_{t}\right|_{t=0}=x$.
Let $\mu_{0} \in \mathbb{P}_{2}\left(\mathbb{R}^{d}\right)$ and consider $\mu_{t}=\left(U_{t}\right)_{*} \mu_{0}$. Then $\mu_{t} \in \mathbb{P}_{2}\left(\mathbb{R}^{d}\right)$. Let $s<t$. Define $\gamma_{s, t} \in$

$$
\begin{equation*}
\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \varphi(x, y) d \gamma_{s, t}(x, y)=\int_{\mathbb{R}^{d}} \varphi\left(U_{s}, U_{t}\right) d \mu_{0} \tag{2.17}
\end{equation*}
$$

Then $\gamma_{s, t} \in \mathscr{C}\left(\mu_{s}, \mu_{t}\right)$. We have

$$
\begin{align*}
W_{2}^{2}\left(\mu_{s}, \mu_{t}\right) & \leq \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|x-y|^{2} d \gamma_{s, t}(x, y) \\
& =\int_{\mathbb{R}^{d}}\left|U_{s}(x)-U_{t}(x)\right|^{2} d \mu_{0}(x) . \tag{2.18}
\end{align*}
$$

But $\left|U_{s}(x)-U_{t}(x)\right|=\int_{s}^{t}\left|Z\left(U_{\tau}\right)\right| d \tau$. Then

$$
\begin{align*}
W_{2}^{2}\left(\mu_{s}, \mu_{t}\right) & \leq\left\|\int_{s}^{t}\left|Z\left(U_{\tau}\right)\right| d \tau\right\|_{L^{2}\left(\mu_{0}\right)} \\
& \leq \int_{s}^{t}\left\|Z\left(U_{\tau}\right)\right\|_{L^{2}\left(\mu_{0}\right)} d \tau=\int_{s}^{t} m(\tau) d \tau . \tag{2.19}
\end{align*}
$$

Note that $|Z(x)-Z(y)| \leq c|x-y|$, implying that $|Z(x)| \leq c(1+|x|)$. Then since $U_{t}(x)=$ $x+\int_{0}^{t} Z\left(U_{s}(x)\right) d s$, we have

$$
\begin{equation*}
\left|U_{t}(x)\right| \leq|x|+c \int_{0}^{t}\left(1+\left|U_{s}(x)\right|\right) d s=|x|+c+c \int_{0}^{t}\left|U_{s}(x)\right| d s . \tag{2.20}
\end{equation*}
$$

Gronwall lemma implies that

$$
\begin{equation*}
\left|U_{t}(x)\right| \leq(|x|+c) e^{c t} \leq c_{1}(1+|x|) . \tag{2.21}
\end{equation*}
$$

Then $\left|U_{t}(x)\right|^{2} \leq c_{2}^{2}(1+|x|)^{2} \leq 2 c_{2}^{2}\left(1+|x|^{2}\right)$ and

$$
\begin{aligned}
\int_{0}^{1} m(\tau)^{2} d \tau & =\int_{0}^{1} \int_{\mathbb{R}^{d}}\left|Z\left(U_{\tau}\right)\right|^{2} d \mu_{0}(x) d \tau \\
& \leq 2 c_{2}^{2} \int_{\mathbb{R}^{d}}\left(1+|x|^{2}\right) d \mu_{0}(x)=2 c_{2}^{2}\left(1+m_{2}\left(\mu_{0}\right)\right)<\infty .
\end{aligned}
$$

Theorem 2.1 Let $\left(\mu_{t}\right)_{t \in[0,1]}$ be an absolutely continuous curve in $\mathcal{A C}_{2}$. Then there exists a Borel vector field $Z:(t, x) \mapsto Z_{t}(x) \in \mathbb{R}^{d}$ such that
(i) $Z_{t} \in L^{2}\left(\mathbb{R}^{d}, \mu_{t}\right),\left\|Z_{t}\right\|_{L^{2}\left(\mu_{t}\right)} \leq m(t)$ a.s. $t \in(0,1)$;
(ii) the continuity equation

$$
\frac{\partial \mu_{t}}{\partial t}+\nabla \cdot\left(Z_{t} \mu_{t}\right)=0
$$

holds in the sense that
(iii)

$$
\begin{equation*}
\int_{[0,1] \times \mathbb{R}^{d}}\left(\alpha^{\prime}(t) \varphi(x)+\alpha(t)<Z_{t}(x), \nabla \varphi(x)>\right) d \mu_{t} d t=0 \tag{2.22}
\end{equation*}
$$

for $\alpha \in C_{c}^{\infty}((0,1)), \varphi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$.
Proof. For $\varphi \in C_{b}(\mathbb{R})$, denote $\mu_{t}(\varphi)=\int_{\mathbb{R}^{d}} \varphi d \mu_{t}$. Then for $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$,

$$
\left|\mu_{t}(\varphi)-\mu_{s}(\varphi)\right|=\left|\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}(\varphi(y)-\varphi(x)) d \gamma_{s, t}\right| \leq\|\nabla \varphi\|_{\infty} \cdot W_{2}\left(\mu_{s}, \mu_{t}\right),
$$

where $\gamma_{s, t} \in \mathscr{C}_{0}\left(\mu_{s}, \mu_{t}\right)$. The function $t \mapsto \mu_{t}(\varphi)$ is absolutely continuous .
Let $s \in(0,1)$ be given and $\eta>0$ small enough. We consider $\gamma_{\eta} \in \mathscr{C}_{0}\left(\mu_{s}, \mu_{s+\eta}\right)$. For $x, y \in \mathbb{R}^{d}$, and $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$, we have

$$
\begin{equation*}
\varphi(y)-\varphi(x)=\int_{0}^{1}<(\nabla \varphi)(t y+(1-t) x), y-x>d t \tag{2.23}
\end{equation*}
$$

Set

$$
H(x, y)=\int_{0}^{1}(\nabla \varphi)(t y+(1-t) x) d t \in \mathbb{R}^{d}
$$

Then

$$
\begin{align*}
\int_{\mathbb{R}^{d}} \varphi d \mu_{s+\eta}-\int_{\mathbb{R}^{d}} \varphi d \mu_{s} & =\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}(\varphi(y)-\phi(x)) d \gamma_{\eta} \\
& =\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}<H(x, y), y-x>d \gamma_{\eta}(x, y) \tag{2.24}
\end{align*}
$$

Then

$$
\begin{equation*}
\frac{1}{\eta}\left|\int_{\mathbb{R}^{d}} \varphi d \mu_{s+\eta}-\int_{\mathbb{R}^{d}} \varphi d \mu_{s}\right| \leq \frac{1}{\eta} W_{2}\left(\mu_{s}, \mu_{s+\eta}\right)\left(\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|H(x, y)|^{2} d \gamma_{\eta}\right)^{2} \tag{2.25}
\end{equation*}
$$

Take a sequence η_{n} such that

$$
\lim _{n \rightarrow \infty} \frac{1}{\eta_{n}}\left|\int_{\mathbb{R}^{d}} \varphi d \mu_{s+\eta_{n}}-\int_{\mathbb{R}^{d}} \varphi d \mu_{s}\right|=\limsup _{\eta \downarrow 0} \frac{1}{\eta}\left|\int_{\mathbb{R}^{d}} \varphi d \mu_{s+\eta}-\int_{\mathbb{R}^{d}} \varphi d \mu_{s}\right| .
$$

Since $W_{2}\left(\mu_{s}, \mu_{s+\eta_{n}}\right) \rightarrow 0$, we have by theorem 1.3 that $\mu_{s+\eta_{n}}$ converges weakly to μ_{s} as $n \rightarrow \infty$. Therefore the family $\left\{\gamma_{\eta_{n}}, n \geq 1\right\}$ is tight. Up to a subsequence, $\gamma_{\eta_{n}} \rightarrow \hat{\gamma}$ weakly for some $\gamma \in \mathcal{C}\left(\mu_{s}, \mu_{s}\right)$. We have

$$
\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|x-y|^{2} d \hat{\gamma}(x, y) \leq \lim _{n \rightarrow \infty} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|x-y|^{2} d \gamma_{n}(x, y)=\lim _{n \rightarrow \infty} W_{2}^{2}\left(\mu_{s}, \mu_{s+\eta_{n}}\right)=0
$$

It follows that $\hat{\gamma}$ is supported by the diagonal

$$
D=\left\{(x, y) \in \mathbb{R}^{d} \times \mathbb{R}^{d}: x=y\right\}
$$

We have

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|H(x, y)|^{2} d \gamma_{\eta_{n}}=\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|H(x, y)|^{2} d \hat{\gamma}=\int_{\mathbb{R}^{d}}|\nabla \varphi(x)|^{2} d \mu_{s}(x)
$$

Therefore for a.s. $s \in(0,1)$

$$
\begin{equation*}
\limsup _{\eta \downarrow 0} \frac{1}{\eta}\left|\int_{\mathbb{R}^{d}} \varphi d \mu_{s+\eta}-\int_{\mathbb{R}^{d}} \varphi d \mu_{s}\right| \leq m(s)\|\nabla \varphi\|_{L^{2}\left(\mu_{s}\right)} \tag{2.26}
\end{equation*}
$$

since $\lim _{\eta \downarrow 0} \frac{1}{\eta} \int_{s}^{s+\eta} m(\tau) d \tau=m(s)$ for a.s. $s \in(0,1)$.
Now take $\delta>0$ small enough such that

$$
\operatorname{supp}(\alpha)+(-\delta, \delta) \subset(0,1)
$$

Then for $0<\eta<\delta$,

$$
\int_{0}^{1} \int_{\mathbb{R}^{d}} \alpha(s) \varphi(x) d \mu_{s+\eta}(x) d s=\int_{0}^{1} \int_{\mathbb{R}^{d}} \alpha(s-\eta) \varphi(x) d \mu_{s}(x) d s
$$

and

$$
\begin{align*}
I_{\eta} & :=\int_{0}^{1} \frac{1}{\eta}\left[\int_{\mathbb{R}^{d}} \alpha(s) \varphi(x) d \mu_{s}(x)-\int_{\mathbb{R}^{d}} \alpha(s) \varphi(x) d \mu_{s+\eta}(x)\right] d s \\
& =\int_{0}^{1} \int_{\mathbb{R}^{d}} \frac{\alpha(s)-\alpha(s-\eta)}{\eta} \varphi(x) d \mu_{s} d s \tag{2.27}
\end{align*}
$$

Then

$$
\lim _{\eta \downarrow 0} I_{\eta}=\int_{0}^{1} \int_{\mathbb{R}^{d}} \alpha^{\prime}(s) \varphi(x) d \mu_{s}(x) d s
$$

Now according to (2.26)

$$
\begin{align*}
\lim _{\eta \downarrow 0}\left|I_{\eta}\right| & \leq \int_{0}^{1} m(s)|\alpha(s)|\|\nabla \varphi\|_{L^{2}\left(\mu_{s}\right)} d s \\
& =\int_{0}^{1} m(s)\|\alpha(s) \nabla \varphi\|_{L^{2}\left(\mu_{s}\right)} d s \tag{2.28}
\end{align*}
$$

or

$$
\begin{equation*}
\left|\int_{0}^{1} \int_{\mathbb{R}^{d}} \alpha^{\prime}(s) \varphi(x) d \mu_{s}(x) d s\right| \leq \sqrt{\int_{0}^{1} m^{2}(s) d s}\left(\int_{0}^{1} \int_{\mathbb{R}^{d}}|\alpha(s) \nabla \varphi(x)|^{2} d \mu_{s}(x) d s\right)^{\frac{1}{2}} \tag{2.29}
\end{equation*}
$$

Let \mathbb{P}_{μ} be the probability measure on $[0,1] \times \mathbb{R}^{d}$ defined by

$$
\int_{[0,1] \times \mathbb{R}^{d}} \psi(s, x) d \mathbb{P}_{\mu}(s, x)=\int_{0}^{1} \int_{\mathbb{R}^{d}} \psi(s, x) d \mu_{s}(x) d s
$$

Introduce the vector space

$$
V=\left\{\sum_{i=1}^{n} \alpha_{i}(s) \nabla \varphi_{i}(x): \alpha_{i} \in C_{c}^{\infty}((0,1)), \varphi_{i} \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right), n=1,2, \cdots\right\}
$$

and \bar{V} the closure of V under $L^{2}\left(\mathbb{P}_{\mu}\right)$. Define for

$$
\begin{gathered}
A=\sum_{i=1}^{n} \alpha_{i}(s) \nabla \varphi_{i}(x) \in V \\
L(A)=-\sum_{i} \int_{0}^{1} \int_{\mathbb{R}^{d}} \alpha_{i}^{\prime} \varphi_{i}(x) d \mu_{s}(x) d s .
\end{gathered}
$$

Note that due to the linearity of (2.27), the inequality (2.29) holds for A :

$$
\begin{equation*}
|L(A)| \leq \sqrt{\int_{0}^{1} m(s) d s}\|A\|_{L^{2}\left(\mathbb{P}_{\mu}\right)} \tag{2.30}
\end{equation*}
$$

It follows that $L(A)$ is well defined, that is, if A admits another expression $A=\sum_{j=1}^{m} \beta_{j}(s) \nabla \tilde{\varphi}_{j}(x)$, then

$$
\sum_{i=1}^{n} \alpha_{i} \nabla \varphi_{i}-\sum_{j=1}^{m} \beta_{j}(s) \nabla \tilde{\varphi}_{j}(x)=0
$$

Therefore by (2.30)

$$
0=-\sum_{i} \int_{0}^{1} \int_{\mathbb{R}^{d}} \alpha_{i}^{\prime}(s) \varphi_{i}(x) d \mu_{s}(x) d s+\sum_{j} \int_{0}^{1} \int_{\mathbb{R}^{d}} \beta_{j}^{\prime}(s) \nabla \tilde{\varphi}_{j}(x) d \mu_{s}(x) d s
$$

$L(A)$ is independent of the expression. Again by (2.30), L is a bounded linear operator. Then there exists $Z \in \bar{V}$ such that

$$
L(A)=\int_{0}^{1} \int_{\mathbb{R}^{d}}<A(s, x), Z_{s}(x)>d \mu_{s} d s
$$

Taking $A=\alpha \nabla \varphi$, we have

$$
-\int_{0}^{1} \int_{\mathbb{R}^{d}} \alpha^{\prime}(s) \varphi d \mu_{s} d s=\int_{0}^{1} \int_{\mathbb{R}^{d}} \alpha(s)<\nabla \varphi(x), Z_{s}(x)>d \mu(s) d s
$$

so the continuity equation (2.22) holds.
We define

$$
\begin{align*}
T_{\mu} & =\text { closure in } L^{2}\left(\mathbb{R}^{d} \rightarrow \mathbb{R}^{d} ; \mu\right) \text { of }\left\{\nabla \varphi: \varphi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)\right\} \\
& =\text { called tangent space of } \mathbb{P}_{2}\left(\mathbb{R}^{d}\right) \text { at } \mu \tag{2.31}
\end{align*}
$$

Proposition 2.2 Let Z be given in Theorem 2.1. Then for a.s. $t \in(0,1), Z_{t} \in T_{\mu_{t}}$ and the solution to the continuity equation (2.16) satisfying this property is unique.

