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The topic on the heat equation

ﬁ — A’I,Lt =0 on Rd
is classical; but the porous medium equation
0
% —(AuM) =0 m# 1 (0.1)

arises interests among probabiliste. More precisely, for m > 1 — é, up > 0 such that [ugdz =

1 and [ |z|?updz < +oo, then the weak solution to (0.1) can be interpreted as the solution to
the following ordinary differential equation (ODE)

pt\tzo = updx

where p; € Po(R?) and 1 : Po(R%) — R is a convex functional. A quite general theory says that
for two initial data p} and p3, then

t s Wa(pt, p?) is decreasing.

In particular, (0.2) admits a unique solution. The purpose of this lecture is to understand the
geometric structure of Py(R%).

1 Wasserstein Space (P(R%), W)

1.1 Wasserstein distance

Let
Py (RY) = {u is a probability measure on R%; mq(p) := / |lz|2dp(z) < —i—oo} .
Rd
For u, v € Py(R?), we define

W3 (p,v) = inf {/ |z — y|Pdy(z,y) : v € €, V)} ,
RIx R4
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where €'(u,v) = {7 € P(R? x RY) : (71)ey = u, (m2)sy = v}, here 11 : R4 x R4 — RY is the
projection on the first component, while 79 is on the second one. It is sometimes convenient to
use another more probabilistic formulation:

W2(p,v) = inf {E(1X — Y)?) :law(X) = p,law(Y) = v},
For p, v € Po(R%), Wa(u,v) < +00, since

/ Iw—ylzdv(x,y)§2</ oPirte) + | !y\de(w,y)>
RIx R4 R x R4 RIx R4

=2(ma(p) +m2(v)) < oo

Proposition 1.1 There is a vy € € (u,v) such that
W3 (p,v) :/ | — y|?do(x, y)-
Rd xR4

Proof. By the above remark, W3 (u,v) = inf {fRded |z — y|2dy(x,y) : v € € (1, 1/)} is finite,
therefore for each n > 1, there exists v, € € (u,v) such that

1
/ |z — yPdyn(z,y) < Wi(p,v) + —.
R4 x R4 n

Let € > 0, there exists a compact set K C R? such that
u(E©) + V(K®) < ¢
Now (K x K)¢ C (K¢ x R?) U (R? x K¢),

(K x K)%) <K x RY) + 75, (RT x K°)
=pu(K) +v(K) <e

Therefore the family {v,;n > 1} is tight. Up to a subsequence, v, converges to v € P(R? x R?).
Then v € €(u,v), in fact for any ¢ € Cy(RY),

[ e@inta) = [ @itz ~ [ @iz,

$0 (m1)«y = p. In the same way, (m2).y = v.
Let R > 0. We have

1
/ (2 = yI? A R)drn(a,y) < W2(u,v) + ~,
Rd xR n

letting n — oo gives
/ (lr = yI* A R)dr(z,y) < W3 (u,v),
Rd xRd

Letting R — 400, we get the results. O



In what follows, we denote by
%o(1, v) = {optimal coupling of x and v}
~{we e W = [ lo-sPanten).
Rd xRd
In fact, éo(u,v) is a convex subset of € (u,v).

Kantorovich problem: when %(u, ) has only one element?
Minge problem: when vy = (I x T),u? How is about the regularity of T'?

Roughly speaking, the Wasserstein distance is realized for two highly correlated random variables
(X,Y).

Proposition 1.2 W is the distance on Py(R%).

Proof.(i) Let T : © — (2, x) and v = Typu. Then v € € (u, ) and

W22(M7V)S/ ya:—yyzd»y(:c,y)z/

|z — yPdu(z) = 0.
R xR4 Rax R4

Conversely, if Wa(u,v) = 0, take a o € 6o(p, v) such that [pa, pa |2 —y[*dy(z,y) = 0. It follows
that ~ is supported by the diagonal; so that

/@(w)du(«’v) = /@(fv)dv(w,y) = /@(y)dv(ﬂzy) = /w(y)dV(y)

Hence p = v.
(ii) Consider the map T : (z,y) — (y,z). For any v € 6o(u,v) and ¢ € Cy(R?), define 4 = T,y
and @(z,y) = p(x). Then

L e@ten= [ senden=[ Ty

R2x R4

:/ o(y)dy(z,y) = / e(y)dv(y)
R4 xR4

R xR4
so (m1)+y = v. In the same way, (m2)+y = p. Therefore 4 € € (v, u) and

Wi < [

[ el = [ o= yPdies) = Wi
X

R4 xR

Changing the roles, we get the equality.
(iii) Let pu1,po, pu3 € P(RY). Let v1 € Go(u1, p2), 72 € €o(pa, p13). Then by the result below,
X € P(R? x R? x RY) such that

(1, m2)s A =71, (72, T3)A = 2.
Consider v = (71, m3)«A. Then

[ @i = [ o@airev.s) = [e@iny = [ odo,
[ @)= [e@iren = [e@in) = [ e
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Thus v € € (u1, 13), we have

1

Wa(jur, is) < ( [ - y\zdwx,y))
RIx R4

2
= (/d . |x1 — x3|2d)\(l'1,$2,$3))
RexR

<[l d(z1,22) lL2n) + || d(z2,23) [lL200)
= |l d(z1,22) [ 12¢7,) + || d(@2,23) [|L2(50)
:WQ(MIHU’Z) + WQ(/'LQMUB)v

here d(z,y) = |z — y|. O
Theorem 1.1 Let Ej, Ey, E3 be Polish space. Let v'2 € P(E; x Fs), v* € P(Fy x Ej).

Suppose that v := (m2)«7y'2 = (m1)«y*. Then there exists a A € P(Fy x Ey x E3), such that
(1, m2) A = Y12, (2, T3) L X = 722,

Proof. We have 7 : By X By — E5 and (m2)s7'%2 = v. Let 7;2(dx) be the conditional probability
on F; of y'2 given {my = y}. Note that 7;2 € P(E,) is defined only for y-a.s., y. In term of

probability, v'? is the joint law of a couple of random variables (X,Y), v is the law of Y and
7;2 is the conditional law of X given {Y = y}. That is,

/EleQ f@dy(@y) = /E2 ( . f("”’yhf(dfﬂ)) dv(y). (1.1)

For 723, we write, in the same way,

/ngEg, oy, Z)d723(y, z) = /E2 </E3 gD(y,z)fyj?)(dz)) dv(y). (1.2)
Define a measure A € P(E; x Ey x E3) by
/Eleng?, o(x,y, 2)d\(z,y, 2) = /E2 </Ele3 o(x,y, z)7;2(dm)7§3(dz)> dv(y). (1.3)
If (2,9, 2) = p(z,y),

T 12 T 23 o) — . 12 o) |
[ et = [ steania -,

This implies that (71, 72)«A = 7'2. In the same way, we see that (2, 73)«\ = 723, O
Theorem 1.2 Let fi,,, 1 € Po(R?), then lim,, oo Wa(pin, ) = 0 if and only if

i) pin — p weakly;
ii) (un) has uniformly integrable 2-moment, i.e.,

lim su / z2dun(z) | = 0.



Proof. We first prove the converse part. By Skorohod representation theorem, there is a proba-
bility space (€2, F,P) and a sequence of random variables X,, and X such that

law(X,,) = pin, law(X) = p,

and X,, converges to X almost surely. The condition ii) implies that {|X,, — X|*n > 1} is
uniformly integrable; thus, we have

W3 (b, 1) < E(|Xn — X[?) — 0.

