Quadratic Covariation and Itô＇s Formula for a Bi－fractional Brownian Motion

Litan Yan（间理坦）
（joint work with J．Liu） （上海）东华大学理学院数学系
（Depart．Math．，Donghua University）

The 6th Workshop on Markov Processes and Related Topics

Motivation

$B^{H, K}=\left\{B_{t}^{H, K}: t \geq 0\right\}:$ a bi－fractional Brownian motion with indices H, K such that $2 H K=1(0<H<1,0<K \leq 1)$ ．
a Then the usual quadratic variation $\left[B^{H, K}, B^{H, K}\right]_{t}$ equals to $2^{1-K} t$ ，that is

$$
\left[B^{H, K}, B^{H, K}\right]_{t}=P-\lim _{n \rightarrow \infty} \sum_{j=1}^{n}\left(B_{t_{j}}^{H, K}-B_{t_{j-1}}^{H, K}\right)^{2}=2^{1-K} t
$$

where the limit is uniform in t and $t_{j}=\frac{j t}{n}$ ．

Introduction and statement of results
Integration with respect to local time Quadratic covariation The time－dependent case Case $2 H K>1$ References

Motivation

＾Quadratic covariation $\left[f\left(B^{H, K}\right), B^{H, K}\right]$ of $f\left(B^{H, K}\right)$ and $B^{H, K}$ ：

$$
\left[f\left(B^{H, K}\right), B^{H, K}\right]=?
$$

and

$$
E\left|\left[f\left(B^{H, K}\right), B^{H, K}\right]\right| \leq ?
$$

Introduction and statement of results
Integration with respect to local time Quadratic covariation The time－dependent case Case $2 H K>1$ References

Motivation

＾Quadratic covariation $\left[f\left(B^{H, K}\right), B^{H, K}\right]$ of $f\left(B^{H, K}\right)$ and $B^{H, K}$ ：

$$
\left[f\left(B^{H, K}\right), B^{H, K}\right]=?
$$

and

$$
E\left|\left[f\left(B^{H, K}\right), B^{H, K}\right]\right| \leq ?
$$

© This motivates the subject matter of the study！

Introduction and statement of results

Bifractional Brownian motion？

A In recent years the fractional Brownian motion has become an object of intense study．These due to its interesting properties and its applications in various scientific areas including telecommunications，turbulence，image processing and finance．

Bifractional Brownian motion？

© In recent years the fractional Brownian motion has become an object of intense study．These due to its interesting properties and its applications in various scientific areas including telecommunications，turbulence，image processing and finance．

A However，contrast to the extensive studies on fractional Brownian motion，there has been little systematic investigation on other self－similar Gaussian processes．

Introduction and statement of results

Bifractional Brownian motion？

（ The main reasons for this are the complexity of dependence structures and the non－availability of convenient stochastic integral representations for self－similar Gaussian processes which do not have stationary increments．

Bifractional Brownian motion？

（ The main reasons for this are the complexity of dependence structures and the non－availability of convenient stochastic integral representations for self－similar Gaussian processes which do not have stationary increments．
© Therefore，it seems interesting to study the quadratic covariation and extension of Itô＇s formula of bifractional Brownian motion－a rather special class of self－similar Gaussian processes．

Bifractional Brownian motion？

© Consider the stochastic partial differential equations of the form

$$
\frac{\partial u}{\partial t}=\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} W}{\partial t \partial x}
$$

with initial condition $u(0, x)=0$ ，where $W=\{W(t, x), t \geq 0, x \in \mathbb{R}\}$ is a two－parameter Wiener process．

Bifractional Brownian motion？

© Consider the stochastic partial differential equations of the form

$$
\frac{\partial u}{\partial t}=\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} W}{\partial t \partial x},
$$

with initial condition $u(0, x)=0$ ，where $W=\{W(t, x), t \geq 0, x \in \mathbb{R}\}$ is a two－parameter Wiener process．

A Then the solution u equals to a bifractional Brownian motion with parameters $H=K=\frac{1}{2}$ ，multiplied by the constant $(2 \pi)^{\frac{1}{4}} 2^{-\frac{1}{8}}$ ．

Introduction and statement of results

Key Points

＊Integration with respect to the local time；

Key Points

＊Integration with respect to the local time；
＊Quadratic covariation；

Key Points

＊Integration with respect to the local time；
＊Quadratic covariation；
＊Generalized Itô formula：