Proof. Let $A_{n} \in V$ such that $\left\|z-A_{n}\right\|_{L^{2}\left(\mathbb{P}_{\mu}\right)} \rightarrow 0$, or

$$
\lim _{n \rightarrow \infty} \int_{0}^{1}\left(\int_{\mathbb{R}^{d}}\left|Z_{t}(x)-A_{n}(t, x)\right|^{2} d \mu_{t}(x)\right) d t=0
$$

Up to a subsequence, for a.s. $t \in(0,1)$

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{d}}\left|Z_{t}(x)-A_{n}(t, x)\right|^{2} d \mu_{t}(x)=0
$$

This means that $Z_{t} \in T_{\mu_{t}}$. Now let \hat{Z} be another solution to the continuity equation such that $\hat{Z}_{t} \in T_{\mu_{t}}$ for a.s. $t \in(0,1)$. Then we have

$$
\int_{0}^{1} \alpha(t)\left(\int_{\mathbb{R}^{d}}<Z_{t}(x)-\hat{Z}_{t}(x), \nabla \varphi>d \mu_{t}\right) d t=0, \forall \varphi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right), \alpha \in C_{c}^{\infty}((0,1))
$$

It follows that there exists a full measure subset $L_{\varphi} \in(0,1)$ such that

$$
\begin{equation*}
\int_{\mathbb{R}^{d}}<Z_{t}(x)-\hat{Z}_{t}(x), \nabla \varphi(x)>d \mu_{t}=0 \text { for } t \in L_{\varphi} \tag{2.32}
\end{equation*}
$$

Let D be a dense countable subset of $C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$. Set $L=\bigcap_{\varphi \in D} L_{\varphi}$. Pick $\left(\varphi_{n}\right) \in D$ such that

$$
\left\|\nabla \varphi_{n}-\nabla \varphi\right\|_{\infty} \rightarrow 0
$$

as $n \rightarrow \infty$. We have for $t \in L$, and $n \geq 1$,

$$
\int_{\mathbb{R}^{d}}<Z_{t}(x)-\hat{Z}_{t}(x), \nabla \varphi_{n}(x)>d \mu_{t}=0
$$

Letting $n \uparrow \infty$ gives

$$
\int_{\mathbb{R}^{d}}<Z_{t}(x)-\hat{Z}_{t}(x), \nabla \varphi(x)>d \mu_{t}(x)=0
$$

Therefore, $Z_{t}=\hat{Z}_{t} \mu_{t}$-a.s.

Definition 2.2 We say that Z_{t} is the derivative process of μ_{t} in the sense of Otto-AmbrosioSavare and denote

$$
Z_{t}=\frac{d^{o} \mu_{t}}{d t} \in T_{\mu_{t}}
$$

Theorem 2.2 The Wasserstein distance is a Riemannian distance:

Proof. Let μ_{0} and μ_{1} be given. Consider the geodesic curve

$$
\mu_{t}=\left((1-t) \pi_{1}+t \pi_{2}\right)_{*} \gamma, \quad \gamma \in \mathscr{C}_{0}\left(\mu_{0}, \mu_{1}\right)
$$

Then by Proposition $2.1, \mu_{t}$ is in $\mathcal{A C}_{2}$ with $m(s)=W_{2}\left(\mu_{0}, \mu_{1}\right)$. Now by the proof of Theorem 2.1

$$
\|Z\|_{L^{2}\left(\mathbb{P}_{\mu}\right)} \leq W_{2}\left(\mu_{0}, \mu_{1}\right)
$$

which implies that

$$
\inf \left\{\int_{0}^{1}\left\|\frac{d^{o} \mu_{t}}{d t}\right\|_{T_{\mu_{t}}}^{2} d t ; \mu_{t} \in \mathcal{A \mathcal { C } _ { 2 }} \text { connects } \mu_{0} \text { and } \mu_{1}\right\} \leq W_{2}^{2}\left(\mu_{0}, \mu_{1}\right)
$$

The proof of the converse part is more difficult. We need some preparation. First, we recall an elementary result in ODE.

Proposition 2.3 Let Z_{t} be a Borel vector field satisfying the condition

$$
\begin{equation*}
\left.\int_{0}^{T}\left(\sup _{x \in B}\left|Z_{t}(x)\right|+\operatorname{Lip}\left(Z_{t}, B\right)\right) d t\right)<+\infty \tag{2.33}
\end{equation*}
$$

where $\operatorname{Lip}\left(Z_{t}, B\right)$ denotes the local Lipschitz constant in the ball B. Then for $x \in \mathbb{R}^{d}$ and $s \in[0, T]$, the ODE

$$
\begin{equation*}
\frac{d X_{t}(x, s)}{d t}=Z_{t}\left(X_{t}(x, s)\right), \quad X_{s}(x, s)=x \tag{2.34}
\end{equation*}
$$

admits a unique solution in an interval $I(x, s) \supset(s-\delta, s+\delta)$. Furthermore, if

$$
\sup _{t \in I(x, s)}\left|X_{t}(x, s)\right|<+\infty
$$

then $I(x, s)=[0, T]$. Finally, if Z satisfies the global condition

$$
\begin{equation*}
S:=\int_{0}^{1}\left(\left\|Z_{t}\right\|_{L^{\infty}}+\operatorname{Lip}\left(Z_{t}, \mathbb{R}^{d}\right)\right) d t<+\infty \tag{2.35}
\end{equation*}
$$

then the flow X satisfies

$$
\begin{equation*}
\left.\int_{0}^{1}\left|\partial_{t} X_{t}(x, s)\right| d t \leq S, \sup _{s, t \in[0,1]} \operatorname{Lip}\left(X_{t}(\cdot, s) ; \mathbb{R}^{d}\right)\right) \leq e^{S} \tag{2.36}
\end{equation*}
$$

Proof. Let's check the second term of (2.36). We have, for $x, y \in \mathbb{R}^{d}$,

$$
\left|X_{t}(x, s)-X_{t}(y, s)\right| \leq|x-y|+\int_{s}^{t} \operatorname{Lip}\left(Z_{\tau}, \mathbb{R}^{d}\right)\left|X_{\tau}(x, s)-X_{\tau}(y, s)\right| d \tau
$$

The Gronwall lemma gives

$$
\left|X_{t}(x, s)-X_{t}(y, s)\right| \leq|x-y| \cdot e^{\int_{s}^{t} \operatorname{Lip}\left(Z_{\tau}, \mathbb{R}^{d}\right) d \tau} \leq|x-y| e^{S} .
$$

Note: This proposition deals with the case where $t \mapsto Z_{t}$ is not continuous. If Z_{t} satisfies the global condition (2.36), then for any $t \in I(x, s)$,

$$
\begin{aligned}
\left|X_{t}(x, s)\right| & \leq|x|+\int_{s}^{t}\left|Z_{\tau}\left(X_{\tau}(x, s)\right)\right| d \tau \\
& \leq|x|+\int_{s}^{t}\left\|\left|Z_{\tau} \|_{L^{\infty}} d \tau \leq|x|+S<+\infty\right.\right.
\end{aligned}
$$

therefore the life time $\tau_{x, s}=+\infty$ on $I(x, s)=[0, T]$.
Proposition 2.4 Let $\psi \in C_{b}^{1}\left((0,1) \times \mathbb{R}^{d}\right)$ and $f \in C_{b}^{1}\left(\mathbb{R}^{d}\right)$. Then there exists a solution u_{t} to

$$
\begin{equation*}
\partial_{t} u+\left\langle Z_{t}, \nabla u_{t}\right\rangle=\psi \text { on }(0,1) \times \mathbb{R}^{d} \tag{2.37}
\end{equation*}
$$

with $\left.u_{t}\right|_{t=1}=f$.
Proof. For $0<t<1$, set

$$
\varphi(t, x)=f\left(X_{1}(x, t)\right)-\int_{t}^{1} \psi\left(s, X_{s}(x, t)\right) d s
$$

Note that $t \mapsto \varphi(t, x) \notin C^{1}\left(\mathbb{R}^{d}\right)$, but absolutely continuous and $x \mapsto \varphi(t, x)$ is Lipschitz. Since $X_{s}(x, t)$ enjoys the flow property:

$$
X_{t}\left(X_{s}(x, 0), s\right)=X_{t}(x, 0), \quad 0<s<t
$$

then

$$
\varphi\left(t, X_{t}(x, 0)\right)=f\left(X_{1}(x, 0)\right)-\int_{t}^{1} \psi\left(s, X_{s}(x, 0) d s\right.
$$

Taking the derivative with respect to t in the two sides, we get

$$
\left(\partial_{t} \varphi+\left\langle\nabla \varphi, Z_{t}\right\rangle\right)\left(t, X_{t}(x, 0)\right)=\psi\left(t, X_{t}(x, 0)\right)
$$

but for $t \in(0,1)$ given, $x \mapsto X_{t}(x, 0)$ is a global homeomorphism of \mathbb{R}^{d}, therefore φ is a solution to (2.37).
Under the condition (2.33) and assume that $\tau_{x} \in[0, T]$ for all $x \in \mathbb{R}^{d}$. Then for any $\mu_{0} \in \mathbb{P}\left(\mathbb{R}^{d}\right)$, $\mu_{t}=\left(X_{t}\right)_{*} \mu_{0}$ satisfy the continuity equation $\frac{d \mu_{t}}{d t}+\nabla \cdot\left(Z_{t} \mu_{t}\right)=0$.
In fact, for $\varphi \in C_{c}\left(\mathbb{R}^{d}\right), t \mapsto \varphi\left(X_{t}\right)$ is absolutely continuous since for a.e. t,

$$
\frac{d}{d t} \varphi\left(X_{t}(x)\right)=\left\langle\nabla \varphi\left(X_{t}(x)\right), Z_{t}\left(X_{t}(x)\right)\right\rangle
$$

and

$$
\int_{0}^{1}\left|\left\langle\nabla \varphi\left(X_{t}(x)\right), Z_{t}\left(X_{t}(x)\right)\right\rangle\right| d t \leq\|\nabla \varphi\|_{\infty} \cdot \int_{0}^{T} \sup _{B}\left|Z_{t}\right| d t
$$

where $B=\operatorname{supp}(\varphi)$. Therefore

$$
\begin{aligned}
\frac{d}{d t} \int_{\mathbb{R}^{d}} \varphi d \mu_{t} & =\frac{d}{d t} \int_{\mathbb{R}^{d}} \varphi\left(X_{t}(x)\right) d \mu_{0}(x) \\
& =\int_{\mathbb{R}^{d}}\left\langle\nabla \varphi\left(X_{t}(x)\right), Z_{t}\left(X_{t}(x)\right)\right\rangle d \mu_{0}(x)=\int_{\mathbb{R}^{d}}\left\langle\nabla \varphi, Z_{t}\right\rangle d \mu_{t}
\end{aligned}
$$

which implies that μ_{t} satisfies the continuity equation.

Theorem 2.3 (Representation formula for the continuity equation). Let $t \mapsto \mu_{t} \in \mathbb{P}\left(\mathbb{R}^{d}\right)$ be weakly continuous. Suppose that

$$
\begin{equation*}
\int_{0}^{1}\left(\sup _{B}\left|Z_{t}\right|+\operatorname{Lip}\left(Z_{t}, B\right)\right) d t<\infty \quad \text { and } \int_{0}^{1} \int_{\mathbb{R}^{d}}\left|Z_{t}\right| d \mu_{t} d t<+\infty \tag{2.38}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d \mu_{t}}{d t}+\nabla \cdot\left(Z_{t} \mu_{t}\right)=0 \text { on }(0,1) \times \mathbb{R}^{d} \tag{2.39}
\end{equation*}
$$

Then for μ_{0}-a.s. $x \in \mathbb{R}^{d}, X_{t}(x, 0)$ does not explode for $t \in[0,1]$ and $\mu_{t}=\left(X_{t}\right)_{*} \mu_{0}$.
Proof. See Ambrosio, Gigli and Savaré's book [1], Proposition 8.18 p. 175.
Proof of Theorem 2.2 First we regularize $\left(\mu_{t}\right)$ and $\left(Z_{t}\right)$. Consider the Gauss kernel

$$
\rho_{\varepsilon}(x)=(2 \pi \varepsilon)^{-\frac{d}{2}} e^{-\frac{|x|^{2}}{2 \varepsilon}}
$$

and set

$$
\mu_{t}^{\varepsilon}=\mu_{t} * \rho_{\varepsilon}, E_{t}^{\varepsilon}=\left(Z_{t} \mu_{t}\right) * \rho_{\varepsilon}, Z_{t}^{\varepsilon}=\frac{E_{t}^{\varepsilon}}{\mu_{t}^{\varepsilon}}
$$

where

$$
\begin{gathered}
\mu_{t}^{\varepsilon}=\int_{\mathbb{R}^{d}} \rho_{\varepsilon}(x-y) d \mu_{t}(y) \in C_{b}^{\infty}\left(\mathbb{R}^{d}\right) \\
E_{t}^{\varepsilon}=\int_{\mathbb{R}^{d}} \rho_{\varepsilon}(x-y) Z_{t}(y) d \mu_{t}(y) \in C_{b}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)
\end{gathered}
$$

By the continuity of $(t, x) \mapsto \mu_{t}^{\varepsilon}(x)$ (which is left to the reader as an exercise),

$$
\inf _{|x| \in \mathbb{R}, t \in[0,1]} \mu_{t}^{\varepsilon}(x)>0
$$

Therefore Z_{t}^{ε} satisfies the first condition in (2.38). By the following Lemma 2.1

$$
\begin{equation*}
\int_{0}^{1} \int_{\mathbb{R}^{d}}\left|Z_{t}^{\varepsilon}\right|^{2} d \mu_{t}^{\varepsilon} d t \leq \int_{0}^{1} \int_{\mathbb{R}^{d}}\left|Z_{t}\right|^{2} d \mu_{t} d t<+\infty \tag{2.40}
\end{equation*}
$$

To apply Theorem 2.3, it is sufficient to check

$$
\frac{d \mu_{t}^{\varepsilon}}{d t}+\nabla \cdot\left(Z_{t}^{\varepsilon} \mu_{t}^{\varepsilon}\right)=0
$$