Now suppose W2 (pin, 1) — 0, we prove first the weak convergence of p, to .
(1) If ¢ is 1-Lipschitz, i.e.,
o(z) = )] < |z —yl,

‘/MM_/W : /‘x_y‘dﬂm’y) = (/‘””—yﬁdv(w,y))%

Taking the infinimum over v € € (i, v) on the right side, we get

then

/wdu—/sodv < Wa(p,v).
Therefore for any 1-Lipschitz function ¢,
lim odjy, = / wdji. (1.5)
n—0o0 R4 R4

By considering W, (1.5) holds for any lipschtiz function, in particular for ¢ € C}(R%).
ip
(2) Let o € Cy(R%), consider the cut-off function yz € C>°(R?) such that 0 < yg < 1 and

= [l <R
XRWE) =0 if 2] > 2R.

Then g := ¢ - xg € C(R%). We have

‘ / odpn — / ©RrAfin

S/I@\(l—m)dﬂn

ma(n)
<l lloo -pnflzl > R} <[l @ lloo - =55
Let £ > 0, dRg such that
€
o
SO
sup /godun—/goRdun <e, VR > Ry. (1.6)
n

Now take 1 € C}(R?) such that || o — 9 ||< €, We have

/ YRrdpn — / Ydp,
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but

‘/d}dun — /wd,u’ <e for n > nop. (1.7)
Combining (1.6), (1.7), we get

‘/sodun—/sodu‘ < ‘/wdun—/wadun + ‘/wadun—/wdun
+| [~ [ wan| +] [ wdn— [ orda]

+)/@Rdu—/gpd,u‘ < 5e for n > nyg.

Now we prove ii). For € > 0, £ € R, we see that

1+~ (1) = (e~ P+ (1+2) <141 :=C,

so for a,b € R,
(a+b)? < (1+¢e)a® + C.b2
Take v, € 60(n, 1), we have

/ 22 dn = / @fdy < (1 +2) / g 2dpi + C-W (ttn. ).
Rd R4 x R4 Rd

It follows that
limsup/|ac]2dun < (1 +5)/]:B|2du.

n—-+o0o

Letting € | 0, we get the following

lim sup / 2 Pdpn(z) < / 2 Pdu(z). (18)
Rd R4

n—-4o0o

Let § > 0, 3 n > ng such that when n > ny,
/ (2 (z) < / & 2dp + 6. (1.9)
Rd Rd

On the other hand, for R > 0 given, x — 1g;j<p}(|z[*) A M is lower semi-continuous, then

liminf/ |22 A Mdpn(z) > / 2|2 A Mdu(x)
|z|<R

n—00 |z|<R

or

liminf/ |z 2dpn () > / 2|2 A Mdu(z).
|z|<R

n—00 |z|<R

Letting M T 400 leads to

liminf/ \x|2d,un(x)2/ o 2du(z).
|z|<R

n—00 |z|<R



Or for n > ny,

5(1'2 X 5(1'2 ) —E&. .
/|z|<R|\dun()Z/ 2f2dpu(z) — ¢ (1.10)

lz|<R

It follows that

x|? T)= x2dun,(z) — z2du, (x
/Iz>R|dun<> /Rdeu() /xKRHdu()

< [ JalPdu(e) - / 2 2du(z) + 2
R4 |z|<R

_ / w2 (z) + 2.
|z|>R

Thus
swp [ (o) < [ laPdta) + 2
2| >R

. Then we have

lim sup/ 22y, < 2e.
R—o0o0 p>1 |z|>R

Let € | 0, we get the desired result. O

Theorem 1.3 The space (P2(R?),Ws) is complete.

Proof. Let {ji,;n > 1} be a Cauchy sequence in (Po(R?), W5). Then for ¢ > 0, 3 ng such that
Wo(pin, pim) < €, for n,m > no. (1.11)

Note that
WQ(MTH :ul) < WQ(MTH Mno) + W2(Nn0’ Ml)’

SO
sup Wa(pin, p1) < 00
n

which implies that
m := sup ma(u,) < +00.
n

Therefore the family {pu,;n > 1} is tight, since

1 m
pin ({2l > ) < = / oy, < T

There exists a subsequence {py, } such that p = limy_,o0 ptn, weakly. Let v p, € 60(tin, tiny,)-
Then, as in the proof of Proposition 1.1, the family {7y, n,.k>1} is tight. Up to a subsequence of
Nks Vg — Yn.co Weakly. Now for ¢ € Cy(RY),

/cpd,u = lim /godunk = lim /Lpd’yn,nk = /cpd’yn,oo
k—o00 k—oo



S0 (7T2)*7n,oo = p and Yp,00 € G (tn, ).
Let R > 0.

/d 4 ’m - 9’2 AR d7n,oo = lim ’33 - y’2 AR d'}’n,nky
R xR

k—oo JRpdyRd

but for n > ng, k big enough

/ ’x - 9’2 ANR d’)/n,nk < / |x - y|2d’7n,nk
R xR4 R xRd

= Wg(ﬂnaﬂnk) < 527

SO
/ |x_y|2/\Rd’Ynoo§52-
Rd x R4 ’

Letting R T oo, gives
Wapin, n) <e for n>mng

]
2 Geometric properties
Let u,v € Py(RY). Pick v € €,(u,v). Define
we = ((1 —t)m + tma)wy, t €1[0,1]
that is
[edn= [ o=t + wirie).
R4 R x R4
Then, pg = (m1)sy = p and p; = (m2).y = v. Note that it is easy to see that p; € Po(R?).
Proposition 2.1 We have for 0 < s <t <1, Wa(ps, pt) = (t — s)Wa(p,v).
Proof. Define vs; € € (s, 1) by
Yt = (1 = 8)my + sma, (1 — t)m1 + tm2)sy, 7 € Colu,v), (2.12)
or
Rex R4 Rd x R4
Then
W) < [ o=yl
R4 xR4
= [t sy = (1 e+ )P
Ré xR
(=97 [ le-yPire)
Rd xR
(1 — )W), (2.14)



This implies that
Waps, pe) < (8 — s)Wa(p,v).

If for some sy < tg, it holds
WQ(Msoaluto) < (tO - SO)WQ(M¢ V):

then

WQ(M: V) == WQ(MO?/*LI) S WQ(MO?/”'SQ) + WQ(/”’SO? uto) + W22(,u’t07,u'1)
< soWa(p,v) + (to — s0)Walp,v) + (1 — to)Wa(p,v) = Wa(p, v). (2.15)

This is a contradiction. Therefore

Wa(ps, pe) = (¢ — s)Wa(p, v).

Note that the above proposition implies that for 0 < ¢ < to <t3 <1,

Wo g, s pees) = Wa ey s o) + Woltte, fhes)-

Definition 2.1 Let (Mt)te[o 1) be a curve in Po(R?). We say that it is absolutely continuous in
ACqy if Wo (s, pi) < f r)dr, s<t, m <€ L*[0,1)).

Example 2.1 Let Z : R — R? be a C' vector field with bounded derivative. The differential
equation

ax,
dt
defines a flow of diffeomorphism U; : RT — R? by Uy(z) = Xy with Xi|i—o = .

= Z(Xt), Xt|t=0 =X (216)

Let po € Po(R?) and consider py = (Up)spto. Then py € Po(R%). Let s < t. Define Vst €
P(R? x RY) by

/ (@, y)dss(2,y) = / Uy, Us)dpo. (2.17)
Rd x R4 Rd

Then vs; € € (s, ). We have

W2 (s i) < /R B TRENICNY
/ Ua() — Uy(e) Pdpo ). (2.18)

But |Us(z) |—f |Z(U;)|dt. Then

/|Z )|dT
L2 (o)
/Hz M 210 dT_/ m(7)dr. (2.19)

W3 (s, 1) <




Note that |Z(x) — Z(y)| < c|z — y|, implying that |Z(z)| < ¢(1 + |z|). Then since Uy(z) =
T+ fot Z(Ug(x))ds, we have

t t
U ()] < ]:U|—|—c/ (14 |Us(2)])ds = |9c|—|—c+c/ ()| ds. (2.20)
0 0
Gronwall lemma implies that
|Ui(2)] < (Jz| + c)e” < er(1+|z)). (2.21)

Then |Uz(z)> < 3(1 + |x])? < 2¢3(1 + |z]?) and

1 1
2 = 2 x)at
| merar= [ ] 12 Pauya
<2c3 /Rd(l + |z*)dpo(z) = 2¢3(1 + ma(uo)) < oco.