Key Points

＊Integration with respect to the local time；
＊Quadratic covariation；
＊Generalized Itô formula：
＊an analogue of Bouleau－Yor＇s formula；

Key Points

＊Integration with respect to the local time；
＊Quadratic covariation；
＊Generalized Itô formula：
＊an analogue of Bouleau－Yor＇s formula；
＊an analogue of Föllmer－Protter－Shiryayev＇s formula．

Introduction and statement of results
Integration with respect to local time Quadratic covariation The time－dependent case Case $2 H K>1$ References

Notation：Bi－fractional Brownian motion（Bi－fBm）

© Bi－fBm $B^{H, K}=\left\{B_{t}^{H, K}, t \geq 0\right\}$

Introduction and statement of results
Integration with respect to local time Quadratic covariation The time－dependent case Case $2 H K>1$ References

Notation：Bi－fractional Brownian motion（Bi－fBm）

© Bi－fBm $B^{H, K}=\left\{B_{t}^{H, K}, t \geq 0\right\}$
$\star B^{H, K}$ is a continuous self－similar Gaussian process；

Introduction and statement of results
Integration with respect to local time Quadratic covariation The time－dependent case Case $2 H K>1$ References

Notation：Bi－fractional Brownian motion（Bi－fBm）

（A Bi－fBm $B^{H, K}=\left\{B_{t}^{H, K}, t \geq 0\right\}$

$$
\begin{aligned}
& \star B^{H, K} \text { is a continuous self-similar Gaussian process; } \\
& \star E\left[B_{t}^{H, K}\right]=0, \forall t \in[0, T]
\end{aligned}
$$

Introduction and statement of results
Integration with respect to local time Quadratic covariation The time－dependent case Case $2 H K>1$ References

Notation：Bi－fractional Brownian motion（Bi－fBm）

4 $\mathrm{Bi}-\mathrm{fBm} B^{H, K}=\left\{B_{t}^{H, K}, t \geq 0\right\}$

$$
\begin{aligned}
& \star B^{H, K} \text { is a continuous self-similar Gaussian process; } \\
& \star E\left[B_{t}^{H, K}\right]=0, \forall t \in[0, T] \\
& \star E\left[B_{s}^{H, K} B_{t}^{H, K}\right]=\frac{1}{2^{K}}\left[\left(t^{2 H}+s^{2 H}\right)^{K}-|t-s|^{2 H K}\right] \\
& \quad \forall s, t \geq 0
\end{aligned}
$$

Introduction and statement of results
Integration with respect to local time Quadratic covariation The time－dependent case Case $2 H K>1$ References

Notation：Bi－fractional Brownian motion（Bi－fBm）

（A Bi－fBm $B^{H, K}=\left\{B_{t}^{H, K}, t \geq 0\right\}$
$\star B^{H, K}$ is a continuous self-similar Gaussian process;
$\star E\left[B_{t}^{H, K}\right]=0, \forall t \in[0, T] ;$
$\star E\left[B_{s}^{H, K} B_{t}^{H, K}\right]=\frac{1}{2^{K}}\left[\left(t^{2 H}+s^{2 H}\right)^{K}-|t-s|^{2 H K}\right]$,
$\forall s, t \geq 0 ;$
＊Indices ： $0<H<1,0<K \leq 1$ ．

Introduction and statement of results

Notation：Bi－fractional Brownian motion（Bi－fBm）

\star This process was first introduced by Houdré and Villa （2002）：
［1］C．Houdré and J．Villa，An example of infinite dimensional quasi－helix．Stochastic models（Mexico City，2002），195－201， Contemp．Math．， 336 （2003）．

Introduction and statement of results

Notation：Bi－fractional Brownian motion（Bi－fBm）

＊Clearly，if $K=1$ ，the process $B^{H, K}$ is a fractional Brownian motion with Hurst parameter H ．

Introduction and statement of results

Notation：Bi－fractional Brownian motion（Bi－fBm）

＊Clearly，if $K=1$ ，the process $B^{H, K}$ is a fractional Brownian motion with Hurst parameter H ．
\star The process $B^{H, K}$ is $H K$－self similar but it has no stationary increments．

Introduction and statement of results

Notation：Bi－fractional Brownian motion（Bi－fBm）

＊Clearly，if $K=1$ ，the process $B^{H, K}$ is a fractional Brownian motion with Hurst parameter H ．
＊The process $B^{H, K}$ is $H K$－self similar but it has no stationary increments．
\star The process $B^{H, K}$ is strongly locally nondeterministic．