Let $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$,

$$
\begin{aligned}
\int_{\mathbb{R}^{d}}\left\langle\nabla \varphi, Z_{t}^{\varepsilon}\right\rangle d \mu_{t}^{\varepsilon} & =\int_{\mathbb{R}^{d}}\left\langle\nabla \varphi, E_{t}^{\varepsilon}\right\rangle d x \\
& =\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}\left\langle\nabla \varphi(x), Z_{t}(y)\right\rangle \rho_{\varepsilon}(x-y) d \mu_{t}(y) d x
\end{aligned}
$$

Doing the change of variable, $z=x-y$, we have

$$
\begin{aligned}
\int_{\mathbb{R}^{d}} \nabla \varphi(x) \rho_{\varepsilon}(x-y) d x & =\int_{\mathbb{R}^{d}} \nabla \varphi(y+z) \rho_{\varepsilon}(z) d z \\
& =\int_{\mathbb{R}^{d}} \nabla \varphi(y-z) \rho_{\varepsilon}(z) d z=\nabla\left(\varphi * \rho_{\varepsilon}\right)(y)
\end{aligned}
$$

Therefore

$$
\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}\left\langle\nabla \varphi(x), Z_{t}(y)\right\rangle \rho_{\varepsilon}(x-y) d \mu_{t}(y) d x=\int_{\mathbb{R}^{d}}\left\langle\nabla\left(\varphi * \rho_{\varepsilon}\right), Z_{t}\right\rangle d \mu_{t}(y)
$$

Hence

$$
\begin{aligned}
& \int_{0}^{1} \int_{\mathbb{R}^{d}}\left(-\alpha^{\prime}(t) \varphi(x)+\alpha(t)\left\langle Z_{t}^{\varepsilon}, \nabla \varphi\right\rangle\right) d \mu_{t}^{\varepsilon} d t \\
= & \int_{0}^{1} \int_{\mathbb{R}^{d}}\left(-\alpha^{\prime}(t) \varphi * \rho_{\varepsilon}+\alpha(t)\left\langle\nabla\left(\varphi * \rho_{\varepsilon}\right), Z_{t}\right\rangle\right) d \mu_{t}(y) d t=0,
\end{aligned}
$$

since $\int \varphi(x) d \mu_{t}^{\varepsilon}(x)=\int\left(\varphi * \rho_{\varepsilon}\right)(y) d \mu_{t}(y)$ and $\varphi * \rho_{\varepsilon} \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$.
By representation Theorem 2.3, there exists a flow of measurable maps $X_{t}^{\varepsilon}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ such that

$$
\mu_{t}^{\varepsilon}=\left(X_{t}^{\varepsilon}\right)_{*} \mu_{0}^{\varepsilon} .
$$

Define $\eta^{\varepsilon} \in \mathscr{C}\left(\mu_{0}^{\varepsilon}, \mu_{1}^{\varepsilon}\right)$ by

$$
\int \psi(x, y) d \eta^{\varepsilon}(x, y)=\int_{\mathbb{R}^{d}} \psi\left(x, X_{1}^{\varepsilon}(x)\right) d \mu_{0}^{\varepsilon}(x) .
$$

Then

$$
\begin{aligned}
W_{2}^{2}\left(\mu_{0}^{\varepsilon}, \mu_{1}^{\varepsilon}\right) & \leq \int_{\mathbb{R}^{d}}\left|X_{1}^{\varepsilon}(x)-x\right|^{2} d \mu_{0}^{\varepsilon}(x) \\
& =\int_{\mathbb{R}^{d}}\left|\int_{0}^{1} Z_{s}^{\varepsilon}\left(X_{s}^{\varepsilon}(x)\right)\right|^{2} d \mu_{0}^{\varepsilon}(x) \\
& \leq \int_{0}^{1} \int_{\mathbb{R}^{d}}\left|Z_{s}^{\varepsilon}\left(X_{s}^{\varepsilon}(x)\right)\right|^{2} d \mu_{0}^{\varepsilon}(x) d s \\
& =\int_{0}^{1} \int_{\mathbb{R}^{d}}\left|Z_{s}^{\varepsilon}\right|^{2} d \mu_{s}^{\varepsilon}(x) d s \leq \int_{0}^{1} \int_{\mathbb{R}^{d}}\left|Z_{t}\right|^{2} d \mu_{t} d t
\end{aligned}
$$

where the last inequality is deduced by (2.40).
The last part is to check that μ_{t}^{ε} converges to μ_{t} weakly: for $\varphi \in C_{b}\left(\mathbb{R}^{d}\right)$,

$$
\begin{aligned}
\int_{\mathbb{R}^{d}} \varphi d \mu_{t}^{\varepsilon} & =\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \varphi(x) \rho_{\varepsilon}(x-y) d \mu_{t}(y) d x \\
& =\int_{\mathbb{R}^{d}}\left[\int_{\mathbb{R}^{d}} \varphi(x) \rho_{\varepsilon}(x-y) d x\right] d \mu_{t}(y) \rightarrow \int_{\mathbb{R}^{d}} \varphi(y) d \mu_{t}(y) \quad \varepsilon \rightarrow 0
\end{aligned}
$$

Now letting $\varepsilon \downarrow 0$ in

$$
W_{2}^{2}\left(\mu_{0}^{\varepsilon}, \mu_{1}^{\varepsilon}\right) \leq \int_{0}^{1} \int_{\mathbb{R}^{d}}\left|Z_{t}\right|^{2} d \mu_{t} d t
$$

we get

$$
W_{2}^{2}\left(\mu_{0}, \mu_{1}\right) \leq \int_{0}^{1} \int_{\mathbb{R}^{d}}\left|Z_{t}\right|^{2} d \mu_{t} d t
$$

in fact, $(\mu, \nu) \mapsto W_{2}^{2}(\mu, \nu)$ is semi-lower continuous.

Lemma 2.1 We have

$$
\int_{0}^{1} \int_{\mathbb{R}^{d}}\left|Z_{t}^{\varepsilon}\right|^{2} d \mu_{t}^{\varepsilon} d t \leq \int_{0}^{1} \int_{\mathbb{R}^{d}}\left|Z_{t}\right|^{2} d \mu_{t} d t<+\infty
$$

Proof.

$$
Z_{t}^{\varepsilon}(x)=\int_{\mathbb{R}^{d}} Z_{t}(y) \frac{\rho_{\varepsilon}(x-y) d \mu_{t}(y)}{\mu_{t}^{\varepsilon}(x)}
$$

By Jensen inequality

$$
\left|Z_{t}^{\varepsilon}(x)\right|^{2} \leq \int_{\mathbb{R}^{d}}\left|Z_{t}(y)\right|^{2} \frac{\rho_{\varepsilon}(x-y) d \mu_{t}(y)}{\mu_{t}^{\varepsilon}(x)}
$$

Then

$$
\begin{aligned}
\int_{\mathbb{R}^{d}}\left|Z_{t}^{\varepsilon}(x)\right|^{2} \mu_{t}^{\varepsilon}(x) d x & \leq \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}\left|Z_{t}^{\varepsilon}(y)\right|^{2} \rho_{\varepsilon}(x-y) d \mu_{t}(y) d x \\
& =\int_{\mathbb{R}^{d}}\left|Z_{t}(y)\right|^{2} d \mu_{t}(y) \int_{\mathbb{R}^{d}} \rho_{\varepsilon}(x-y) d x=\int_{\mathbb{R}^{d}}\left|Z_{t}(y)\right|^{2} d \mu_{t}(y)
\end{aligned}
$$

Integrating with respect to t, we get the result.
For further development, we need the following result due to Brenier and McCann.
Theorem 2.4 (Monge optimal map) Let $\mu_{1}, \mu_{2} \in \mathbb{P}_{2}\left(\mathbb{R}^{d}\right)$ such that the density with respect to the Lebesgue measure λ_{d} exists. Then there exists a unique invertible measurable map $I+T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ such that

$$
\mu_{2}=(I+T)_{*} \mu_{1} \quad \text { and } \quad W_{2}^{2}\left(\mu_{1}, \mu_{2}\right)=\int_{\mathbb{R}^{d}}|T(x)|^{2} d \mu_{1}(x)
$$

As a byproduct of the proof of Theorem 2.4, in this case,

$$
\mathscr{C}_{0}\left(\mu_{1}, \mu_{2}\right)=\left\{(I \times(I+T))_{*} \mu_{1}\right\}
$$

In what follows, we will denote

$$
\mathbb{P}_{2}^{a}\left(\mathbb{R}^{d}\right)=\left\{\mu \in \mathbb{P}_{2}\left(\mathbb{R}^{d}\right): \frac{d \mu}{d \lambda_{d}} \text { exists }\right\}
$$

Proposition 2.5 Let $\mu_{1}, \mu_{2} \in \mathbb{P}_{2}^{a}\left(\mathbb{R}^{d}\right)$ and T given in Theorem 2.4. Then

$$
w_{t}:=T\left(\tau_{t}^{-1}\right) \in T_{\nu_{t}} \text { for a.s.t } \in(0,1)
$$

where

$$
\tau_{t}=I+t T \text { and } \nu_{t}=\left(\tau_{t}\right)_{*} \mu_{1} .
$$

Proof. We have

$$
W_{2}^{2}\left(\mu_{1}, \nu_{t}\right) \leq \int_{\mathbb{R}^{d}}\left|x-\tau_{t}(x)\right|^{2} d \mu_{1}=t^{2} \int_{\mathbb{R}^{d}}|T x|^{2} d \mu_{1}(x)
$$

or

$$
W_{2}\left(\mu_{1}, \nu_{t}\right) \leq t W_{2}\left(\mu_{1}, \mu_{2}\right) .
$$

$$
W_{2}^{2}\left(\mu_{2}, \nu_{t}\right) \leq \int_{\mathbb{R}^{d}}\left|x-\tau_{t} \circ(T+I)^{-1}\right|^{2} d \mu_{2}(x)
$$

$$
=\int_{\mathbb{R}^{d}}\left|x+T(x)-\tau_{t}(x)\right|^{2} d \mu_{1}(x)
$$

$$
=(1-t)^{2} \int_{\mathbb{R}^{d}}|T(x)|^{2} d \mu_{1}(x)
$$

or

$$
W_{2}\left(\mu_{t}, \nu_{t}\right) \leq(1-t) W_{2}\left(\mu_{1}, \mu_{2}\right) .
$$

Therefore

$$
W_{2}\left(\mu_{1}, \nu_{t}\right)=t W_{2}\left(\mu_{1}, \mu_{2}\right)
$$

and τ_{t} is the Monge optimal map. By convexity of the entropy functional (see the next section), $\nu_{t} \in \mathbb{P}_{2}^{a}\left(\mathbb{R}^{d}\right)$ and τ_{t}^{-1} exists. Now for $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$,

$$
\begin{aligned}
\frac{d}{d t} \int_{\mathbb{R}^{d}} \varphi d \nu_{t} & =\frac{d}{d t} \int_{\mathbb{R}^{d}} \varphi(x+t T(x)) d \mu_{1}(x) \\
& =\int_{\mathbb{R}^{d}}\langle\nabla \varphi(x+t T(x)), T(x)\rangle d \mu_{1}(x) \\
& =\int_{\mathbb{R}^{d}}\left\langle\nabla \varphi, T\left(\tau_{t}^{-1}(x)\right)\right\rangle d \nu_{t}
\end{aligned}
$$

Let $Z_{t}=\frac{d^{o} \nu_{t}}{d t}$, then there exists a full measure set $\Omega_{\varphi} \subset(0,1)$ such that

$$
\int_{\mathbb{R}^{d}}\left\langle\nabla \varphi, W_{t}-Z_{t}\right\rangle d \nu_{t}=0
$$

Using the separability of $C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$, there exist a full measure set $\Omega \subset(0,1)$ such that

$$
\int_{\mathbb{R}^{d}}\left\langle\nabla \varphi, W_{t}-Z_{t}\right\rangle d \nu_{t}=0, \forall \varphi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)
$$

Then $\exists \eta_{t} \in L^{2}\left(\mathbb{R}^{d}, \mathbb{R}^{d}, \nu_{t}\right)$ orthogonal to $T_{\nu_{t}}$ such that

$$
W_{t}=\eta_{t}+Z_{t}
$$

But

$$
\begin{aligned}
& \int_{\mathbb{R}^{d}}|T(x)|^{2} d \mu_{1}=\int_{\mathbb{R}^{d}}\left|W_{t}\right|^{2} d \nu_{t}=\int_{\mathbb{R}^{d}}\left|Z_{t}\right|^{2} d \nu_{t}+\int_{\mathbb{R}^{d}}\left|\eta_{t}\right|^{2} d \nu_{t} \\
& \quad \Rightarrow \quad W_{2}^{2}\left(\mu_{1}, \mu_{2}\right)=\int_{0}^{1} \int_{\mathbb{R}^{d}}\left|Z_{t}\right|^{2} d \nu_{t} d t+\int_{0}^{1} \int_{\mathbb{R}^{d}}\left|\eta_{t}\right|^{2} d \nu_{t} d t \\
& \quad \Rightarrow \quad \eta=0
\end{aligned}
$$

3 Convex functionals on $\mathbb{P}_{2}\left(\mathbb{R}^{d}\right)$

The notion of convex functionals in Wasserstein spaces was first studied by McCann: They have deep applications in Functional inequalities, in gradient flows and in non-linear PDE.