O
Theorem 2.1 Let (ut)ieo,)) be an absolutely continuous curve in ACy. Then there exists a
Borel vector field Z : (t,z) — Z;(x) € R? such that
(i) Z € L% o), || Zi |l p2guy < mlt) aus. t € (0,1);

(ii) the continuity equation

0
% + V- (Zipe) =0,
holds in the sense that
(i)
/ (O (H)p() + a(t) < Zi(x), Vo) >)dpedt = 0 (2.22)
[0,1] xR4

for a € C((0,1)), ¢ € CX(RY).

Proof. For ¢ € Cy(R), denote 114(¢) = [pa ¢dpe. Then for ¢ € C°(RY),

le(p) — ps(p)| =

/ (o) — (@) dyst| < [Vlloo - Waljas, ae).
RdxRd

where 5 € €0o(ps, pt¢). The function t — p,(p) is absolutely continuous .
Let s € (0,1) be given and 1 > 0 small enough. We consider v, € 6o(ps, pstr)- For z,y € R,
and ¢ € O (R?), we have

1
o) — o) = /0 < (Vo)(ty + (1 - t)x),y — = > dt. (2.23)

Set
1
H(z,y) = /0 (Vo) (ty + (1 — t)x)dt € RY.
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Then

/Rd odpisin — /Rd wdis Z/Rded(@(y) — ¢(x))dy
R4 x R4

Then

1 2
< W) ([ WiGanPn,)
n R4 xR

1

- ‘/ od sty _/ dpus

n|J/rd R4
Take a sequence 7, such that

/ (Pd,us+77n _/ edjis
Rd Rd

Since Wa (s, fs4n,) — 0, we have by theorem 1.3 that jis4,, converges weakly to s as n — oo.
Therefore the family {v,,,n > 1} is tight. Up to a subsequence, ~,, — 4 weakly for some
v € C(us, tbs). We have

(2.25)

. 1
lim —
n—00 1p,

1
= limsup — / odpis 1y — / dps| -
nlo T [JRrd Rd

/ |z — y[?dy(z,y) < lim |z — y|Pdyn(z,y) = Lim W3 (us, iy, ) = 0.
R xR n—oo

N0 JRAxRA
It follows that 4 is supported by the diagonal

D ={(z,y) e REx R : z = y}.
We have

lim H (2, ) Py, = / \H (2, y)[2d5 = / Vool Pdus ().
R4 xRd Rd

n—oo Rd XRd

Therefore for a.s. s € (0,1)

< m(s)[|VellL2(u,) (2.26)

. 1
lim sup — ’ / odpts 1y — / edpus
nlo 1 |JRd R4

since limy o - sz) T)dT = m(s) for a.s. s € (0,1).
Now take § > 0 small enough such that

supp(a) + (=6,0) € (0,1).
Then for 0 < n < 9,

//R sl ds—//Rd 5 — n)p(@)dps(2)ds

=1 1 [ / o(s)pla)din@) = [ als)p(@)dvi (o) ds
/ /R ) S =1 () dpuads. (2.27)

11

and




Then

lim I,, = x)dps(x)ds.
i //Rd is()

1
lim |I,| < / m(s)|a(s)] || Vo o2 ds
nl0 0

Now according to (2.26)

1
:/0 m(s) || a(s)Ve ||L2(us) ds (2.28)

or

[ [ asstniis| < | [“meas ([ [ |a(8)vsﬂ($)|2dus(m)ds>;. (2.29)

Let P, be the probability measure on [0,1] x R? defined by

1
/ P(s,z)dPy(s,x) = / Y (s, z)dps(z)ds.
[0,1] xR¢ o Jrd

Introduce the vector space
= {i @i(s)Vei(z) - a; € C2((0,1)),¢; € C*(RY),n=1,2,-- }
i=1
and V the closure of V under L?(P,). Define for
A= Z ai(s)Vyi(z) €V,

Z// ipi(x)dpss () ds.

Note that due to the linearity of (2.27), the inequality (2.29) holds for A :

1
IL(4)] < /0 m(s)ds Al L2z, (2.30)

It follows that L(A) is well defined, that is, if A admits another expression A = 377" | 3;(s)V;(z),

then
Zazv% Zﬁ] s)Vei(z

Therefore by (2.30)
--% / [ cks)ei@aula ds+z / ()93 (2)dps(2)ds.
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L(A) is independent of the expression. Again by (2.30), L is a bounded linear operator. Then

there exists Z € V such that
1
:/ / < A(s,x), Zs(x) > dusds.
0 JRd
Taking A = aV, we have

//Rd @dusds—//Rd ) < Vp(x), Z ()>du(s)ds

so the continuity equation (2.22) holds. O
We define

T, = closure in L*(R? — R% ) of {Vip: ¢ € C°(RY)}
= called tangent space of Po(R%) at p. (2.31)

Proposition 2.2 Let Z be given in Theorem 2.1. Then for a.s. t € (0,1), Z; € T, and the
solution to the continuity equation (2.16) satisfying this property is unique.

Proof. Let Ay, € V such that ||z — Ay| z2(p,) — 0, or

lim 01 (/R \Zu(z) — An(t,x)y2dut(x)> dt = 0.

n—oo

Up to a subsequence, for a.s. t € (0,1)

lim |Zy(z) — An(t, z)Pdp(z) = 0.

n—oo R

This means that Z; € T),,. Now let Z be another solution to the continuity equation such that
Z; € T, for a.s. t € (0,1). Then we have

1
/ a(t) </ < Zy(z) — Zi(2), Ve > dﬂt) dt =0, Vo € CZ(R?),a € CZ((0,1)).
0 R4
It follows that there exists a full measure subset L, € (0,1) such that
/ < Zy(x) — Zy(2),Ve(x) > du, = 0 for t € L. (2.32)
R4
Let D be a dense countable subset of C2°(R%). Set L = Neep Ly Pick (¢n) € D such that
HV(PTL - VSDHOO —0
asn — 0o. We have fort € L, and n > 1,

/Rd < Zu(@) — Zi(), Veon(x) > dpiy = 0.

Letting n T co gives
< Zilw) - Zy(x), Veo(x) > dug(z) = 0.
R

Therefore, Z; = Zt Lhg-a.S. O
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Definition 2.2 We say that Z; is the derivative process of y; in the sense of Otto-Ambrosio-
Savare and denote P
et
7 =
YT odt

€Ty,

Theorem 2.2 The Wasserstein distance is a Riemannian distance:

1
W3 (1o, 1) = inf{/
0

Proof. Let up and py be given. Consider the geodesic curve

d’puy 2

dt

dt; uy € ACo connects g and Ml} )
Ty

pe = (1= t)m +tm2), v, v € Go(o, 1)

Then by Proposition 2.1, u; is in ACy with m(s) = Wa(ug, t1). Now by the proof of Theorem
2.1

| Z |2,y < Walpo, p11),
which implies that

f{ [

The proof of the converse part is more difficult. We need some preparation. First, we recall an
elementary result in ODE.

d’pt 2

dt

dt; uy € ACo connects pg and ,ul} < W3 (o, p11)-
Ty

Proposition 2.3 Let Z; be a Borel vector field satisfying the condition

T
/ (sup | Zi(x)| + Lip(Zy, B))dt) < 400 (2.33)
0 zeB

where Lip(Z;, B) denotes the local Lipschitz constant in the ball B. Then for x € R% and
s €[0,T], the ODE

dXy(z, s)

7 = Zi(Xi(x,s)), Xs(z,s) == (2.34)
admits a unique solution in an interval I(z,s) D (s — 0, s + 0). Furthermore, if

sup |Xi(z,s)| < +o0
tel(xz,s)

then I(z,s) = [0,T]. Finally, if Z satisfies the global condition

1
s ;:/ (I 2 12 +Lip(Z0, RY) dt < 40, (2.35)
0
then the flow X satisfies
1
/ 10, X (z,8)|dt < S, sup Lip(Xs(-,s);RY)) < e, (2.36)
0 s,t€(0,1]
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Proof. Let’s check the second term of (2.36). We have, for z,y € R?,

t
Xo(,8) — Xoly, )| < |z — y] + / Lip(Ze, RY) X, (2, 5) — X, (y, 8)|dr.
S
The Gronwall lemma gives
1X1(2, 8) — Xi(y, 8)| < | —y] - els BPEEDAT < 10 y16S .

g

Note: This proposition deals with the case where ¢t — Z; is not continuous. If Z; satisfies the
global condition (2.36), then for any t € I(z,s),

t
X (2, 5)] <] + / Z,(X, (x, 5))|dr
St
< |z| +/ WZ:||poedr < |z|+ S < +o0;
S

therefore the life time 7, , = 400 on I(z,s) = [0, 7.