Introduction and statement of results

Notation：Bi－fractional Brownian motion（Bi－fBm）

＊Clearly，if $K=1$ ，the process $B^{H, K}$ is a fractional Brownian motion with Hurst parameter H ．
＊The process $B^{H, K}$ is $H K$－self similar but it has no stationary increments．
\star The process $B^{H, K}$ is strongly locally nondeterministic．
\star The process $B^{H, K}$ has Hölder continuous paths of order $\alpha<H K$ and its paths are not differentiable．

Introduction and statement of results
Integration with respect to local time Quadratic covariation

Notation：Bi－fractional Brownian motion（Bi－fBm）

\star Quadratic variation $\left[B^{H, K}, B^{H, K}\right]_{t}$ satisfies

$$
\left[B^{H, K}, B^{H, K}\right]_{t}= \begin{cases}0, & \text { if } \frac{1}{2}<H K<1 \\ 2^{1-K} t, & \text { if } H K=\frac{1}{2} \\ +\infty, & \text { if } 0<H K<\frac{1}{2}\end{cases}
$$

for all $t>0$ ．

Introduction and statement of results
Integration with respect to local time Quadratic covariation The time－dependent case Case $2 H K>1$ References

Notation：Bi－fractional Brownian motion（Bi－fBm）

＾IF $H K>\frac{1}{2}$ the process $B^{H, K}$ has long memory，and for $H K<\frac{1}{2}$ it has short memory．

Introduction and statement of results

Notation：Bi－fractional Brownian motion（Bi－fBm）

＊IF $H K>\frac{1}{2}$ the process $B^{H, K}$ has long memory，and for $H K<\frac{1}{2}$ it has short memory．
＊IF $H K=\frac{1}{2}$ and $K \neq 1$ the process $B^{H, K}$ is a short－memory process．

Introduction and statement of results

Notation：Bi－fractional Brownian motion（Bi－fBm）

＾IF $H K>\frac{1}{2}$ the process $B^{H, K}$ has long memory，and for $H K<\frac{1}{2}$ it has short memory．
＊IF $H K=\frac{1}{2}$ and $K \neq 1$ the process $B^{H, K}$ is a short－memory process．
＊For every $H \in\left(0, \frac{1}{2}\right) \cup\left(\frac{1}{2}, 1\right)$ and $K \in(0,1)$ ，the process $B^{H, K}$ is not a semimartingale．

Introduction and statement of results
Integration with respect to local time Quadratic covariation The time－dependent case Case $2 H K>1$ References

Notation：Bi－fractional Brownian motion（Bi－fBm）

＊The process $B^{H, K}$ satisfies the following estimates（see Houdré－Villa［1］）：

$$
2^{-K}|t-s| \leq E\left[\left(B_{t}^{H, K}-B_{s}^{H, K}\right)^{2}\right] \leq 2^{1-K}|t-s| .
$$

Introduction and statement of results

Notation：Bi－fractional Brownian motion（Bi－fBm）

＊The process $B^{H, K}$ satisfies the following estimates（see Houdré－Villa［1］）：

$$
2^{-K}|t-s| \leq E\left[\left(B_{t}^{H, K}-B_{s}^{H, K}\right)^{2}\right] \leq 2^{1-K}|t-s|
$$

＊The left estimate can improved as

$$
|t-s|^{2 H K} \leq E\left[\left(B_{t}^{H, K}-B_{s}^{H, K}\right)^{2}\right]
$$

Introduction and statement of results
Integration with respect to local time Quadratic covariation The time－dependent case Case $2 H K>1$ References

Notation：Bi－fractional Brownian motion（Bi－fBm）

＊by applying the inequality

$$
(1+x)^{\alpha} \leq 1+\left(2^{\alpha}-1\right) x^{\alpha}, \quad 0 \leq x \leq 1
$$

with $0 \leq \alpha \leq 1$ ．

Introduction and statement of results
Integration with respect to local time Quadratic covariation The time－dependent case Case $2 H K>1$ References

Notation：Bi－fractional Brownian motion（Bi－fBm）

＊by applying the inequality

$$
(1+x)^{\alpha} \leq 1+\left(2^{\alpha}-1\right) x^{\alpha}, \quad 0 \leq x \leq 1
$$

with $0 \leq \alpha \leq 1$ ．
＊Remark：

$$
(1+x)^{\alpha} \leq 1+\alpha x^{\alpha} \leq 1+x^{\alpha} .
$$

Introduction and statement of results
Integration with respect to local time Quadratic covariation The time－dependent case Case $2 H K>1$ References