Definition 3.1 (λ convexity along geodesics) Let $\Phi: \mathbb{P}_{2}\left(\mathbb{R}^{d}\right) \mapsto(-\infty, \infty]$ be a semi-lower continuous functional and $\lambda \in \mathbb{R}$ be given. We say that Φ is λ-convex along geodesics if for any $\mu_{1}, \mu_{2} \in \operatorname{Dom}(\Phi), \exists \gamma \in \mathscr{C}_{0}\left(\mu_{1}, \mu_{2}\right)$ such that

$$
\begin{equation*}
\Phi\left(\mu_{t}^{1 \rightarrow 2}\right) \leq(1-t) \Phi\left(\mu_{1}\right)+t \Phi\left(\mu_{2}\right)-\frac{\lambda}{2} t(1-t) W_{2}^{2}\left(\mu_{1}, \mu_{2}\right) \tag{3.41}
\end{equation*}
$$

where

$$
\begin{equation*}
\mu_{t}^{1 \rightarrow 2}=\left((1-t) \pi_{1}+t \pi_{2}\right)_{*} \gamma \tag{3.42}
\end{equation*}
$$

In what follows, we will give an interesting example of geodesically convex functionals.
Example 3.1 Let $F:[0, \infty) \rightarrow(-\infty, \infty]$ be a proper, lower semi-continuous convex function such that $F(0)=0, \liminf _{s \downarrow 0} \frac{F(s)}{s^{\alpha}}>\infty$ for some $\alpha>\frac{d}{d+2}$. For example, (i) $F(s)=s \log s$, (ii) $F(s)=\frac{s^{m}}{m-1}, \quad m>1$ satisfy the above conditions. For such a function F, we define the functional $\mathcal{F}: \mathbb{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow(-\infty, \infty]$ by

$$
\mathcal{F}(\mu)=\left\{\begin{array}{cl}
\int_{\mathbb{R}^{d}} F(\rho(x)) d \lambda_{d}(x) & \text { if } \rho=\frac{d \mu}{d \lambda_{d}} \\
\infty & \text { otherwise }
\end{array}\right.
$$

Proposition 3.1 If the map $s \mapsto s^{d} F\left(s^{-d}\right)$ is convex and decreasing in $(0, \infty)$, then the functional \mathcal{F} is convex along geodesics: $\forall \mu_{1}, \mu_{2} \in \mathbb{P}_{2}\left(\mathbb{R}^{d}\right), \exists \gamma \in \mathscr{C}_{0}\left(\mu_{1}, \mu_{2}\right)$ such that

$$
\mathcal{F}\left(\mu_{t}^{1 \rightarrow 2}\right) \leq(1-t) \mathcal{F}\left(\mu_{1}\right)+t \mathcal{F}\left(\mu_{2}\right)
$$

where $\mu_{t}^{1 \rightarrow 2}=\left((1-t) \pi_{1}+t \pi_{2}\right)_{*} \gamma$.

Proof. The proof of this result uses sophisticated properties of Monge optimal transport maps, we refer the reader to [1], p.212.

Remark 3.1 For $F(s)=s \log s, s^{d} F\left(s^{-d}\right)=-d \log s$ is convex and decreasing. For $F(s)=\frac{s^{m}}{m-1}, s^{d} F\left(s^{-d}\right)=\frac{s^{(1-m) d}}{m-1}$ it is the same as above.
Remark 3.2 The two examples given above are among the most important in $\mathbb{P}_{2}\left(\mathbb{R}^{d}\right)$: the gradient flow associated to $s \mapsto s \log s$ corresponds to the heat equation, while to $\frac{s^{m}}{m-1}$ the Porous medium equation.

Remark on the convexity of $\mu \mapsto \frac{1}{2} W_{2}^{2}\left(\mu, \mu_{0}\right)$
Let's begin with the function $x \mapsto \frac{1}{2} x^{2}$ on \mathbb{R}. We have

$$
((1-t) x+t y)^{2}=(1-t) x^{2}+t y^{2}-t(1-t)(x-y)^{2}
$$

or

$$
\frac{1}{2}((1-t) x+t y)^{2}=\frac{1}{2}(1-t) x^{2}+\frac{1}{2} t y^{2}-\frac{1}{2} t(1-t)(x-y)^{2}
$$

which is finer than the convex property of $x \mapsto \frac{1}{2} x^{2}$ In higher dimension, \mathbb{R}^{d}, the Hessian of $x \mapsto \frac{1}{2}|x|^{2}$ is Id, so we have that

$$
\frac{1}{2}|(1-t) x+t y|^{2} \leq \frac{1}{2}(1-t)|x|^{2}+\frac{1}{2} t|y|^{2}-\frac{1}{2} t(1-t)|x-y|^{2} .
$$

However for the Wasserstein distance, it has been noticed that $\mu \mapsto \frac{1}{2} W_{2}^{2}\left(\mu, \mu_{0}\right)$ is not 1-convex along geodesics(see [1], p.204), but 1-convex along an interpolating curve belonging to a larger class of curves: generalized geodesics.

Definition 3.2 A generalized geodesic joining μ_{2} to μ_{3} (with base μ_{1}) is a curve

$$
\mu_{t}^{2 \rightarrow 3}:=\left(\pi_{t}^{2 \rightarrow 3}\right) * \lambda
$$

where $\lambda \in \mathbb{P}\left(\mathbb{R}^{d} \times \mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ such that $\left(\pi_{1}, \pi_{2}\right)_{*} \lambda \in \mathscr{C}_{0}\left(\mu_{1}, \mu_{2}\right),\left(\pi_{1}, \pi_{3}\right)_{*} \lambda \in \mathscr{C}_{0}\left(\mu_{1}, \mu_{3}\right)$ and $\pi_{t}^{2 \rightarrow 3}=(1-t) \pi_{2}+t \pi_{3}$.
Note that $\{$ geodesics $\} \subset\{$ generalized geodesics $\}$. In fact, take $\mu_{1}=\mu_{2}$ and $\gamma \in \mathscr{C}_{0}\left(\mu_{2}, \mu_{3}\right)$ and $\gamma_{11} \in \mathscr{C}_{0}\left(\mu_{2}, \mu_{2}\right)$. Then for $\hat{\mu} \in \Gamma\left(\mu_{1}, \mu_{2}, \mu_{2}\right)$ such that $\left(\pi_{1}, \pi_{2}\right)_{*} \hat{\mu}=\gamma_{11}$ and $\left(\pi_{2}, \pi_{3}\right)_{*} \hat{\mu}=\gamma$, we have

$$
\left(\pi_{t}^{2 \rightarrow 3}\right)_{*} \hat{\mu}=\left(\pi_{t}^{2 \rightarrow 3}\right)_{*} \gamma .
$$

Convexity along generalized geodesics

We say that $\Phi: \mathbb{P}_{2}\left(\mathbb{R}^{d}\right) \mapsto(-\infty, \infty]$ is λ-convex along generalized geodesics if for any $\mu_{1}, \mu_{2}, \mu_{3} \in$ $\operatorname{Dom}(\Phi)$, there exists a generalized geodesic $\mu_{t}^{2 \rightarrow 3}$ connecting μ_{2} and μ_{3} such that for all $t \in[0,1]$

$$
\begin{equation*}
\Phi\left(\mu_{t}^{2 \rightarrow 3}\right) \leq(1-t) \Phi\left(\mu_{2}\right)+t \Phi\left(\mu_{3}\right)-\frac{\lambda t(1-t)}{2} W_{2}^{2}\left(\mu_{2}, \mu_{3}\right) . \tag{3.43}
\end{equation*}
$$

If $\lambda>0$, a direct result of (3.43) is the uniqueness of the minimum of Φ over any "generalized convex" subset $C \subset \operatorname{Dom}(\Phi)$.

Proposition 3.2 We have that

$$
W_{2}^{2}\left(\mu_{1}, \mu_{t}^{2 \rightarrow 3}\right) \leq(1-t) W_{2}^{2}\left(\mu_{1}, \mu_{2}\right)+t W_{2}^{2}\left(\mu_{1}, \mu_{3}\right)-t(1-t) W_{2}^{2}\left(\mu_{2}, \mu_{3}\right) .
$$

Proof. Define $\mu_{t}^{1,2 \rightarrow 3}=\left((1-t) \pi_{12}+t \pi_{13}\right)_{*} \hat{\mu} \in \mathcal{C}\left(\mu_{1}, \mu_{t}^{2 \rightarrow 3}\right)$, where $\pi_{12}=\left(\pi_{1}, \pi_{2}\right), \pi_{13}=\left(\pi_{1}, \pi_{3}\right)$. Then

$$
\begin{aligned}
W_{2}^{2}\left(\mu_{1}, \mu_{t}^{2 \rightarrow 3}\right) & \leq \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}\left|y_{1}-y_{2}\right|^{2} d \mu_{t}^{1,2 \rightarrow 3} \\
& =\int_{\mathbb{R}^{d} \times \mathbb{R}^{d} \times \mathbb{R}^{d}}\left|(1-t)\left(x_{1}-x_{2}\right)+t\left(x_{1}-x_{3}\right)\right|^{2} d \hat{\mu}\left(x_{1}, x_{2}, x_{3}\right) \\
& =\int_{\mathbb{R}^{d} \times \mathbb{R}^{d} \times \mathbb{R}^{d}}\left((1-t)\left|x_{2}-x_{1}\right|^{2}+t\left|x_{3}-x_{1}\right|^{2}-t(1-t)\left|x_{2}-x_{3}\right|^{2}\right) d \hat{\mu}\left(x_{1}, x_{2}, x_{3}\right) \\
& \leq(1-t) W_{2}^{2}\left(\mu_{1}, \mu_{2}\right)+t W_{2}^{2}\left(\mu_{1}, \mu_{3}\right)-t(1-t) W_{2}^{2}\left(\mu_{2}, \mu_{3}\right) .
\end{aligned}
$$

The result follows.

Entropy functionals and log-concave measures

Let γ, μ be Borel probability measures on \mathbb{R}^{d}, the relative entropy of μ with respect to γ is defined by

$$
E n t_{\gamma}(\mu)=\left\{\begin{array}{cc}
\int_{\mathbb{R}^{d}} \rho \log \rho d \gamma & \text { if } d \mu=\rho d \gamma \\
\infty & \text { otherwise }
\end{array}\right.
$$

Introduce the function

$$
H(s)=\left\{\begin{array}{cc}
s(\log s-1)+1 & \text { if } s \geq 0 \\
\infty & \text { if } s<0
\end{array}\right.
$$

$s \mapsto H(s)$ is lower semi-continuous, strictly convex function on $\mathbb{R} \rightarrow[0, \infty]$. Note that

$$
E n t_{\gamma}(\mu)=\int_{\mathbb{R}^{d}} H(\rho(x)) d \gamma \geq 0 \text { and } \operatorname{Ent}_{\gamma}(\mu)=0 \Leftrightarrow \rho(x) \equiv 1 .
$$

Now we consider $\gamma=C e^{-V} \lambda_{d} \in \mathbb{P}\left(\mathbb{R}^{d}\right)$.
Proposition 3.3

$$
E n t_{\gamma}(\mu)=\mathcal{F}(\mu)+\int_{\mathbb{R}^{d}} V(x) d \mu(x)-\log C,
$$

where

$$
\mathcal{F}(\mu)=\left\{\begin{array}{cc}
\int_{\mathbb{R}^{d}} \rho(x) \log \rho(x) d \lambda_{d}(x) \text { if } \mu=\rho \lambda_{d}, \\
\infty & \text { otherwise } .
\end{array}\right.
$$

Proof. let $\mu=\rho \gamma=\rho C e^{-V} \lambda_{d}$. We have that

$$
\begin{aligned}
\mathcal{F}(\mu) & =\int_{\mathbb{R}^{d}} \rho C e^{-V} \log \left(\rho C e^{-V}\right) d \lambda_{d} \\
& =\int_{\mathbb{R}^{d}} \rho \log \rho d \gamma+\int_{\mathbb{R}^{d}} \log \left(C e^{-V}\right) d \mu \\
& =E n t_{\gamma}(\mu)-\int_{\mathbb{R}^{d}} V(x) d \mu(x)+\log C .
\end{aligned}
$$

Proposition 3.4 Suppose $V(x) \geq-A-B|x|^{2}$ and for $x, y \in \mathbb{R}^{d}$,

$$
V((1-t) x+t y) \leq(1-t) V(x)+t V(y)-\frac{\lambda t(1-t)}{2}|x-y|^{2}
$$

then the functional

$$
\mu \mapsto \mathcal{F}_{2}(\mu):=\int_{\mathbb{R}^{d}} V(x) d \mu(x)
$$

is λ-convex along all geodesics; along all generalized geodesics if $\lambda \geq 0$.
Proof. Note that for $\mu \in \mathbb{P}_{2}\left(\mathbb{R}^{d}\right)$

$$
\int_{\mathbb{R}^{d}} V(x) d \mu(x) \geq-A-B m_{2}(\mu)>-\infty
$$

So the functional $\mathcal{F}_{2}: \mathbb{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow(-\infty, \infty]$. Now let $\mu_{1}, \mu_{2} \in \mathbb{P}_{2}\left(\mathbb{R}^{d}\right)$ and $\gamma \in \mathscr{C}_{0}\left(\mu_{1}, \mu_{2}\right)$. Consider the geodesic

$$
\mu_{t}=\left((1-t) \pi_{1}+t \pi_{2}\right)_{*} \gamma
$$

Then

$$
\mathcal{F}_{2}\left(\mu_{t}\right)=\int_{\mathbb{R}^{d}} V(x) d \mu_{t}(x)=\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} V((1-t) x+t y) d \gamma(x, y)
$$

which is smaller, by λ-convexity of V, than

$$
\begin{aligned}
\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} & \left((1-t) V(x)+t V(y)-\frac{\lambda t(1-t)}{2}|x-y|^{2}\right) d \gamma(x, y) \\
\quad= & (1-t) \int_{\mathbb{R}^{d}} V(x) d \mu_{1}(x)+t \int_{\mathbb{R}^{d}} V(x) d \mu_{2}(x)-\frac{\lambda t(1-t)}{2} \int_{\mathbb{R}^{d}}|x-y|^{2} d \gamma(x, y) \\
\quad= & (1-t) \mathcal{F}_{2}\left(\mu_{1}\right)+t \mathcal{F}_{2}\left(\mu_{2}\right)-\frac{\lambda t(1-t)}{2} W_{2}^{2}\left(\mu_{1}, \mu_{2}\right)
\end{aligned}
$$

We prove the λ-convexity along geodesics. Let's see the λ-convexity along generalized geodesics. Let $\mu_{0} \in \mathbb{P}_{2}\left(\mathbb{R}^{d}\right)$ be arbitrary, consider $\Gamma \in \Gamma\left(\mu_{0}, \mu_{1}, \mu_{2}\right)$ such that

$$
\left(\pi_{1}, \pi_{2}\right)_{*} \Gamma \in \mathscr{C}_{0}\left(\mu_{0}, \mu_{1}\right),\left(\pi_{1}, \pi_{3}\right)_{*} \Gamma \in \mathscr{C}_{0}\left(\mu_{1}, \mu_{2}\right)
$$

Let $\mu_{t}^{1 \rightarrow 2}=\left((1-t) \pi_{2}+t \pi_{3}\right)_{*} \Gamma$. We have that

$$
\begin{aligned}
\mathcal{F}_{2}\left(\mu_{t}^{1 \rightarrow 2}\right) & =\int_{\mathbb{R}^{d} \times \mathbb{R}^{d} \times \mathbb{R}^{d}} V((1-t) y+t z) d \Gamma(x, y, z) \\
& \leq(1-t) \int_{\mathbb{R}^{d} \times \mathbb{R}^{d} \times \mathbb{R}^{d}} V(y) d \Gamma(x, y, z)+t \int_{\mathbb{R}^{d} \times \mathbb{R}^{d} \times \mathbb{R}^{d}} V(z) d \Gamma(x, y, z) \\
& -\frac{\lambda t(1-t)}{2} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d} \times \mathbb{R}^{d}}|y-z|^{2} d \Gamma(x, y, z) \\
& \leq(1-t) \mathcal{F}_{2}\left(\mu_{1}\right)+t \mathcal{F}_{2}\left(\mu_{2}\right)-\frac{\lambda t(1-t)}{2} W_{2}^{2}\left(\mu_{1}, \mu_{2}\right)
\end{aligned}
$$

since $\left(\pi_{2}, \pi_{3}\right)_{*} \Gamma \in \mathscr{C}\left(\mu_{1}, \mu_{2}\right)$.