Proposition 2.4 Let ¢ € C}((0,1) x RY) and f € C}(RY). Then there exists a solution u; to
v+ (Zy, Vug) = on (0,1) x R? (2.37)

with uili=1 = f.

Proof. For 0 <t < 1, set

1
plt.) = FCa(w.0) — [ (s Xiw0)ds.
t
Note that ¢ — o(t,2) ¢ C1(R?), but absolutely continuous and z +— ¢(t,z) is Lipschitz. Since
Xs(z,t) enjoys the flow property:
Xt(Xs(2,0),8) = X4(2,0), 0<s<t,
then

1
o (t, Xo(,0)) = £(X1(2,0)) — / (s, Xa(z, 0)ds

Taking the derivative with respect to t in the two sides, we get

(61590 + <V(pa Zt>)(t7 Xt(xv 0)) - w(ta Xt(xv 0))

but for t € (0, 1) given, x — X;(x,0) is a global homeomorphism of R?, therefore ¢ is a solution
to (2.37).

Under the condition (2.33) and assume that 7, € [0, 7] for all x € R%. Then for any o € P(R?),
w = (X¢)«po satisfy the continuity equation % + V- (Zy) =0.

In fact, for ¢ € C.(RY), t — p(X;) is absolutely continuous since for a.e. t,

%@(Xt(l’)) = (Vop(X¢()), Ze(Xe(2)))
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and
T

1
/0 (Ve (Xi(2)), Zi(Xe(2))) ] dt <[| Vi [l /0 sup | 7| dt
where B = supp(p). Therefore

d d

el _ X
o Rdsodut o Rds@( t(z))dpo()

- / (Veo(Xe(@)), Ze(Xo(2)))dpo(a) = / (Y, Z0)d
Rd Rd

which implies that u; satisfies the continuity equation. O

Theorem 2.3 (Representation formula for the continuity equation). Let t — p; € P(R?) be
weakly continuous. Suppose that

1 1
/ (sup |Z¢| + Lip(Zs, B))dt < oo and / / | Z|dpedt < 400, (2.38)
0 B 0 JR4
and
d
% +V - (Zyy) =0 on (0,1) x R (2.39)

Then for pg-a.s. © € R?, X(x,0) does not explode for t € [0,1] and p; = (X¢)«pto-
Proof. See Ambrosio, Gigli and Savaré’s book [1], Proposition 8.18 p.175. O

Proof of Theorem 2.2 First we regularize (u¢) and (Z;). Consider the Gauss kernel

2
=]

pe(x) = (27r5)_%e_ pE

and set .

py = pe % pey By = (Zep) * pe, Zf = ;T‘i

t
where

= / pe(@ — y)duely) € CF° (R
Rd

E = / pe(@ — ) Zu(y)dpe(y) € CF°(RY RY)
Rd

By the continuity of (¢,z) — pi(x) (which is left to the reader as an exercise),

inf ¢(x) > 0.
|z|eR,t€(0,1] 'ut( )

Therefore Z7 satisfies the first condition in (2.38). By the following Lemma 2.1
1 1
/ / | ZE2dusdt < / / | Z4|2dpedt < +o0. (2.40)
0 JRE 0 JRd

16



To apply Theorem 2.3, it is sufficient to check

dug
dt

-V (Z) =0
Let ¢ € C(RY),
[ ez = [ (VorEf)do
Rd Rd
= [ (Vela) 2l ~ y)d(w)iz
R4 xRd
Doing the change of variable, z = x — y, we have

V(z)p:(x — y)de = / Vol(y + z)pe(z)dz
Rd R4

=/, Vol(y — 2)pe(2)dz = V(p * p:)(y)

Therefore
[ (96@) 2ot~y = [ (Vo po). Z)dnly)
RIx R4 Rd

Hence

1

| [ et + oz, ondar
0 R
1
:/0 /Rd(—a’(t)so * pe + a(t)(V(p * ps), Zt))du(y)dt = 0,

since [ p(x)dps(x) = [(p* pe)(y)dpe(y) and ¢ * p. € C5°(RY).
By representation Theorem 2.3, there exists a flow of measurable maps Xy : R? — R? such that

pi = (X5)wptp-
Define n° € €' (ug, ui) by
/ (e, y)dif (2, y) = / (e, X5 (2))di ().
Rd

Then




where the last inequality is deduced by (2.40).
The last part is to check that u$ converges to p; weakly: for ¢ € Cp(R9),

/ pduy = / o(x)p=(x — y)dus(y)dz
R4 R4 x R4

= [ et~ o] ) [ ot <=0

W2 /"LOMU/l / / |Zt‘ dutdt
1

WQQ(/‘LO’,UJI) S/ / |Zt‘2dﬂtdt
0 JRd

in fact, (u,v) — W2(u,v) is semi-lower continuous. O

Now letting € | 0 in

we get,

Lemma 2.1 We have

1 1
/ / | Z¢ |2y dt g/ / | Zy | dpedt < +o0.
0 JR4 0 JRd

crn pe(x — y)dp(y)
zite) = [ 2 =2

Zi@P < [ 1R o)

Proof.

By Jensen inequality

z)
Then
L z@Pi@d< [ 1z 0)Pote = d)ds
RdxRd
= [ 2wl [ oo = [ 1Zd)Pduty)
Rd Rd Rd
Integrating with respect to ¢, we get the result. O

For further development, we need the following result due to Brenier and McCann.
Theorem 2.4 (Monge optimal map) Let ji1, pus € Po(R?) such that the density with respect

to the Lebesgue measure \; exists. Then there exists a unique invertible measurable map
I+7T:RY— R? such that

po = (14 T and W2, iz) = /R @) ()

18



As a byproduct of the proof of Theorem 2.4, in this case,

Go(pr, p2) = {(I x (I +T))wpa}

In what follows, we will denote

d
P4(RY) = {1 € Po(RY) : d—;‘d exists}

Proposition 2.5 Let u1, o € P3(RY) and T given in Theorem 2.4. Then
wy ;=T (7Y €T, for a.ste(0,1)

where
7o =1+tT and vy = (7¢)spi1-
Proof. We have

W2 (a1, 11) < / & — 7o) 2y = £ / T2y ()
R4 R4

or
Wa(pa, ve) < tWa(pa, p2).
W2 (2, 1) < / oo (T + 1) Pdpa(a)
R
_ /d &+ T(2) — 74(2) 2dpua ()
R
S— / () Py ()
]Rd
or
Wa (e, ve) < (1 —t)Wa(pa, p2).
Therefore

Wa(pr,ve) = tWa(pa, p2)

and 7y is the Monge optimal map. By convexity of the entropy functional (see the next section),
vy € PY(R?) and 7,7! exists. Now for ¢ € C°(RY),

d

d
& S edvy = pn /Rd o(x +tT(x))dp (z)

= [ (Vla+ 7). T@)dua @)
= [ (Vo1 )
R4

Let Z; = dzl;’t, then there exists a full measure set Q, C (0, 1) such that

/d<Vg0, Wt — Zt>th =0
R
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Using the separability of C2°(R%), there exist a full measure set  C (0,1) such that
/ (Veo, Wy — Zy)dvy = 0,¥p € C2(RY).
Rd

Then 3n; € L2(R% R?, 1) orthogonal to T, such that

Wiy =m + Zy.