Notation：Bi－fractional Brownian motion（Bi－fBm）

In the following discussion we assume that $2 H K=1$ ． \star Denote $\mu=E\left(B_{s}^{H, K} B_{r}^{H, K}\right)$ and $\rho^{2}=s r-\mu^{2}$ ．

Introduction and statement of results

Notation：Bi－fractional Brownian motion（Bi－fBm）

In the following discussion we assume that $2 H K=1$ ．
\star Denote $\mu=E\left(B_{s}^{H, K} B_{r}^{H, K}\right)$ and $\rho^{2}=s r-\mu^{2}$ ．
\star Then we have

$$
\begin{aligned}
& 0 \leq r-\mu \leq 2^{(1-K) / 2} \sqrt{r(s-r)}, \\
& 0 \leq s-\mu \leq 2^{(1-K) / 2} \sqrt{s(s-r)}
\end{aligned}
$$

for $s \geq r \geq 0$

Introduction and statement of results
Integration with respect to local time Quadratic covariation The time－dependent case Case $2 H K>1$ References

Notation：Bi－fractional Brownian motion（Bi－fBm）

$$
\begin{aligned}
& \star \text { FOR } s \geq r \geq 0 \text { we have } \\
& \qquad r(s-r) \leq \rho^{2} \leq 4^{1-K} s(s-r)
\end{aligned}
$$

Introduction and statement of results
Integration with respect to local time Quadratic covariation The time－dependent case Case $2 H K>1$ References

Notation：Bi－fractional Brownian motion（Bi－fBm）

\star For $s \geq r \geq 0$ we have

$$
r(s-r) \leq \rho^{2} \leq 4^{1-K} s(s-r)
$$

＊FOR $T \geq t>s>t^{\prime}>s^{\prime}>0$ we have

$$
0 \leq E\left(B_{t}^{H, K}-B_{s}^{H, K}\right)\left(B_{t^{\prime}}^{H, K}-B_{s^{\prime}}^{H, K}\right) \leq c \frac{(t-s)\left(t^{\prime}-s^{\prime}\right)}{\sqrt{t^{\prime}\left(t-t^{\prime}\right)}}
$$

Bi－fractional Brownian motion：References

Ł［2］I．Kruk，F．Russo and C．A．Tudor，Wiener integrals， Malliavin calculus and covariance measure structure，J．Funct． Anal． 249 （2007），92－142．

Bi－fractional Brownian motion：References

Ł［2］I．Kruk，F．Russo and C．A．Tudor，Wiener integrals， Malliavin calculus and covariance measure structure，J．Funct． Anal． 249 （2007），92－142．
［3］F．Russo and C．A．Tudor，On the bifractional Brownian motion，Stoc．Proc．Appl． 5 （2006），830－856．

Bi－fractional Brownian motion：References

Ł［2］I．Kruk，F．Russo and C．A．Tudor，Wiener integrals， Malliavin calculus and covariance measure structure，J．Funct． Anal． 249 （2007），92－142．
［3］F．Russo and C．A．Tudor，On the bifractional Brownian motion，Stoc．Proc．Appl． 5 （2006），830－856．
\star［4］C．A．Tudor and Y．Xiao，Some path properties of bifractional brownian motion，Bernoulli， 13 （2007）， 1023－1052．

Introduction and statement of results
Integration with respect to local time Quadratic covariation The time－dependent case Case $2 H K>1$ References

Bi－fractional Brownian motion：References

\star［5］K．Es－sebaiy and C．A．Tudor，Multidimensional bifractional Brownian motion：Itô and Tanaka formulas， Stochastics and Dynamics， 7 （2007），366－388．

Bi－fractional Brownian motion：References

ڤ［5］K．Es－sebaiy and C．A．Tudor，Multidimensional bifractional Brownian motion：Itô and Tanaka formulas， Stochastics and Dynamics， 7 （2007），366－388．

ڤ［6］P．Lei，D．Nualart，A decomposition of the bifractional Brownian motion and some applications，preprint（2008）．

Bi－fractional Brownian motion：References

ڤ［5］K．Es－sebaiy and C．A．Tudor，Multidimensional bifractional Brownian motion：Itô and Tanaka formulas， Stochastics and Dynamics， 7 （2007），366－388．