Corollary 3.1 Let $\gamma=\frac{e^{-\frac{|x|^{2}}{2}}}{(\sqrt{2 \pi})^{d}} \lambda_{d}$ be the standard Gaussian measure. Then $\mu \mapsto E n t_{\gamma}(\mu)$ is 1-convex along all generalized geodesics.

Proof. The proof consists of two parts, the easy part concerns the functional \mathcal{F}_{2}, where $V(x)=-\frac{|x|^{2}}{2}$, which is 1-convex; the difficult part concerns \mathcal{F} with $F(s)=s \log s$, which is, by Proposition 3.1, convex along all generalized geodesics.

Gradient flows associated to a convex functional on \mathbb{R}^{d}

In the remain part of this section, we would like to emphasize the important role of convex functionals. Let's discuss only the case of \mathbb{R}^{d}. First, let $\Phi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be C^{2} such that

$$
\begin{equation*}
\operatorname{Hess}(\Phi)=\left(\frac{\partial^{2} \Phi}{\partial x_{i} \partial x_{j}}\right) \geq \lambda I d, \lambda>0 \tag{3.44}
\end{equation*}
$$

then

$$
\begin{equation*}
\Phi((1-t) x+t y) \leq(1-t) \Phi(x)+t \Phi(y)-\frac{\lambda t(1-t)}{2}|x-y|^{2} \tag{3.45}
\end{equation*}
$$

Consider the differential equation

$$
\frac{d X_{t}}{d t}=-(\nabla \Phi)\left(X_{t}\right),\left.X_{t}\right|_{t=0}=x
$$

Then we have

$$
\frac{d}{d t} \Phi\left(X_{t}\right)=<\nabla \Phi\left(X_{t}\right), \frac{d X_{t}}{d t}>=-\left|\nabla \Phi\left(X_{t}\right)\right|^{2} \leq 0
$$

Therefore

$$
\Phi\left(X_{t}\right) \leq \Phi(x) \text { for all } t \geq 0
$$

implying that X_{t} does not explode. Now we compute

$$
\begin{equation*}
\frac{d}{d t}\left|X_{t}(x)-X_{t}(y)\right|^{2}=-2<X_{t}(x)-X_{t}(y), \nabla \Phi\left(X_{t}(x)\right)-\nabla \Phi\left(X_{t}(y)\right)> \tag{3.46}
\end{equation*}
$$

but

$$
\nabla \Phi\left(X_{t}(x)\right)-\nabla \Phi\left(X_{t}(y)\right)=\left(\int_{0}^{1} \operatorname{Hess} \Phi\left((1-s) X_{t}(y)+s X_{t}(x)\right) d s\right)\left(X_{t}(x)-X_{t}(y)\right)
$$

Combining (3.44) with (3.46), we get

$$
\begin{equation*}
\frac{d}{d t}\left|X_{t}(x)-X_{t}(y)\right|^{2} \leq-2 \lambda\left|X_{t}(x)-X_{t}(y)\right|^{2} \tag{3.47}
\end{equation*}
$$

which implies that

$$
\left|X_{t}(x)-X_{t}(y)\right|^{2} \leq e^{-2 \lambda t}|x-y|^{2}
$$

or

$$
\begin{equation*}
\left|X_{t}(x)-X_{t}(y)\right| \leq e^{-\lambda t}|x-y| \tag{3.48}
\end{equation*}
$$

Now for a general convex functional Φ satisfying (3.45), the gradient is replaced by the notion of sub-gradient: we say that $v \in \mathbb{R}^{d}$ is a sub-gradient of Φ at x if $\Phi(x+y) \geq \Phi(x)+<v, y>+o(|y|)$, as $y \rightarrow 0$. We denote by $\partial \Phi(x)=\{$ subgradients of Φ at $x\}$ which is a convex subset of \mathbb{R}^{d}.
A result in convex analysis says that for a lower semi-continuous convex function $\Phi, \nabla \Phi(x)$ exists for a.e. $x \in \mathbb{R}^{d}$ and $\partial \Phi(x) \neq \emptyset$ for each $x \in \mathbb{R}^{d}$.

Definition 3.3 We say that $X_{t}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is a gradient flow associated to Φ if $t \mapsto X_{t}$ is absolutely continuous and

$$
\frac{d X_{t}(x)}{d t} \in \partial \Phi\left(X_{t}(x)\right)
$$

Theorem 3.1 (De Giorgi) If Φ is λ-convex with $\lambda \geq 0$, then

$$
\left|X_{t}(x)-X_{t}(y)\right| \leq e^{-\lambda t}|x-y|
$$

4 Gradient flow associated to the entropy functionals

The general theory of gradient flows associated to convex functionals on $\mathbb{P}_{2}\left(\mathbb{R}^{d}\right)$ is well established in [1], and also complicated. To simplify the things, we take the entropy functional

$$
\mu \mapsto E n t_{\gamma_{d}}(\mu)
$$

where $\gamma_{d}=$ standard Gaussian measure on \mathbb{R}^{d}. By the discussion in Section 3, it is 1-convex along all generalized geodesics. In what follows, we denote

$$
P^{*}\left(\mathbb{R}^{d}\right)=\left\{\mu \in \mathbb{P}_{2}\left(\mathbb{R}^{d}\right): \operatorname{Ent}_{\gamma_{d}}(\mu)<\infty\right\}
$$

Then $E n t_{\gamma_{d}}: P^{*}\left(\mathbb{R}^{d}\right) \rightarrow[0, \infty)$.
Proposition 4.1 Let Z be a smooth vector field on \mathbb{R}^{d} with compact support and $\left(U_{t}\right)_{t \in R}$ be the flow of diffeomorphisms associated to Z :

$$
\frac{d U_{t}(x)}{d t}=Z\left(U_{t}(x)\right), \quad U_{0}(x)=x
$$

Then

$$
\left(U_{t}\right)_{*} \gamma_{d}=K_{t} \cdot \gamma_{d}
$$

with

$$
K_{t}(x)=\exp \left(\int_{0}^{t} \operatorname{div}_{\gamma_{d}}(Z)\left(U_{-s}(x)\right) d s\right)
$$

where $\operatorname{div}_{\gamma_{d}}(Z)$ is the divergence of Z, relative to γ_{d} :

$$
\int_{\mathbb{R}^{d}}\langle\nabla \varphi, Z\rangle d \gamma_{d}=\int_{\mathbb{R}^{d}} \varphi \operatorname{div}_{\gamma_{d}}(Z) d \gamma_{d}, \quad \varphi \in C_{b}^{1}\left(\mathbb{R}^{d}\right)
$$

we have

$$
\operatorname{div}_{\gamma_{d}}(Z)=\sum_{i=1}^{d}\left(x_{i} Z^{i}(x)-\frac{\partial Z^{i}(x)}{\partial x_{i}}\right)
$$

Proof. Let $\varphi \in C_{b}^{1}\left(\mathbb{R}^{d}\right)$, we have

$$
\int_{\mathbb{R}^{d}} \varphi(x) K_{t}(x) d \gamma_{d}(x)=\int_{\mathbb{R}^{d}} \varphi\left(U_{t}(x)\right) d \gamma_{d}(x)
$$

$$
\begin{aligned}
\left.\frac{d}{d t}\left(\int_{\mathbb{R}^{d}} \varphi(x) K_{t}(x) d \gamma_{d}(x)\right)\right|_{t=0} & =\int_{\mathbb{R}^{d}}\langle\nabla \varphi, Z\rangle d \gamma_{d} \\
& =\int_{\mathbb{R}^{d}} \varphi \operatorname{div}_{\gamma_{d}}(Z) d \gamma_{d}
\end{aligned}
$$

which implies that

$$
\left.\frac{d K_{t}(x)}{d t}\right|_{t=0}=\operatorname{div}_{\gamma_{d}}(Z)
$$

Now using the flow property $U_{t+s}=U_{t} \circ U_{s}$, we have

$$
\begin{aligned}
\frac{d}{d t} \int_{\mathbb{R}^{d}} \varphi(x) K_{t}(x) d \gamma_{d}(x) & =\frac{d}{d \varepsilon} \int_{\mathbb{R}^{d}} \varphi\left(U_{t}\left(U_{\varepsilon}\right)\right) d \gamma_{d} \\
& =\int_{\mathbb{R}^{d}} \varphi\left(U_{t}\right) \operatorname{div}_{\gamma_{d}}(Z) d \gamma_{d} \\
& =\int_{\mathbb{R}^{d}} \varphi \cdot \operatorname{div}_{\gamma_{d}}(Z)\left(U_{-t}\right) \cdot K_{t} d \gamma_{d}
\end{aligned}
$$

It follows that

$$
\frac{d K_{t}}{d t}=\operatorname{div}_{\gamma_{d}}(Z)\left(U_{-t}\right) K_{t}, \quad K_{0}=1
$$

which implies that

$$
K_{t}=\exp \left(\int_{0}^{t} \operatorname{div}_{\gamma_{d}}(Z)\left(U_{-s}\right) d s\right)
$$

Since $T_{\mu}=\overline{\left\{\nabla F: F \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)\right\}}{ }^{L^{2}(\mu)}$, we will consider $Z=\nabla F$ and U_{t} the associated flow.
Proposition 4.2 Let $\mu_{0} \in \mathbb{P}^{*}\left(\mathbb{R}^{d}\right)$ be given and $\mu_{t}=\left(U_{t}\right)_{*}\left(\mu_{0}\right)$. Then

$$
\left.\frac{d}{d t} E n{\gamma_{d}}\left(\mu_{t}\right)\right|_{t=0}=\int_{\mathbb{R}^{d}} L F d \mu_{0}
$$

where $L F=\operatorname{div}_{\gamma_{d}}(\nabla F)$ which admits the expression

$$
L F=-\sum_{i=1}^{d} \frac{\partial^{2} F}{\partial x_{i}^{2}}+\sum_{i=1}^{d} x_{i} \frac{\partial F}{\partial x_{i}}
$$

Proof. Let $\mu_{0}=\rho_{0} \gamma_{d}$, then for $\varphi \in C_{b}\left(\mathbb{R}^{d}\right)$,

$$
\int_{\mathbb{R}^{d}} \varphi \mu_{t}=\int_{\mathbb{R}^{d}} \varphi\left(U_{t}\right) \rho_{0} d \gamma_{d}=\int_{\mathbb{R}^{d}} \varphi \rho_{0}\left(U_{-t}\right) K_{t} d \gamma_{d}
$$

It follows that

$$
\mu_{t}=\rho_{0}\left(U_{-t}\right) K_{t} \cdot \gamma_{d}:=\rho_{t} \cdot \gamma_{d}
$$

Then

$$
\begin{aligned}
E n t_{\gamma_{d}}\left(\mu_{t}\right) & =\int_{\mathbb{R}^{d}} \rho_{0}\left(U_{-t}\right) K_{t} \lg \left(\rho_{0}\left(U_{-t}\right) K_{t}\right) d \gamma_{d} \\
& =\int_{\mathbb{R}^{d}} \rho_{0} \lg \left(\rho_{0}\left(U_{-t}\right) K_{t}\right) d \gamma_{d} \\
& =E n t_{\gamma_{d}}\left(\mu_{0}\right)+\int_{\mathbb{R}^{d}} \lg K_{t}\left(U_{t}\right) \cdot \rho_{0} d \gamma_{d}
\end{aligned}
$$

By the expression of K_{t},

$$
\lg K_{t}\left(U_{t}\right)=\int_{0}^{t}(L F)\left(U_{t-s}(x)\right) d s
$$

Formally

$$
\left.\frac{d}{d t} E n t_{\gamma_{d}}\left(\mu_{t}\right)\right|_{t=0}=\int_{\mathbb{R}^{d}} L F d \mu_{0}
$$

To make the computation rigorous, we need the estimate:

$$
\begin{equation*}
\left\|K_{t}\right\|_{L^{p}}^{p} \leq \int_{\mathbb{R}^{d}} \exp \left(\frac{p^{2} T}{p-1}\left|\operatorname{div}_{\gamma_{d}}(Z)\right|\right) d \gamma_{d}, \quad t \leq T . \tag{4.49}
\end{equation*}
$$

By expression of $L F$, there exists a small $\varepsilon_{0}>0$ such that

$$
\int_{\mathbb{R}^{d}} e^{2 \varepsilon_{0}|L F|^{2}} d \gamma_{d}<+\infty
$$

Set $u_{t}=\int_{0}^{t} \frac{1}{t}(L F)\left(U_{t-s}(x)\right) d s$, by Jensen inequality,

$$
\begin{aligned}
\int_{\mathbb{R}^{d}} e^{\varepsilon_{0}\left|u_{t}\right|^{2}} & \leq \int_{\mathbb{R}^{d}}\left(\frac{1}{t} \int_{0}^{t} e^{\varepsilon_{0}\left|L F\left(U_{t-s}\right)\right|^{2}} d s\right)^{2} d \gamma_{d} \\
& =\frac{1}{t} \int_{0}^{t}\left(\int_{\mathbb{R}^{d}} e^{\varepsilon_{0}|L F|^{2}} \cdot K_{t-s} d \gamma_{d}\right) d s \\
& \leq\left(\int_{\mathbb{R}^{d}} e^{2 \varepsilon_{0}|L F|^{2}} d \gamma_{d}\right)^{\frac{1}{2}} \cdot\left(\int_{\mathbb{R}^{d}} e^{4|L F|} d \gamma_{d}\right)^{\frac{1}{2}}
\end{aligned}
$$

according to (4.49) for $p=2$ and K_{t-s}. Now by Young inequality

$$
\begin{aligned}
\int_{\mathbb{R}^{d}}\left|u_{t}\right|^{2} \rho_{0} d \gamma_{d} & \leq \int_{\mathbb{R}^{d}}\left(e^{q_{0}\left|u_{t}\right|^{2}}+\frac{\rho_{0}}{\varepsilon_{0}} \lg \frac{\rho_{0}}{\varepsilon_{0}}\right) d \gamma_{d} \\
& =\int_{\mathbb{R}^{d}} e^{\varepsilon_{0}\left|u_{t}\right|^{2}} d \gamma_{d}+\frac{1}{\varepsilon_{0}} E n t_{\gamma_{d}}\left(\mu_{0}\right)-\frac{\lg \varepsilon_{0}}{\varepsilon_{0}}
\end{aligned}
$$