/ () dpy = / Wi dv, = / \Z2du, + / e 2y
Rd R4 Rd Rd

1 1
= W22(,LL1, MQ) = / / |Zt|2d1/tdt + / / |’I7t|2dljtdt
0 JR4 0 JR4

= n=0

3 Convex functionals on Py(RY)

The notion of convex functionals in Wasserstein spaces was first studied by McCann: They have
deep applications in Functional inequalities, in gradient flows and in non-linear PDE.

Definition 3.1 () convexity along geodesics) Let ® : Py(RY) — (—00, 0] be a semi-lower
continuous functional and A € R be given. We say that ® is A-convex along geodesics if for any
w1, 2 € Dom(®), 3 v € Go(u1, u2) such that

B} ~?) < (1= D)D) + 19 (na) — S(1 — W (1, o) (3.41)
where
i = ((1 = t)my + tmo)yy. (3.42)

In what follows, we will give an interesting example of geodesically convex functionals.

Example 3.1 Let F : [0,00) — (—00,00] be a proper, lower semi-continuous convex function

such that F'(0) = 0,liminfg i(cf) > oo for some o > d%‘f_Q. For example, (i) F(s) = slogs,

(ii) F(s) = ->—, m > 1 satisfy the above conditions. For such a function F, we define the
functional F : Po(R?) — (—o0, 0] by

F(u) = {fm F(p(x))dAa(x) if p= &

00 otherwise.

Proposition 3.1 If the map s — s%F(s™%) is conver and decreasing in (0, 00), then the func-
tional F is convex along geodesics: Yy, pia € Po(RY), Iy € Go(p1, u2) such that

Flu™?) < (1= )F () + tF(pa),

where =% = (1 — t)m + tma)sy.
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Proof. The proof of this result uses sophisticated properties of Monge optimal transport maps,

we refer the reader to [1], p.212. O
Remark 3.1 For F(s) = slogs, sF(s~%) = —dlog s is convex and decreasing.
For F(s) = nj:nl, s1F(s77) = s(;;ml)d it is the same as above.

Remark 3.2 The two examples given above are among the most important in Py(R?) : the
gradient flow associated to s — slogs corresponds to the heat equation, while to 72—: the Porous
medium equation.

Remark on the convexity of y— FW3(u, po)

Let’s begin with the function x — %xz on R. We have

(1 —t)x+ty)> =1 —t)a? +ty* —t(1 —t)(x —y)?

or

1 1 1 1
L=tz +ty) = (1 —1)2” + Sty* — St(1 - t)(z - y)*,

which is finer than the convex property of z — %xQ In higher dimension, R¢, the Hessian of
z — 5|z|? is Id, so we have that

1 1 1 1
Sl =z 1y < (=Bl + Stly* = St = )] -y

O |

However for the Wasserstein distance, it has been noticed that y +— %sz(u, fp) is not 1-convex
along geodesics(see [1], p.204), but 1-convex along an interpolating curve belonging to a larger
class of curves: generalized geodesics.

Definition 3.2 A generalized geodesic joining ua to pus (with base p) is a curve
pi 0= () A

where A € P(R? x RY x RY) such that (71, m2)«\ € Golpr, p2), (71,73)sA € Go(p1, u3) and
7273 = (1 — t)mo + tms.

Note that {geodesics}C {generalized geodesics}. In fact, take uy = po and v € 6p(u2, u3) and

Y11 € Go(p2, p2). Then for i € T'(p1, 2, p2) such that (71, 72)«ft = 11 and (w2, 73)«ft = 7y, We
have

Convexity along generalized geodesics

We say that ® : Po(R?) — (—o0, 00| is A-convex along generalized geodesics if for any 1, pa, p3 €

Dom(®), there exists a generalized geodesic u7 3 connecting o and p3 such that for all ¢t € [0, 1]
- (1 —1t)
P(pp ") < (1= )(pa) + 1P(pg) = W5 (2, 13)- (3.43)

If A > 0, a direct result of (3.43) is the uniqueness of the minimum of ® over any “generalized
convex” subset C' C Dom/(®).
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Proposition 3.2 We have that
Wi (s ) < (1= )W3 (1, o) + W3 (pa, p3) — t(1 — )W3 (pa, pi3).-

Proof. Define 11,7 = (1 —t)ma +tmig).fu € Cp1, i 2), where m2 = (m1,m2), 13 = (71, 73).
Then

— 1,2—3
W3 (1, 17 3)§/Rd o — ol dp,
X
:/ |(1 *t)(l‘l *1’2) +t(f)§'1 *xg)‘zdﬂ(l‘l,xg,xg)
R xR4 xRd

:/ (L =t)|wg — 21]* + tlwg — 21]* — t(1 — )|z — 23]?)dfi(21, 22, T3)
R4 x R4 x R4
< (1= W5 (1, p2) + tW5 (ua, pr3) — t(1 = )W3 (o, p13).

The result follows. U

Entropy functionals and log-concave measures

Let «, 1 be Borel probability measures on RY, the relative entropy of p with respect to v is
defined by

_ [ Jgaplogpdy if du= pdy
Enty(n) = { 00 otherwise.

Introduce the function ( )
_ | s(logs—1)+11if s>0,
H(s) = { 0 if s<0.

s+ H(s) is lower semi-continuous, strictly convex function on R — [0, co]. Note that

Ent., (1) = /]Rd H(p(x))dy >0 and Enty(n) =0 < p(z) = 1.

Now we consider v = Ce™V g € P(RY).

Proposition 3.3

Bt() = )+ | Vi@duta) ~logC.

where

_ J Jrap()log p(z)dXa(z) if 1= pAa,
Flu) = { - 00 otherwise.

Proof. let = py = pCe~" A\q. We have that
F(p) :/ pCe "V log(pCe™")d\g
R4
—/ plog pdy + / log(Ce™V)du
Rd Rd

= Ent., () — /]Rd V(z)du(x) +log C.
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Proposition 3.4 Suppose V(z) > —A — B|z|? and for x,y € RY,

(1 — 1)

V(A =t +ty) < 1=V (2) +tV(y) - ——lo —yf,

then the functional

= Faop) == y V(z)du(z)

is A-convex along all geodesics; along all generalized geodesics if A > 0.

Proof. Note that for u € Po(R?)
/ V(z)du(z) > —A — Bma(u) > —oc.
Rd

So the functional F : Po(RY) — (—o0, 0c]. Now let pu1, 2 € Po(RY) and v € Go(ju1, p2). Consider
the geodesic
e = ((1 = t)my + tma)y.

Then
Fa) = [ V@) = [ V(@ -t + )ii(ey)
Rd Rd xR
which is smaller, by A-convexity of V, than

[, a=ove+we) - =D - iy
R4 xR4

-0 [ V@) +t [ v - 5 [ eyt

A(1 — t)

9 W22(M1,M2)~

= (1 —t)Fa(p1) + tFa(pz2) —

We prove the A\-convexity along geodesics. Let’s see the A-convexity along generalized geodesics.
Let pig € Po(R?) be arbitrary, consider T' € T'(ug, j1, pt2) such that

(m1,m2)+I" € Go(po, 1), (m1,73)4I" € Go(p1, p2).

Let pui—2? = ((1 — t)m2 + tn3).[. We have that
Pt = [ VI y i)
R2xR4 x R4

<(1-1) / V@)D (e,y, 2) + t / V(=)dl (2, y, 2)
R xR xR4 R xRd xRd

M1 —t
S0 ly— 220,y 2)
2 R xRY x R4

< (1= 0Fa(m) + tFa2) — 211, ),

since (ma, m3)« ' € € (p1, p2). O
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Corollary 3.1 Let v = (/o) Ad be the standard Gaussian measure. Then p — Ent.(p) is

1-convex along all generalized geodesics.

Proof. The proof consists of two parts, the easy part concerns the functional F2, where
2

V(z) = —%, which is 1-convex; the difficult part concerns F with F(s) = slogs, which

is, by Proposition 3.1, convex along all generalized geodesics. O

Gradient flows associated to a convex functional on R?

In the remain part of this section, we would like to emphasize the important role of convex
functionals. Let’s discuss only the case of RY. First, let ® : R? — R be C? such that

Hess(®) = ik >Ad, A>0 (3.44)
ess(®) = eidz; ) = , , .
then (1t
D((1—t)z+ty) < (1 —t)®(x) + tD(y) — (2_)|x —yl? (3.45)
Consider the differential equation
dX
d7t == —(VCID)(Xt), Xt|t:0 =XT.
t
Then we have J IxX
—B(Xy) =< VO(Xy), — >= —|VO(X,)|* < 0;

dt dt

Therefore
O(X;) < O(x) forall t >0

implying that X; does not explode. Now we compute
d
1 Xi(@) = i) = =2 < Xi(w) = Xi(y), VO(Xi(2)) = VO(Xi(y) > (3.46)
but
1
Ve (Xi(2)) - VO(Xi(y)) = (/ Hess®((1 - s)Xi(y) + SXt(w))dS> (Xi(z) = Xi(y))-
0
Combining (3.44) with (3.46), we get
d
1 Xi(x) = Xi(w)® < —22X(x) - Xi() | (3.47)
which implies that

| Xi(x) = Xe(y)? < e Mx —yf?

or

| Xe(2) = Xe(y)| < e Mz —y. (3.48)
Now for a general convex functional ® satisfying (3.45), the gradient is replaced by the notion of
sub-gradient: we say that v € R? is a sub-gradient of ® at x if ®(x+y) > ®(2)+ < v,y > +o(|y|),
as y — 0. We denote by 0®(x) = {subgradients of ® at x} which is a convex subset of R

A result in convex analysis says that for a lower semi-continuous convex function ®, V&(x)
exists for a.e. z € R? and 0®(z) # 0 for each z € R,
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Definition 3.3 We say that X; : R? — R? is a gradient flow associated to ® if t — Xy is

absolutely continuous and
dXt (I‘)

dt

€ 00(Xy()).

Theorem 3.1 (De Giorgi) If ¢ is A\-convex with A > 0, then

[ Xe(2) = Xe(y)| < e Mz —yl.

4 Gradient flow associated to the entropy functionals

The general theory of gradient flows associated to convex functionals on Po(R?) is well established
in [1], and also complicated. To simplify the things, we take the entropy functional

p— Enty, (1)

where v; =standard Gaussian measure on R, By the discussion in Section 3, it is 1-convex
along all generalized geodesics. In what follows, we denote

P*(RY) = {u € Po(R) : Ent,, (1) < o0}
Then Ent., : P*(R%) — [0, c0).

Proposition 4.1 Let Z be a smooth vector field on R% with compact support and (U )icr be
the flow of diffeomorphisms associated to Z:

dUt (.@)
dt

= Z(Ui(z)), Uo(x) ==z
Then

(Ut)sva = Kt - vas
with

Ky(z) = exp < /0 t djv,yd(Z)(Us(x))ds>

where div.,,(Z) is the divergence of Z, relative to vg4:

/RdWso, Z)dryg = /RdwdiV»m(Z)dw, p € Cp(RY),

we have

div, (2) = (:r:iZi(a:) — 8?3:3) ) .

=1

Proof. Let € CL(R?), we have

/ () K () () = / (UL () dva(z)
R d

R
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which implies that

it |, = div+,(Z).

Now using the flow property U;+s = U, o Us, we have

G | s@ri@aue) =1 [ o

- / (U diva, (Z)da
R4

= [ div, (D)U-1) - Kada

It follows that Ik
t .
W = le»m(Z)(U_t)Kt7 KO =1

which implies that

K, = exp < /0 t divw(Z)(Us)ds> .

2
Since T), = {VF : F € Cgo(Rd)}L (M), we will consider Z = VF and U; the associated flow.

Proposition 4.2 Let yy € P*(R?) be given and u; = (Uy)«(pt0). Then

d
—Ento, (p)li=0 = /d LFdpg
R

dt
where LF' = div,(VF') which admits the expression
d d
O*F OF
LF = — — —
— Oz? + ;xz ox;

Proof. Let pig = po~ya, then for ¢ € Cy(R?),

/ SOMt:/ ‘P(Ut)POd’Yd:/ 0po(U—¢)Kdyg
R Rd Rd

It follows that
pe = po(U—t) Ky - va := pt - Vd
Then

E”t'yd(/it):/Rd po(U—t) Kt 1g(po(U-+)Kt)dva
:/Rd polg(po(U-t)Ki)dva

= Ent.,(po) + /dlg K (Ut) - podrya
R
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By the expression of K,
t
lg KU = [ (LF)(Ue(@)ds
0
Formally

d
%E”tvd (12t)

= / LFdpuyg.
t=0 R4

To make the computation rigorous, we need the estimate:

2
pT
| K¢ |5 < /Rd exp (p — ‘leyd(Z)odVd, t<T. (4.49)

By expression of LF', there exists a small ¢y > 0 such that

2
/ 20 lLFF gy < 400
Rd

Set uy = fg 1(LF)(Ui—s(z))ds, by Jensen inequality,

t 2
/ €€0|“t|2§/ <1/ 650LF(Ut—S)|2dS> dva
R4 re \t Jo
]. t LF2
:/ </ el -Kt_sdfyd)ds
t 0 Rd
: :
< (/ 62€°|LF|2d7d) _ (/ €4Lded>
Rd Rd

according to (4.49) for p = 2 and K;_s. Now by Young inequality

/ ulpoda S/ (6%'%2 + 21 Po) dva
R4 Rd e %

1 1
= [ e+ Bty () - £
Rd €0 €0
Combining with the above estimate, we get
sup / |ut|* podryg < +o0
0<t<1 JRe
Therefore we can take the limit under the integral, the proof is completed. 0

We will denote by
d
(OBt ) (o) = - li=o Bt ().

Example 4.1 Let py > o and py € C5°(R?). Then 1g po, V(lg po) € L*(R%, vy).

We say that lg pp € D?(R?, ~4). Then there exists ¢, € C2°(RY) such that
/Rd (Ien —1g pol* + [Vion — Vg pof*) dya — 0.
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In particular,

AJV%—V@mewwéhmhwAﬁvm—vgmewﬁ&

therefore Vg pg € T),,. Now

(@ rty,) (o) = | divs, (VP
z/kVRVmMWZ/XVRV@mMm-
R4 R4

Definition 4.1 We say that the gradient VEnt,, exists at pg € P* (R9) if there exists v € Ty
such that for all ¢ € C°(R?),

(OvypEnty,)(po) = (v, Vgo)THO.
It is clear that v is uniquely determined and we will denote

v =VEnty, (o) € Ty

Theorem 4.1 Let pg € P*(R?). Then for any n > 0, there exists a unique fi € P*(R?) such
that

1 . . . 1 *
3V )+ (1) = inf { S92 s, )+ nts, 1) 0 € PP (R
and the gradient V Ent., exists at [i