Combining with the above estimate, we get

$$
\sup _{0 \leq t \leq 1} \int_{\mathbb{R}^{d}}\left|u_{t}\right|^{2} \rho_{0} d \gamma_{d}<+\infty
$$

Therefore we can take the limit under the integral, the proof is completed.
We will denote by

$$
\left(\partial_{\nabla F} E n t_{\gamma_{d}}\right)\left(\mu_{0}\right)=\left.\frac{d}{d t}\right|_{t=0} E n t_{\gamma_{d}}\left(\mu_{t}\right) .
$$

Example 4.1 Let $\rho_{0} \geq \varepsilon_{0}$ and $\rho_{0} \in C_{b}^{\infty}\left(\mathbb{R}^{d}\right)$. Then $\lg \rho_{0}, \nabla\left(\lg \rho_{0}\right) \in L^{2}\left(\mathbb{R}^{d}, \gamma_{d}\right)$.
We say that $\lg \rho_{0} \in \mathbb{D}_{1}^{2}\left(\mathbb{R}^{d}, \gamma_{d}\right)$. Then there exists $\varphi_{n} \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ such that

$$
\int_{\mathbb{R}^{d}}\left(\left|\varphi_{n}-\lg \rho_{0}\right|^{2}+\left|\nabla \varphi_{n}-\nabla \lg \rho_{0}\right|^{2}\right) d \gamma_{d} \rightarrow 0
$$

In particular,

$$
\int_{\mathbb{R}^{d}}\left|\nabla \varphi_{n}-\nabla \lg \rho_{0}\right|^{2} \cdot \rho_{0} d \gamma_{d} \leq\left\|\rho_{0}\right\|_{L^{\infty}} \int_{\mathbb{R}^{d}}\left|\nabla \varphi_{n}-\nabla \lg \rho_{0}\right|^{2} d \gamma_{d} \rightarrow 0 .
$$

therefore $\nabla \lg \rho_{0} \in T_{\mu_{0}}$. Now

$$
\begin{aligned}
\left(\partial_{\nabla F} E n t_{\gamma_{d}}\right)\left(\mu_{0}\right) & =\int_{\mathbb{R}^{d}} \operatorname{div}_{\gamma_{d}}(\nabla F) \rho_{0} d \gamma_{d} \\
& =\int_{\mathbb{R}^{d}}\left\langle\nabla F, \nabla \rho_{0}\right\rangle d \gamma_{d}=\int_{\mathbb{R}^{d}}\left\langle\nabla F, \nabla \lg \rho_{0}\right\rangle d \mu_{0} .
\end{aligned}
$$

Definition 4.1 We say that the gradient $\nabla E n t_{\gamma_{d}}$ exists at $\mu_{0} \in \mathbb{P}^{*}\left(\mathbb{R}^{d}\right)$ if there exists $v \in T_{\mu_{0}}$ such that for all $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$,

$$
\left(\partial_{\nabla \varphi} E n t_{\gamma_{d}}\right)\left(\mu_{0}\right)=\langle v, \nabla \varphi\rangle_{T_{\mu_{0}}} .
$$

It is clear that v is uniquely determined and we will denote

$$
v=\nabla E n t_{\gamma_{d}}\left(\mu_{0}\right) \in T_{\mu_{0}} .
$$

Theorem 4.1 Let $\mu_{0} \in \mathbb{P}^{*}\left(\mathbb{R}^{d}\right)$. Then for any $\eta>0$, there exists a unique $\hat{\mu} \in \mathbb{P}^{*}\left(\mathbb{R}^{d}\right)$ such that

$$
\frac{1}{2} W_{2}^{2}\left(\mu_{0}, \hat{\mu}\right)+\eta E n t_{\gamma_{d}}(\hat{\mu})=\inf \left\{\frac{1}{2} W_{2}^{2}\left(\mu_{0}, \mu\right)+\eta E n \gamma_{\gamma_{d}}(\mu): \mu \in \mathbb{P}^{*}\left(\mathbb{R}^{d}\right)\right\}
$$

and the gradient $\nabla E n t_{\gamma_{d}}$ exists at $\hat{\mu}$
Proof. Uniqueness of $\hat{\mu}$. Suppose that there are two measures $\hat{\mu}_{1}, \hat{\mu}_{2}$ which realize the minimum. By Proposition 3.2, there exists a generalized geodesic $\hat{\mu}_{t}$ jointing $\hat{\mu}_{1}, \hat{\mu}_{2}$ such that

$$
\frac{1}{2} W_{2}^{2}\left(\mu_{0}, \hat{\mu}_{t}\right) \leq(1-t) \frac{1}{2} W_{2}^{2}\left(\mu_{0}, \hat{\mu}_{1}\right)+\frac{1}{2} W_{2}^{2}\left(\mu_{0}, \hat{\mu}_{2}\right)-\frac{t(1-t)}{2} W_{2}^{2}\left(\hat{\mu}_{1}, \hat{\mu}_{2}\right)
$$

By Corollary 3.1,

$$
E n t_{\gamma_{d}}\left(\hat{\mu}_{t}\right) \leq(1-t) E n t_{\gamma_{d}}\left(\hat{\mu}_{1}\right)+t E n t_{\gamma_{d}}\left(\hat{\mu}_{2}\right)-\frac{t(1-t)}{2} W_{2}^{2}\left(\hat{\mu}_{1}, \hat{\mu}_{2}\right),
$$

It follows that

$$
\frac{1}{2} W_{2}^{2}\left(\mu_{0}, \hat{\mu}_{t}\right)+\eta E n t_{\gamma_{d}}\left(\hat{\mu}_{t}\right)<\text { minimum }
$$

which yields the contradiction.
Existence Let

$$
m=\inf \left\{\frac{1}{2} W_{2}^{2}\left(\mu_{0}, \mu\right)+\eta E n t_{\gamma_{d}}(\mu): \mu \in P^{*}\left(\mathbb{R}^{d}\right)\right\}
$$

which is finite. Then for $n \geq 1, \exists \mu_{n} \in \mathbb{P}^{*}\left(\mathbb{R}^{d}\right)$ such that

$$
\begin{equation*}
\frac{1}{2} W_{2}^{2}\left(\mu_{0}, \mu_{n}\right)+\eta E n t_{\gamma_{d}}\left(\mu_{n}\right) \leq m+\frac{1}{n} \leq m+1 \tag{4.50}
\end{equation*}
$$

From which we deduce that $\sup _{n} W_{2}^{2}\left(\mu_{0}, \mu_{n}\right)<+\infty$ so that

$$
\sup _{n} \int_{\mathbb{R}^{d}}|x|^{2} d \mu_{n}<+\infty
$$

Therefore the family $\left\{\mu_{n}: n \geq 1\right\}$ is tight. Up to a subsequence, μ_{n} converges to $\hat{\mu} \in \mathbb{P}_{2}\left(\mathbb{R}^{d}\right)$. We will prove that $\hat{\mu} \in \mathbb{P}^{*}\left(\mathbb{R}^{d}\right)$. Let

$$
C=\sup _{n \geq 1} E n t_{\gamma_{d}}\left(\mu_{n}\right)<\infty
$$

Let $\mu_{n}=\rho_{n} \gamma_{d}$. We have

$$
\int_{\rho_{n} \geq R} \rho_{n} d \gamma_{d} \leq \frac{1}{\log R} \int_{\rho_{n} \geq R} \rho_{n} \log \rho_{n} d \gamma_{d}
$$

But

$$
\begin{aligned}
\operatorname{Ent}_{\gamma_{d}}(\rho) & =\int_{\mathbb{R}^{d}} \rho \log \rho d \gamma_{d} \\
& =\int_{0 \leq \rho \leq 1} \rho \log \rho d \gamma_{d}+\int_{\{\rho \geq 1\}} \rho \log \rho d \gamma_{d} \\
& \geq-\frac{1}{e}+\int_{\{\rho \geq 1\}} \rho \log \rho d \gamma_{d},
\end{aligned}
$$

since $\min _{0 \leq s \leq 1}(\operatorname{slog} s)=-\frac{1}{e}$. Then for $R \geq 1$,

$$
\int_{\{\rho \geq R\}} \rho \lg \rho d \gamma_{d} \leq \int_{\{\rho \geq 1\}} \rho \lg \rho d \gamma_{d} \leq E n t_{\gamma_{d}}(\rho)+\frac{1}{e}
$$

Therefore

$$
\begin{equation*}
\sup _{n} \int_{\{\rho \geq R\}} \rho \lg \rho d \gamma_{d} \leq \frac{1}{\lg R}\left(C+\frac{1}{e}\right) \rightarrow 0 \quad \text { as } R \rightarrow \infty \tag{4.51}
\end{equation*}
$$

Let $\psi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a bounded Borel function. Then there is a constant C_{ψ} such that for $\delta>0$, $\exists \varphi \in C_{b}\left(\mathbb{R}^{d}\right),\|\varphi\|_{\infty} \leq C_{\psi}$ and

$$
\int_{\mathbb{R}^{d}}|\psi-\varphi| d \gamma_{d}<\delta, \quad \int_{\mathbb{R}^{d}}|\psi-\varphi| d \hat{\mu}<+\infty
$$

Hence

$$
\begin{array}{r}
\left|\int_{\mathbb{R}^{d}} \psi \rho_{n} d \gamma_{d}-\int_{\mathbb{R}^{d}} \psi d \hat{\mu}\right| \leq \int_{\mathbb{R}^{d}}|\varphi-\psi| \rho_{n} d \gamma_{d}+\int_{\mathbb{R}^{d}}|\psi-\varphi| d \hat{\mu} \\
+\left|\int_{\mathbb{R}^{d}} \varphi \rho_{n} d \gamma_{d}-\int_{\mathbb{R}^{d}} \varphi d \hat{\mu}\right|
\end{array}
$$

the first term in the right side,

$$
\begin{aligned}
\int_{\mathbb{R}^{d}}|\psi-\varphi| \rho_{n} d \gamma_{d} & \leq R \cdot \int_{\left\{\rho_{n} \leq R\right\}}|\varphi-\psi| d \gamma_{d}+\int_{\left\{\rho_{n}>R\right\}}|\varphi-\psi| \rho_{n} d \gamma_{d} \\
& \leq R \cdot \delta+2 C_{\psi} \cdot \int_{\left\{\rho_{n}>\mathbb{R}\right\}} \rho_{n} d \gamma_{d}
\end{aligned}
$$

Let $\varepsilon>0$, By (4.50), take R big enough such that

$$
2 C_{\psi} \cdot \int_{\left\{\rho_{n}>\mathbb{R}\right\}} \rho_{n} d \gamma_{d}<\frac{\varepsilon}{4}
$$

Choose $\delta<\frac{\varepsilon}{4 R}$, then we get $\int_{\mathbb{R}^{d}}|\psi-\varphi| \rho_{n} d \gamma_{d}<\frac{\varepsilon}{2}$, for all n. Now for n big enough, the last term in (4.51) is smaller than $\frac{\varepsilon}{4}$, so we have for $n \geq n_{0}$ big enough,

$$
\left|\int_{\mathbb{R}^{d}} \psi \rho_{n} d \gamma_{d}-\int_{\mathbb{R}^{d}} \psi d \hat{\mu}\right|<\varepsilon
$$

This means that for any bounded function ϕ,

$$
\int_{\mathbb{R}^{d}} \psi d \hat{\mu}=\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{d}} \psi \rho_{n} d \gamma_{d}
$$

In particular, for $E \in \mathcal{B}\left(\mathbb{R}^{d}\right), \gamma_{d}(E)=0$, we have $\hat{\mu}(E)=0$. In other words, $d \hat{\mu}=\hat{\rho} \cdot d \gamma_{d}$. Now,

$$
E n t_{\gamma_{d}}(\hat{\rho}) \leq \liminf _{n \rightarrow \infty} E n t_{\gamma_{d}}\left(\rho_{n}\right) \leq C<+\infty
$$

Now using again the semi-lower continuity of

$$
\mu \mapsto \frac{1}{2} W_{2}^{2}\left(\mu_{0}, \mu\right)+\eta E n t_{\gamma_{d}}(\mu)
$$

We get

$$
\frac{1}{2} W_{2}^{2}\left(\mu_{0}, \mu\right)+\eta E n t_{\gamma_{d}}(\hat{\mu})=m
$$

In the last part, we will prove that $\left(\nabla E n t_{\gamma_{d}}\right)(\hat{\mu})$ exists. Let $\left(U_{t}\right)$ be the flow associated to ∇F with $F \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$. Let $\Gamma \in \mathscr{C}_{0}\left(\mu_{0}, \hat{\mu}\right)$ and define $\Gamma_{t} \in \mathscr{C}\left(\mu_{0},\left(U_{t}\right)_{*} \hat{\mu}\right)$ by

$$
\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \psi(x, y) d \Gamma_{t}=\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \psi\left(x, U_{t}(y)\right) \Gamma(d x, d y)
$$

We have

$$
W_{2}^{2}\left(\mu_{0},\left(U_{t}\right)_{*} \hat{\mu}\right)-W_{2}^{2}\left(\mu_{0}, \hat{\mu}\right) \leq \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}\left(\left|x-U_{t}(y)\right|^{2}-|x-y|^{2}\right) \Gamma(d x, d y)
$$

then

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{1}{2 t}\left[W_{2}^{2}\left(\mu_{0},\left(U_{t}\right)_{*} \hat{\mu}\right)-W_{2}^{2}\left(\mu_{0}, \hat{\mu}\right)\right] \leq-\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}\langle x-y, Z(y)\rangle \Gamma(d x, d y) \tag{4.52}
\end{equation*}
$$

where $Z=\nabla F$. On the other hand, by construction of $\hat{\mu}$, for $t>0$,

$$
0 \leq \frac{\eta}{t}\left[E n t_{\gamma_{d}}\left(\left(U_{t}\right)_{*} \hat{\mu}\right)-E n t_{\gamma_{d}}(\hat{\mu})\right]+\frac{1}{2 t}\left[W_{2}^{2}\left(\mu_{0},\left(U_{t}\right)_{*} \hat{\mu}\right)-W_{2}^{2}\left(\mu_{0}, \hat{\mu}\right)\right]
$$