Proof. Uniqueness of [i. Suppose that there are two measures i1, fis which realize the mini-
mum. By Proposition 3.2, there exists a generalized geodesic fi; jointing fi1, fio such that

tH(1—t)
2

1 R 1 R 1 . FN
§W22(M0, i) < (1— t)§W22(M0,,u1) + §W22(M0,,u2) - W3 (fix, fi2)
By Corollary 3.1,

t(1—t)
2

Enty, (1) < (1 —t)Enty, (1) + tEnt,, (jfi2) — W3 (i, fi2),

It follows that .
§W22(,U07 i) + nEnty, (i) < minimum

which yields the contradiction.
Existence Let

: 1 .
m = inf {2W22(,u0,,u) +nEnty, (1) : p € P (Rd)}

which is finite. Then for n > 1, Ju,, € P*(R?) such that

1 1
§W22(M0uun) + nEntvd(ﬂn) <m-+ o <m-+1 (4.50)
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From which we deduce that sup,, W3 (po, fin) < 400 so that

sup/ 22, < +o0.
Rd

n

Therefore the family {u, : n > 1} is tight. Up to a subsequence, u,, converges to ji € PQ(Rd).
We will prove that g € P*(R%). Let

C = sup Ent.,(pn) < 0.
n>1

Let pn, = pnyq. We have

1
/ pndyg < —— / prlog ppn dryg.
pn>R ]'OgR >R

But
Enty,(p) = /R  Plogpda
=/ plogpdvﬁ/ plog pdya
0<p<1 {p>1}
1
> —— +/ plog pdvi,
€ J{p>1}
since ming<s<i(slogs) = —é. Then for R > 1,
1
/ plg pdyg < / plg pdya < Enty,(p) + -
{p>R} {p>1} €
Therefore
1 1
sup plgpdys < —(C+-) -0 as R — o0 (4.51)
n J{p>R) lg Rt €

Let ¥ : R? = R be a bounded Borel function. Then there is a constant Cy such that for 6 > 0,
Jp € Cp(RY), || ¢ [lo< Cy and

/ |9 — pldya <9, / [ — p|dji < +o0.
R4 Rd

Hence

’/ﬂq{d?ﬁpndv(i—/ﬂ%dtbdﬂ‘ S/Rd |<P—¢|Pnd7d+/ﬂ%d\¢_¢|dﬂ

+‘ / ©pndya — / wdji
R4 R4

/ !w—wlpndvdSR-/ Iw—w\dVdJr/ [ — Ylpndrya
R4 {anR} {pn>R}

the first term in the right side,

SR'(5+2Cw'/ PndYa
{pn>R}
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Let € > 0, By (4.50), take R big enough such that

QCw : / pndyg < c
{pn>R} 4

Choose 0 < %, then we get [pq | — @|pndya < §, for all n. Now for n big enough, the last term
in (4.51) is smaller than £, so we have for n > ng big enough,

1’
' / g — / wdﬂ‘m
R4 R4

This means that for any bounded function ¢,

/ $djy = lim / Upada
Rd N—0o0 JRrd

In particular, for E € B(R?), v4(E) = 0, we have fi(E) = 0. In other words, dji = p - dyq. Now,

Ent.,(p) <liminf Ent,,(p,) < C < +oo.
(0.9}

n—

Now using again the semi-lower continuity of

1
p= S W3 (o, 1) + 0Bty (1)

We get

1 .

5 W2 (1o, 1) + nEnts, (j2) = m.
In the last part, we will prove that (VEnt,,)(1) exists. Let (U;) be the flow associated to VF
with ' € C°(RY). Let I' € 6o(j0, 1) and define T'y € €' (o, (Uy)+f1) by

/ (a, y)dT; = / (a, Ui())T(d, dy).
RI x R4

Rd xRd
We have
W0, (Wh)eit) = WEGa0e) < [ (o = Ui = o = ") P(dn,dy
X
then
1 : A
lim — [W3 (o, (U)wft) = W3 (o, 1)) < / (x =y, Z(y))T (dz, dy), (4.52)
- Rd x R4

where Z = VF. On the other hand, by construction of fi, for ¢ > 0,

0<

-+ |3

[t (U2)of) — Bt (0] + o [W3 (o, (U)of) — W3 o, )]

Letting ¢t — 0, the first term tends to 7 - (OyrEnt,,)(f1). Combining with (4.52), we get

0< 0 (OorBnt,)(@) - [ o=y Z()(dn.dy)
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Using Proposition 4.2,
8,VFEntyd = —8VFEntyd,

Changing F' into —F', the above inequality gives

(OgrEnty)(7) = - / (& — y, Z(y))T(dz, dy) (4.53)
1 JRdxRd

Now by Brenier’s result, I' = (I + (I 4+ &))«po. The right hand of (4.53) is written

1 . . A
=5 L6 2 s = [ 607, TP i)

where 7 = I 4+ £. Note that
[ teor B [ l6duo = W) < +0
therefore (VEnt.,)(f1) exists, which is the orthogonal projection of —% on Tj. O
We will denote by
Dom(VEnt.,) = {v € P*(R?) : VEnt,,(v) € T, exists}.

Now we will use the De Giorgi “minimizing movement” approximation scheme to construct the
gradient flow associated to Ent.,.

Let 10 = pg € P*(RY) be given, and u(") = /i obtained in Theorem 4.1. By induction, define
step by step p(™ which realizes the minimum of

so we get a sequence of probability measures {4(;n > 0} c P*(R%).
Let N = [%] be the integral part of % Define

N+1

I/n(t, dr) = Z u(k)(d$)]l(tk717tk](t), with ty1 =1
k=1

Notice that v, (t,-) € Dom(V Ent,,) for each t > 0.
Proposition 4.3 The family {v,(t,dz)dt;n > 0} over [0,1] x R? is tight.

Proof. By construction of {u(¥); k > 1}, we have
1 _ _
W3 (0, 1) 4 Bty (n®) < Bty (u*Y) (4.54)

For any 1 < ¢ < N + 1, summing the above inequality from & = 1 to ¢ gives

q
1ZW (+=1), ) 4 Bty (1) < nEnt., (1),
=1
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Foreach 1 < g < N,
W29,y @0y < N2N w2 (u*Y, 1%y < aNpEnt.,, (1) < 2Ent,, (1)
According to (4.54), we have
W3 (), n @) + Ent,, (49) < 3Ent,, (1) (4.55)
Therefore the family {u(? : ¢ > 0} is tight: Let ¢ > 0, there is a compact set K C R? such that

D (K°) < e, for ¢ > 0. Now

[ wtdnr= 3" O - 1) < ¢
[0,1]x K¢

Therefore {v,;n > 0} is tight. O

Then there is a sequence 7 | 0 such that v, (t,dz)dt converges weakly to v(dt,dz). Set u*) =
p(k)fyd. Then

N+1
o (t, dx)dt = (Zp Lty ] )) dya(z)dt = py(t, x)dya(z)dt.

We have

N+1
/[ . py(t, ) 1g py(t, x)dvyq(x Z Enty, (™)t — th—1) < Entw(#(o)) < 400
0,1]x

Again using the lower semi-continuity of

p— Enty,ed(p),

we see that Ent.,ga(v) < +00 and v(dt, dz) = p(t, x)dvy4(x)dt, with
/ p(t,x)1g p(t, x)dyqdt < Ent., ().
[0,1] x R4

It follows that for a.s. ¢t € [0,1], Ent,(p(t,-)) < +oo. Let

vi(de) = p(t, z)dya(x).

By (4.55), sup, mo(p?) < +o00. Then

N+1
/ |x’2pn(t, x)d')/ddt (/ |x’2du ) ( E— tk*l) < Sume(M(Q)> < 400
[0,1] xR4 q

Letting 1 | 0 in the above inequality, we get
/ lz|?p(t, z)drygdt < +o0
[0,1] x R4
Therefore for a.s. t € [0,1], ma(14) < 400 and vy € P*(RY).
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Proposition 4.4 The curve {v; : t € [0,1]} solves the following Fokker-Planck equation
—/ o (t)F dvdt +/ a(t)LF dndt = a(O)/ Fduy (4.56)
[0,1] x R4 [0,1] x R4 R4
for all a € C°([0,1)), F € C*(R?).