Letting $t \rightarrow 0$, the first term tends to $\eta \cdot\left(\partial_{\nabla F} E n t_{\gamma_{d}}\right)(\hat{\mu})$. Combining with (4.52), we get

$$
0 \leq \eta \cdot\left(\partial_{\nabla F} E n t_{\gamma_{d}}\right)(\hat{\mu})-\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}\langle x-y, Z(y)\rangle \Gamma(d x, d y)
$$

Using Proposition 4.2,

$$
\partial_{-\nabla F} E n t_{\gamma_{d}}=-\partial_{\nabla F} E n t_{\gamma_{d}}
$$

Changing F into $-F$, the above inequality gives

$$
\begin{equation*}
\left(\partial_{\nabla F} E n t_{\gamma_{d}}\right)(\hat{\mu})=\frac{1}{\eta} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}\langle x-y, Z(y)\rangle \Gamma(d x, d y) \tag{4.53}
\end{equation*}
$$

Now by Brenier's result, $\Gamma=(I+(I+\xi))_{*} \mu_{0}$. The right hand of (4.53) is written

$$
-\frac{1}{\eta} \int_{\mathbb{R}^{d}}\langle\xi(x), Z(x+\xi(x))\rangle d \mu_{0}=-\frac{1}{\eta} \int_{\mathbb{R}^{d}}\left\langle\xi \circ \tau^{-1}(x), \nabla F(x)\right\rangle d \hat{\mu}(x) .
$$

where $\tau=I+\xi$. Note that

$$
\int_{\mathbb{R}^{d}}\left|\xi \circ \tau^{-1}\right|^{2} d \hat{\mu}=\int_{\mathbb{R}^{d}}|\xi|^{2} d \mu_{0}=W_{2}^{2}\left(\mu_{0}, \hat{\mu}\right)<+\infty
$$

therefore $\left(\nabla E n t_{\gamma_{d}}\right)(\hat{\mu})$ exists, which is the orthogonal projection of $-\frac{\xi \circ \tau^{-1}}{\eta}$ on $T_{\hat{\mu}}$.
We will denote by

$$
\operatorname{Dom}\left(\nabla E n t_{\gamma_{d}}\right)=\left\{\nu \in \mathbb{P}^{*}\left(\mathbb{R}^{d}\right): \nabla E n t_{\gamma_{d}}(\nu) \in T_{\nu} \text { exists }\right\} .
$$

Now we will use the De Giorgi "minimizing movement" approximation scheme to construct the gradient flow associated to $E n t_{\gamma_{d}}$.
Let $\mu^{(0)}=\mu_{0} \in \mathbb{P}^{*}\left(\mathbb{R}^{d}\right)$ be given, and $\mu^{(1)}=\hat{\mu}$ obtained in Theorem 4.1. By induction, define step by step $\mu^{(n)}$ which realizes the minimum of

$$
\mu \mapsto \frac{1}{2} W_{2}^{2}\left(\mu^{(n-1)}, \mu\right)+\eta E n t_{\gamma_{d}}(\mu)
$$

so we get a sequence of probability measures $\left\{\mu^{(n)} ; n \geq 0\right\} \subset \mathbb{P}^{*}\left(\mathbb{R}^{d}\right)$.
Let $N=\left[\frac{1}{\eta}\right]$ be the integral part of $\frac{1}{\eta}$. Define

$$
\nu_{\eta}(t, d x)=\sum_{k=1}^{N+1} \mu^{(k)}(d x) \mathbb{1}_{\left(t_{k-1}, t_{k}\right]}(t), \quad \text { with } t_{N+1}=1
$$

Notice that $\nu_{\eta}(t, \cdot) \in \operatorname{Dom}\left(\nabla E n t_{\gamma_{d}}\right)$ for each $t>0$.
Proposition 4.3 The family $\left\{\nu_{\eta}(t, d x) d t ; \eta>0\right\}$ over $[0,1] \times \mathbb{R}^{d}$ is tight.
Proof. By construction of $\left\{\mu^{(k)} ; k \geq 1\right\}$, we have

$$
\begin{equation*}
\frac{1}{2} W_{2}^{2}\left(\mu^{(k-1)}, \mu^{(k)}\right)+\eta E n t_{\gamma_{d}}\left(\mu^{(k)}\right) \leq \eta E n t_{\gamma_{d}}\left(\mu^{(k-1)}\right) \tag{4.54}
\end{equation*}
$$

For any $1 \leq q \leq N+1$, summing the above inequality from $k=1$ to q gives

$$
\frac{1}{2} \sum_{k=1}^{q} W_{2}^{2}\left(\mu^{(k-1)}, \mu^{(k)}\right)+\eta E n t_{\gamma_{d}}\left(\mu^{(q)}\right) \leq \eta E n t_{\gamma_{d}}\left(\mu^{(0)}\right)
$$

For each $1 \leq q \leq N$,

$$
W_{2}^{2}\left(\mu^{(0)}, \mu^{(q)}\right) \leq N \Sigma_{k=1}^{N} W_{2}^{2}\left(\mu^{(k-1)}, \mu^{(k)}\right) \leq 2 N \eta E n t_{\gamma_{d}}\left(\mu^{(0)}\right) \leq 2 E n t_{\gamma_{d}}\left(\mu^{(0)}\right)
$$

According to (4.54), we have

$$
\begin{equation*}
W_{2}^{2}\left(\mu^{(0)}, \mu^{(q)}\right)+E n t_{\gamma_{d}}\left(\mu^{(q)}\right) \leq 3 E n t_{\gamma_{d}}\left(\mu^{(0)}\right) \tag{4.55}
\end{equation*}
$$

Therefore the family $\left\{\mu^{(q)}: q \geq 0\right\}$ is tight: Let $\varepsilon>0$, there is a compact set $K \subset \mathbb{R}^{d}$ such that $\mu^{(q)}\left(K^{c}\right)<\varepsilon$, for $q \geq 0$. Now

$$
\int_{[0,1] \times K^{c}} \nu_{\eta}(t, d x) d t=\sum_{k=1}^{N+1} \mu^{(k)}\left(K^{c}\right)\left(t_{k}-t_{k-1}\right)<\varepsilon
$$

Therefore $\left\{\nu_{\eta} ; \eta>0\right\}$ is tight.
Then there is a sequence $\eta \downarrow 0$ such that $\nu_{\eta}(t, d x) d t$ converges weakly to $\nu(d t, d x)$. Set $\mu^{(k)}=$ $\rho^{(k)} \gamma_{d}$. Then

$$
\nu_{\eta}(t, d x) d t=\left(\sum_{k=1}^{N+1} \rho^{(k)} 1_{\left(t_{k-1}, t_{k}\right]}(t)\right) d \gamma_{d}(x) d t=\rho_{\eta}(t, x) d \gamma_{d}(x) d t .
$$

We have

$$
\int_{[0,1] \times \mathbb{R}^{d}} \rho_{\eta}(t, x) \lg \rho_{\eta}(t, x) d \gamma_{d}(x) d t=\sum_{k=1}^{N+1} E n t_{\gamma_{d}}\left(\mu^{(k)}\right)\left(t_{k}-t_{k-1}\right) \leq E n t_{\gamma_{d}}\left(\mu^{(0)}\right)<+\infty
$$

Again using the lower semi-continuity of

$$
\rho \mapsto E n t_{\gamma_{d} \otimes d t}(\rho),
$$

we see that $\operatorname{Ent}_{\gamma_{d} \otimes d t}(\nu)<+\infty$ and $\nu(d t, d x)=\rho(t, x) d \gamma_{d}(x) d t$, with

$$
\int_{[0,1] \times \mathbb{R}^{d}} \rho(t, x) \lg \rho(t, x) d \gamma_{d} d t \leq E n t_{\gamma_{d}}\left(\mu^{(0)}\right) .
$$

It follows that for a.s. $t \in[0,1], \operatorname{Ent}_{\gamma_{d}}(\rho(t, \cdot))<+\infty$. Let

$$
\nu_{t}(d x)=\rho(t, x) d \gamma_{d}(x) .
$$

By (4.55), $\sup _{q} m_{2}\left(\mu^{(q)}\right)<+\infty$. Then

$$
\int_{[0,1] \times \mathbb{R}^{d}}|x|^{2} \rho_{\eta}(t, x) d \gamma_{d} d t=\sum_{k=1}^{N+1}\left(\int_{\mathbb{R}^{d}}|x|^{2} d \mu^{(k)}(x)\right)\left(t_{k}-t_{k-1}\right) \leq \sup _{q} m_{2}\left(\mu^{(q)}\right)<+\infty
$$

Letting $\eta \downarrow 0$ in the above inequality, we get

$$
\int_{[0,1] \times \mathbb{R}^{d}}|x|^{2} \rho(t, x) d \gamma_{d} d t<+\infty
$$

Therefore for a.s. $t \in[0,1], m_{2}\left(\nu_{t}\right)<+\infty$ and $\nu_{t} \in \mathbb{P}^{*}\left(\mathbb{R}^{d}\right)$.

Proposition 4.4 The curve $\left\{\nu_{t}: t \in[0,1]\right\}$ solves the following Fokker-Planck equation

$$
\begin{equation*}
-\int_{[0,1] \times \mathbb{R}^{d}} \alpha^{\prime}(t) F d \nu_{t} d t+\int_{[0,1] \times \mathbb{R}^{d}} \alpha(t) L F d \nu_{t} d t=\alpha(0) \int_{\mathbb{R}^{d}} F d \mu_{0} \tag{4.56}
\end{equation*}
$$

for all $\alpha \in C_{c}^{\infty}([0,1)), F \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$.
Proof. We have

$$
\begin{align*}
\int_{[0,1] \times \mathbb{R}^{d}} \alpha^{\prime}(t) F \nu_{\eta}(t, d x) d t & =\sum_{k=1}^{N+1}\left(\alpha\left(t_{k}\right)-\alpha\left(t_{k-1}\right)\right) \int_{\mathbb{R}^{d}} F \rho^{(k)} d \gamma_{d} \\
& =\sum_{k=1}^{N} \alpha\left(t_{k}\right) \int_{\mathbb{R}}^{d} F\left(\rho^{(k)}-\rho^{(k-1)}\right) d \gamma_{d}-\alpha(0) \int_{\mathbb{R}}^{d} F d \mu^{(1)} \tag{4.57}
\end{align*}
$$

since $\alpha\left(t_{N+1}\right)=\alpha(1)=0$. On the other hand,

$$
\begin{align*}
\int_{[0,1] \times \mathbb{R}^{d}} \alpha(t) L F \nu_{\eta}(t, d x) d t & =\sum_{k=1}^{N+1} \int_{t_{k-1}}^{t_{k}} \alpha(t) d t \int_{\mathbb{R}}^{d} L F \rho^{(k)} d \gamma_{d} \\
& =\sum_{k=0}^{N} \frac{1}{\eta} \int_{t_{k}}^{t_{k+1}} \alpha(t) d t \eta \int_{\mathbb{R}^{d}} L F \rho^{(k+1)} d \gamma_{d} \tag{4.58}
\end{align*}
$$

Let $\beta_{k}=\alpha\left(t_{k}\right)-\frac{1}{\eta} \int_{t_{k}}^{t_{k+1}} \alpha(t) d t$. Then combining (4.57) and (4.58), we have

$$
\begin{align*}
& \int_{[0,1] \times \mathbb{R}^{d}} \alpha^{\prime}(t) F \nu_{\eta}(t, d x) d t-\int_{[0,1] \times \mathbb{R}^{d}} \alpha(t) L F \nu_{\eta}(t, d x) d t \\
= & \sum_{k=1}^{N} \alpha\left(t_{k}\right)\left[\int_{\mathbb{R}^{d}} F\left(\rho^{(k)}-\rho^{(k+1)}\right) d \gamma_{d}-\eta \int_{\mathbb{R}^{d}} L F \rho^{(k+1)} d \gamma_{d}\right] \\
& +\sum_{k=1}^{N} \beta_{k} \eta \int_{\mathbb{R}^{d}} L F \rho^{(k+1)} d \gamma_{d}-\left(\int_{0}^{t_{1}} \alpha(t) d t\right) \int_{\mathbb{R}^{d}} L F \rho^{(1)} d \gamma_{d} \\
& -\alpha(0) \int_{\mathbb{R}^{d}} F \rho^{(1)} d \gamma_{d} . \tag{4.59}
\end{align*}
$$

Note that $t_{1}=\eta$ and $W_{2}^{2}\left(\mu_{0}, \mu^{(1)}\right) \leq \eta E n t_{\gamma_{d}}\left(\mu_{0}\right)$. Therefore, as $\eta \downarrow 0$, the sum of the last two terms tend to $-\alpha(0) \int_{\mathbb{R}^{d}} F d \mu_{0}$. By (4.53) in Theorem 4.1 and Proposition 4.1,

$$
\eta \int_{\mathbb{R}^{d}} L F \rho^{(k+1)} d \gamma_{d}=\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}\langle x-y, \nabla F(y)\rangle \pi^{(k)}(d x, d y)
$$

where $\pi^{(k)} \in \mathscr{C}_{0}\left(\mu^{(k)}, \mu^{(k+1)}\right)$ and $\left|\eta \int_{\mathbb{R}^{d}}\left\langle F, \rho^{(k+1)}\right\rangle d \gamma_{d}\right| \leq\|\nabla F\|_{\infty} W_{2}\left(\mu^{(k)}, \mu^{(k+1)}\right)$. Note that $\left|\beta_{k}\right| \leq\left\|\alpha^{\prime}\right\|_{\infty} \eta$ and

$$
\begin{aligned}
\sum_{k=1}^{N}\left|\beta_{k} \eta \int_{\mathbb{R}^{d}} L F \rho^{(k+1)} d \gamma_{d}\right| & \leq\left\|\alpha^{\prime}\right\|_{\infty}\|\nabla F\|_{\infty} \eta \sum_{k=1}^{N} W_{2}\left(\mu^{(k)}, \mu^{(k+1)}\right) \\
& \leq\left\|\alpha^{\prime}\right\|_{\infty}\|\nabla F\|_{\infty} \eta \sqrt{N}\left(\sum_{k=1}^{N} W_{2}^{2}\left(\mu^{(k)}, \mu^{(k+1)}\right)\right)^{\frac{1}{2}} \\
& \leq\left\|\alpha^{\prime}\right\|_{\infty}\|\nabla F\|_{\infty} \eta \sqrt{E n t_{\gamma_{d}}\left(\mu_{0}\right)} \rightarrow 0 \text { as } \eta \downarrow 0
\end{aligned}
$$

Set

$$
I_{k}=\int_{\mathbb{R}^{d}} F\left(\rho^{(k)}-\rho^{(k+1)}\right) d \gamma_{d}-\eta \int_{\mathbb{R}^{d}} L F \rho^{(k+1)} d \gamma_{d}
$$