Proof. We have

N+1

+

/ o (W) Fuy(t,de)dt = > (aflty) —a(tk_l))/ Fp®)dry
[0,1] x R4 RA

d

d
a(ty) /R F (p"™ — p*)drg — a(0) /]R Fdu®, (4.57)

M= 11

Eod

=1
since a(ty+1) = (1) = 0. On the other hand,

N+1

a(t)LF v,(t,dz)dt =
L e COEE 02 >
N t
1 k41
=y - / a(t)dtn / LEpH D dry,. (4.58)
kzon tr Rd

tr d
/ a(t)dt/ LEp™®) dg

th_1 R

Let B = af(ty) — % bt a(t)dt. Then combining (4.57) and (4.58),we have

Ly

/ o (8)F vy (£, dar) b — / () LF vy (t, d)dt
[0,1]xR4 [0,1]x R4

N
= alt) [ F (p®) — p ) dyy — n/ LFP(k-i_l)d’Yd}
k=1 R Rd
N t
+ Zﬁk’?/ LFp" ) dy, — (/ a(t)dt> / LFpWdry
k=1 R4 0 R4
—al0) /Rd FpVdra (4.59)

Note that t; = n and Wgz(uo,/l(l)) < nEnty,(po). Therefore, as n | 0, the sum of the last two
terms tend to —a(0) fpa Fdpo. By (4.53) in Theorem 4.1 and Proposition 4.1,

77/ LFp* ) dny, =/ (z —y, VF(y))r*) (dz, dy),
R4 R4 xRd

where 7" € Go(u®, u*k+Y) and |n [pa(F p* TV dya| < | VF|loWa(u®, uk+D). Note that
|Bk] < [l [loon and

N N
Z‘ﬂlm/ LFp(k+1)dfyd‘ < HO/HOOHVFHOOTIZWQ(M(IC)’u(k+1))
k=1 R k=1
N 1
< oo IV FllootVR (Y W), 40
k=1

< [0/ lloo[[VE llsony/ Enty,(10) — 0 asn | 0.
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Set
I =/ F (p® — p+)dyy —?7/ LFp* D dyy.
Rd Rd

Using 78 € €o(u®, u++1), I;, can be expressed by

I - / (F(z) - F(y) — (& — y, VE(y))r® (dx, dy).
R4 x R4

Therefore
] < | V2F )| / & — yPa® (dz, dy)
R4 x R4
= [V2F oo WE (), D),

So

N

S ot Tl < oo [P2F o W2Gu®), u+0)

k=1

< llalloclV2FlloonEnt(10) — 0 asn | 0.

Now letting n | 0 in (4.59), we get

/ o (t)F dydt —/ a(t)LF dvdt = —a(0) | Fdpuo.
[0,1]xR4 [0,1]xR4 Rd

In what follows, we will prove the existence of % which satisfies that

dOI/t
dt

= —(VEnt,,) ().

Let Z®) = (VEnt,,)(u®) and define

N+1
Zy(t,z) = Z Z(k)(‘r)]l(tkflvtk} €R’
k=1

Letting 7" = T + &, which pushes p*~b forward to u®), we have

N+1

ti
[ zaPdnd=3" [ ([ 120Pa)
[O,I}XRd k=1 th—1 R4

™ |6 o (T®)~1]

< (ty — t dp®)
< kZ:l( k— th 1)/Rd e 1
1 N+1
<, W3 (u*=1, u®y < 2Bnt,, (1)
k=1



Lemma 4.1 There exists Z € L?>(R?,R%P,) :

/ 12, (t, )2 dva(de)dt < +oc
[0,1]xR?
and a sequence 7 | 0 such that

lim a(t)(VE(x), Zy(t, $)>Vn(t7d:v)dt=/ a(t)(VF(x), Z(t, x)) vi(dx)dt

1=0 J[0,1]xRd [0,1]xR4
for all o € C°((0,1)), F € C*(RY).

Proof. Define a probability measure on [0,1] x R? x R? by

/ U(t,z,y)dly(t, z,y) = / Y(t,x, Zy(t, x))vy(t, dz)dt.
[0,1] x R4 x R4 [0,1] x R4

In another word,
Ly =% Zy)Py,,

where I x Z, : (t,x) — (t,x, Zy(t,z)) and P,, (dt, dx) = vy(t,dx)dt. Then
(7717 WQ)*Pn = IP)I/»,]7 (7T3)*Pn = (Zﬂ)*PVn'

Note that Br = {z||z| < R}.

()T (BS) = / L1 (2t )t )

[0,1] xR
: 2Ent, (1)
<3 A | Zy(t,2) P (b, da)dt < =252

It follows that the family {(m3).I;, : > 0} is tight; on the other hand, by Proposition 4.3,
{P,, :m > 0} is tight. Therefore, the family {I'; : n > 0} is tight. Up to a sequence, we get the
weak convergence

(m3)«I'y = w(dx) and T, —T.

Then (71, 72)«I = p(t, x)dvqdt, (73) I = w(dx) and

[ JalPuds) < timipe /[0 o B v ) < 28t )
X

hence w E ]P’g (R9). Now by disintegration formula, there is a Borel family of probability I'; ,.(dy)
in R : — Jga f(y)Te2(dy) is Borel for f € %(Rd) such that

/ vtapditey) = [ ([ otopda)
[0,1]x R4 x R4 [0,1]xRd JR4

Define Z(t,x) fRd ydl'y 5 (y). It is a Borel vector field. We have

/ \Z(t,2) 2 dun ()t < / y2dT(t, 2, )
[0,1] x R4 [0,1]x R4 x R4

:/]Rd ly|*dw(y) < 2Ent.,(110) < +o0.
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Now consider the function (¢, x,y) — a(t)(VF(x),y), we have as | 0

/ a(t)(VE(x), y)dly(t, x,y) — a(t)(VF(z),y)dl(t,z,y);  (4.60)
[0,1]x R4 x R4 [0,1]xR4x R4

or

/ Q) (VF (@), Zy(t, 2))y(t, dr)dt
[0,1] xR x R4

tends to the right hand of (4.60). But
L e COFF@ 0z = [ ([ @), ) )i
:/ a(t)(VF(x), Z(t,x))dv(x)dt.
[0,1] xR

Note that the function (¢,z,y) — «(t)(VF(z),y) is not bounded relative to y, however the
passage to the limit in (4.60) can be verified by using the usual cut-off argument. 0

Theorem 4.2 The continuity equation

d
%—FV'(ZtVt) =0 on 0, 1[xR¢
holds.
Proof. The same computation as in the proof of Proposition 4.4 works. O

Theorem 4.3 It holds that
dOVt

dt

= _(VEnt“/d)(Vt)-

Proof. The continuity equation reads as

/ o () F () dvy(z)dt + / a(t)(VF(x), Zi(x)) dvdt = 0.
[0,1] xR [0,1] xR

For av € C¢°((0,1)), the Fokker-Planck equation in Proposition 4.4 reads

—/ o () F dvdt + / a(t)LF dvdt = 0.
[0,1]xR4 [0,1] x R4

The two equations give

/ a(t)(VF, Z;) dvndt = —/ a(t)LF dydt.
[0,1]xR4 [0,1] x R4

Let Z € L?(R?, R P,) be the orthogonal projection of Z on

L2(P,)
{D_ BV : Bi € C(10,1]), i € C2(RY)}

1
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We have

/ Q) (VF, Z) dvdt = — / a(t)LF dvdt.
[0,1] xR [0,1] xR

Then there is a full measure subset Qp C [0, 1] such that

/d(VF, Zy) dvy = —/dLqut, teQp.
R R

Using the separability of C°(R?), there is a full measure subset  C [0, 1] such that, for ¢ € Q,
/ (VF, Z;) dv; = —/ LFdv;, VF e C>®(RY).
R4 R4

But by Proposition 4.2, [pq LF dvy = (OvrEnty,) (). It follows that (VEnt,,)(v;) exists and

(VEnt,,)(v) = 2 = a2, 0
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