Using $\pi^{(k)} \in \mathscr{C}_{0}\left(\mu^{(k)}, \mu^{(k+1)}\right), I_{k}$ can be expressed by

$$
I_{k}=\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}(F(x)-F(y)-\langle x-y, \nabla F(y)\rangle) \pi^{(k)}(d x, d y)
$$

Therefore

$$
\begin{aligned}
\left|I_{k}\right| & \leq\left\|\nabla^{2} F\right\|_{\infty} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|x-y|^{2} \pi^{(k)}(d x, d y) \\
& =\left\|\nabla^{2} F\right\|_{\infty} W_{2}^{2}\left(\mu^{(k)}, \mu^{(k+1)}\right)
\end{aligned}
$$

So

$$
\begin{aligned}
\sum_{k=1}^{N}\left|\alpha\left(t_{k}\right) I_{k}\right| & \leq\|\alpha\|_{\infty}\left\|\nabla^{2} F\right\|_{\infty} W_{2}^{2}\left(\mu^{(k)}, \mu^{(k+1)}\right) \\
& \leq\|\alpha\|_{\infty}\left\|\nabla^{2} F\right\|_{\infty} \eta E n t\left(\mu_{0}\right) \rightarrow 0 \text { as } \eta \downarrow 0 .
\end{aligned}
$$

Now letting $\eta \downarrow 0$ in (4.59), we get

$$
\int_{[0,1] \times \mathbb{R}^{d}} \alpha^{\prime}(t) F d \nu_{t} d t-\int_{[0,1] \times \mathbb{R}^{d}} \alpha(t) L F d \nu_{t} d t=-\alpha(0) \int_{\mathbb{R}^{d}} F d \mu_{0}
$$

In what follows, we will prove the existence of $\frac{d^{o} \nu_{t}}{d t}$ which satisfies that

$$
\frac{d^{o} \nu_{t}}{d t}=-\left(\nabla E n t_{\gamma_{d}}\right)\left(\nu_{t}\right)
$$

Let $Z^{(k)}=\left(\nabla E n t_{\gamma_{d}}\right)\left(\mu^{(k)}\right)$ and define

$$
Z_{\eta}(t, x)=\sum_{k=1}^{N+1} Z^{(k)}(x) \mathbb{1}_{\left(t_{k-1}, t_{k}\right]} \in \mathbb{R}^{d}
$$

Letting $T^{(k)}=I+\xi_{k}$, which pushes $\mu^{(k-1)}$ forward to $\mu^{(k)}$, we have

$$
\begin{aligned}
\int_{[0,1] \times \mathbb{R}^{d}}\left|Z_{\eta}(t, x)\right|^{2} \nu_{\eta}(t, d x) d t & =\sum_{k=1}^{N+1} \int_{t_{k-1}}^{t_{k}}\left(\int_{\mathbb{R}^{d}}\left|Z^{(k)}\right|^{2} d \mu^{(k)}\right) d t \\
& \leq \sum_{k=1}^{N+1}\left(t_{k}-t_{k-1}\right) \int_{\mathbb{R}^{d}} \frac{\left|\xi_{k} \circ\left(T^{(k)}\right)^{-1}\right|}{\eta^{2}} d \mu^{(k)} \\
& \leq \frac{1}{\eta} \sum_{k=1}^{N+1} W_{2}^{2}\left(\mu^{(k-1)}, \mu^{(k)}\right) \leq 2 E n t_{\gamma_{d}}\left(\mu_{0}\right)
\end{aligned}
$$

Lemma 4.1 There exists $Z \in L^{2}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mathbb{P}_{\nu}\right)$:

$$
\int_{[0,1] \times \mathbb{R}^{d}}\left|Z_{\eta}(t, x)\right|^{2} d \nu_{t}(d x) d t<+\infty
$$

and a sequence $\eta \downarrow 0$ such that

$$
\lim _{\eta \rightarrow 0} \int_{[0,1] \times \mathbb{R}^{d}} \alpha(t)\left\langle\nabla F(x), Z_{\eta}(t, x)\right\rangle \nu_{\eta}(t, d x) d t=\int_{[0,1] \times \mathbb{R}^{d}} \alpha(t)\langle\nabla F(x), Z(t, x)\rangle \nu_{t}(d x) d t
$$

for all $\alpha \in C_{c}^{\infty}((0,1)), F \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$.
Proof. Define a probability measure on $[0,1] \times \mathbb{R}^{d} \times \mathbb{R}^{d}$ by

$$
\int_{[0,1] \times \mathbb{R}^{d} \times \mathbb{R}^{d}} \psi(t, x, y) d \Gamma_{\eta}(t, x, y)=\int_{[0,1] \times \mathbb{R}^{d}} \psi\left(t, x, Z_{\eta}(t, x)\right) \nu_{\eta}(t, d x) d t
$$

In another word,

$$
\Gamma_{\eta}=\left(I \times Z_{\eta}\right)_{*} \mathbb{P}_{\nu_{\eta}}
$$

where $I \times Z_{\eta}:(t, x) \mapsto\left(t, x, Z_{\eta}(t, x)\right)$ and $\mathbb{P}_{\nu_{\eta}}(d t, d x)=\nu_{\eta}(t, d x) d t$. Then

$$
\left(\pi_{1}, \pi_{2}\right)_{*} \Gamma_{\eta}=\mathbb{P}_{\nu_{\eta}},\left(\pi_{3}\right)_{*} \Gamma_{\eta}=\left(Z_{\eta}\right)_{*} \mathbb{P}_{\nu_{\eta}}
$$

Note that $B_{R}=\{x| | x \mid \leq R\}$.

$$
\begin{aligned}
\left(\pi_{3}\right)_{*} \Gamma_{\eta}\left(B_{R}^{c}\right) & =\int_{[0,1] \times \mathbb{R}^{d}} \mathbb{1}_{B_{R}^{c}}\left(Z_{\eta}(t, x)\right) \nu_{\eta}(t, d x) d t \\
& \leq \frac{1}{R^{2}} \int_{[0,1] \times \mathbb{R}^{d}}\left|Z_{\eta}(t, x)\right|^{2} \nu_{\eta}(t, d x) d t \leq \frac{2 E n t_{\gamma_{d}}\left(\mu_{0}\right)}{R^{2}}
\end{aligned}
$$

It follows that the family $\left\{\left(\pi_{3}\right)_{*} \Gamma_{\eta}: \eta>0\right\}$ is tight; on the other hand, by Proposition 4.3, $\left\{\mathbb{P}_{\nu_{\eta}}: \eta>0\right\}$ is tight. Therefore, the family $\left\{\Gamma_{\eta}: \eta>0\right\}$ is tight. Up to a sequence, we get the weak convergence

$$
\left(\pi_{3}\right)_{*} \Gamma_{\eta} \rightarrow w(d x) \quad \text { and } \quad \Gamma_{\eta} \rightarrow \Gamma
$$

Then $\left(\pi_{1}, \pi_{2}\right)_{*} \Gamma=\rho(t, x) d \gamma_{d} d t,\left(\pi_{3}\right)_{*} \Gamma=w(d x)$ and

$$
\int_{\mathbb{R}^{d}}|x|^{2} w(d x) \leq \liminf _{\eta \rightarrow 0} \int_{[0,1] \times \mathbb{R}^{d}}\left|Z_{\eta}(t, x)\right|^{2} \nu_{\eta}(t, d x) d t \leq 2 E n t_{\gamma_{d}}\left(\mu_{0}\right)
$$

hence $w \in \mathbb{P}_{2}\left(\mathbb{R}^{d}\right)$. Now by disintegration formula, there is a Borel family of probability $\Gamma_{t, x}(d y)$ in $\mathbb{R}^{d}:(t, x) \mapsto \int_{\mathbb{R}^{d}} f(y) \Gamma_{t, x}(d y)$ is Borel for $f \in \mathscr{B}\left(\mathbb{R}^{d}\right)$, such that

$$
\int_{[0,1] \times \mathbb{R}^{d} \times \mathbb{R}^{d}} \psi(t, x, y) d \Gamma(t, x, y)=\int_{[0,1] \times \mathbb{R}^{d}}\left(\int_{\mathbb{R}^{d}} \psi(t, x, y) d \Gamma_{t, x}(y)\right) d \nu_{t}(x) d t
$$

Define $Z(t, x)=\int_{\mathbb{R}^{d}} y d \Gamma_{t, x}(y)$. It is a Borel vector field. We have

$$
\begin{aligned}
\int_{[0,1] \times \mathbb{R}^{d}}|Z(t, x)|^{2} d \nu_{t}(x) d t & \leq \int_{[0,1] \times \mathbb{R}^{d} \times \mathbb{R}^{d}}|y|^{2} d \Gamma(t, x, y) \\
& =\int_{\mathbb{R}^{d}}|y|^{2} d w(y) \leq 2 E n t_{\gamma_{d}}\left(\mu_{0}\right)<+\infty
\end{aligned}
$$

Now consider the function $(t, x, y) \mapsto \alpha(t)\langle\nabla F(x), y\rangle$, we have as $\eta \downarrow 0$

$$
\begin{equation*}
\int_{[0,1] \times \mathbb{R}^{d} \times \mathbb{R}^{d}} \alpha(t)\langle\nabla F(x), y\rangle d \Gamma_{\eta}(t, x, y) \rightarrow \int_{[0,1] \times \mathbb{R}^{d} \times \mathbb{R}^{d}} \alpha(t)\langle\nabla F(x), y\rangle d \Gamma(t, x, y) ; \tag{4.60}
\end{equation*}
$$

or

$$
\int_{[0,1] \times \mathbb{R}^{d} \times \mathbb{R}^{d}} \alpha(t)\left\langle\nabla F(x), Z_{\eta}(t, x)\right\rangle \nu_{\eta}(t, d x) d t
$$

tends to the right hand of (4.60). But

$$
\begin{aligned}
\int_{[0,1] \times \mathbb{R}^{d} \times \mathbb{R}^{d}} \alpha(t)\langle\nabla F(x), y\rangle d \Gamma(t, x, y) & =\int_{[0,1] \times \mathbb{R}^{d}}\left(\int_{\mathbb{R}^{d}} \alpha(t)\langle\nabla F(x), y\rangle d \Gamma_{t, x}(y)\right) d \nu_{t}(x) d t \\
& =\int_{[0,1] \times \mathbb{R}^{d}} \alpha(t)\langle\nabla F(x), Z(t, x)\rangle d \nu_{t}(x) d t .
\end{aligned}
$$

Note that the function $(t, x, y) \mapsto \alpha(t)\langle\nabla F(x), y\rangle$ is not bounded relative to y, however the passage to the limit in (4.60) can be verified by using the usual cut-off argument.

Theorem 4.2 The continuity equation

$$
\left.\frac{d \nu_{t}}{d t}+\nabla \cdot\left(Z_{t} \nu_{t}\right)=0 \quad \text { on }\right] 0,1\left[\times \mathbb{R}^{d}\right.
$$

holds.
Proof. The same computation as in the proof of Proposition 4.4 works.
Theorem 4.3 It holds that

$$
\frac{d^{o} \nu_{t}}{d t}=-\left(\nabla E n t_{\gamma_{d}}\right)\left(\nu_{t}\right) .
$$

Proof. The continuity equation reads as

$$
\int_{[0,1] \times \mathbb{R}^{d}} \alpha^{\prime}(t) F(x) d \nu_{t}(x) d t+\int_{[0,1] \times \mathbb{R}^{d}} \alpha(t)\left\langle\nabla F(x), Z_{t}(x)\right\rangle d \nu_{t} d t=0 .
$$

For $\alpha \in C_{c}^{\infty}((0,1))$, the Fokker-Planck equation in Proposition 4.4 reads

$$
-\int_{[0,1] \times \mathbb{R}^{d}} \alpha^{\prime}(t) F d \nu_{t} d t+\int_{[0,1] \times \mathbb{R}^{d}} \alpha(t) L F d \nu_{t} d t=0 .
$$

The two equations give

$$
\int_{[0,1] \times \mathbb{R}^{d}} \alpha(t)\left\langle\nabla F, Z_{t}\right\rangle d \nu_{t} d t=-\int_{[0,1] \times \mathbb{R}^{d}} \alpha(t) L F d \nu_{t} d t
$$

Let $\hat{Z} \in L^{2}\left(\mathbb{R}^{d}, \mathbb{R}^{d}, \mathbb{P}_{\nu}\right)$ be the orthogonal projection of Z on

$$
\overline{\left\{\sum_{i} \beta_{i} \nabla \varphi_{i}: \beta_{i} \in C_{c}^{\infty}(] 0,1[), \varphi_{i} \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)\right\}^{L^{2}\left(\mathbb{P}_{\nu}\right)}}
$$

We have

$$
\int_{[0,1] \times \mathbb{R}^{d}} \alpha(t)\left\langle\nabla F, \hat{Z}_{t}\right\rangle d \nu_{t} d t=-\int_{[0,1] \times \mathbb{R}^{d}} \alpha(t) L F d \nu_{t} d t .
$$

Then there is a full measure subset $\Omega_{F} \subset[0,1]$ such that

$$
\int_{\mathbb{R}^{d}}\left\langle\nabla F, \hat{Z}_{t}\right\rangle d \nu_{t}=-\int_{\mathbb{R}^{d}} L F d \nu_{t}, \quad t \in \Omega_{F} .
$$

Using the separability of $C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$, there is a full measure subset $\Omega \subset[0,1]$ such that, for $t \in \Omega$,

$$
\int_{\mathbb{R}^{d}}\left\langle\nabla F, \hat{Z}_{t}\right\rangle d \nu_{t}=-\int_{\mathbb{R}^{d}} L F d \nu_{t}, \quad \forall F \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right) .
$$

But by Proposition 4.2, $\int_{\mathbb{R}^{d}} L F d \nu_{t}=\left(\partial_{\nabla F} E n t_{\gamma_{d}}\right)\left(\nu_{t}\right)$. It follows that $\left(\nabla E n t_{\gamma_{d}}\right)\left(\nu_{t}\right)$ exists and $\left(\nabla E n t_{\gamma_{d}}\right)\left(\nu_{t}\right)=-\hat{Z}_{t}=\frac{d^{\circ} \nu_{t}}{d t}$.

References

[1] L.Ambrosio, N.Gigli and G.Savaré: Gradient flows in metric spaces and in the space of probability measures. Lect.in Math. ETH Zürich,Birkhäser Verlag, Basel, 2005.
[2] Mufa Chen: From Markov chains to non-equalibrium particle systems, World Scientific, $2^{\text {nd }}$ edition, 2004.
[3] S.Fang, J.Shao and K.T.Sturm: Wasserstein space over the Wiener space, to appear in PTRF.