ڤ［6］P．Lei，D．Nualart，A decomposition of the bifractional Brownian motion and some applications，preprint（2008）．
［7］L．Yan，J．Liu，and C．Chen，On the collision local time of bifractional Brownian motions，to appear in Stochastics and Dynamics（2008）．

Introduction and statement of results

Bi－fractional Brownian motion：References

［8］T．Bojdecki，L．G．Gorostiza and A．Talarczyk，Some extensions of fractional Brownian motion and sub－fractional Brownian motion related to particle systems，Elect．Comm．in Probab． 12 （2007），161－172．

Bi－fractional Brownian motion：References

［8］T．Bojdecki，L．G．Gorostiza and A．Talarczyk，Some extensions of fractional Brownian motion and sub－fractional Brownian motion related to particle systems，Elect．Comm．in Probab． 12 （2007），161－172．
\star［9］T．Bojdecki，L．G．Gorostiza and A．Talarczyk，Limit theorems for occupation time fluctuations of branching systems I：Long－range dependence，Stoch．Proc．Appl． 116 （2006），1－18．

Stochastic integral

© the stochastic integral $(2 H K \geq 1)$

$$
\int_{0}^{t} u_{s} d B_{s}^{H, K}
$$

is of Skorohod type（see Es－sebaiy and Tudor［5］）．

Introduction and statement of results

Stochastic integral

A Remarks

Introduction and statement of results

Stochastic integral

A Remarks
＊The Malliavin derivative $D^{H, K}$ ；

Introduction and statement of results
Integration with respect to local time Quadratic covariation The time－dependent case Case $2 H K>1$ References

Stochastic integral

A Remarks
＊The Malliavin derivative $D^{H, K}$ ；
＊The variance of integral $(2 H K \geq 1)$

$$
E\left|\int_{0}^{T} u_{s} d B_{s}^{H, K}\right|^{2}
$$

Introduction and statement of results
Integration with respect to local time Quadratic covariation The time－dependent case Case $2 H K>1$ References

Stochastic integral

A Remarks
＊The Malliavin derivative $D^{H, K}$ ；
＊The variance of integral $(2 H K \geq 1)$

$$
E\left|\int_{0}^{T} u_{s} d B_{s}^{H, K}\right|^{2}
$$

＊Estimate the express

$$
\frac{\partial^{2}}{\partial r \partial l} R(r, l) .
$$

where $R(s, r)=\frac{1}{2^{K}}\left[\left(s^{2 H}+r^{2 H}\right)^{K}-|s-r|^{2 H K}\right]$ ．

Introduction and statement of results

Stochastic integral

© By applying the decomposition

$$
\begin{aligned}
R(r, l)= & \frac{1}{2^{K}}\left[\left(s^{2 H}+l^{2 H}\right)^{K}-\left(s^{2 H K}+l^{2 H K}\right)\right] \\
& +\frac{1}{2^{K}}\left[-|s-l|^{2 H K}+\left(s^{2 H K}+l^{2 H K}\right)\right]
\end{aligned}
$$

we can estimate the express

$$
\left|\frac{\partial^{2}}{\partial r \partial l} R(r, l)\right|
$$

Stochastic integral

© For $2 H K=1$ we have

$$
\begin{aligned}
\left|\frac{\partial^{2}}{\partial r \partial l} R(r, l)\right| & =(2 H-1) 2^{-K}\left(r^{2 H}+l^{2 H}\right)^{K-2} r^{2 H-1} l^{2 H-1} \\
& \leq(2 H-1) 2^{-K} r^{2 H \beta(K-2)+2 H-1} l^{2 H \alpha(K-2)+2 H-1}
\end{aligned}
$$

by Young＇s inequality with $0<\alpha<\frac{1}{2-K}, 1>\beta>\frac{1-K}{2-K}$ ， $\alpha+\beta=1$ ．

Introduction and statement of results

Results

A In the following discussion

Introduction and statement of results

Results

A In the following discussion

$$
\text { * } 2 H K=1 ;
$$

Results

© In the following discussion
＊ $2 H K=1$ ；
＊the stochastic integral

$$
\int_{0}^{t} u_{s} d B_{s}^{H, K}
$$

is of Skorohod type（see Es－sebaiy and Tudor［5］）．

Introduction and statement of results

Result 1：Integration wrt local time

A $\mathscr{L}^{H, K}$ ：the local time of bi－fBm defined by Tanaka＇s formula

$$
\left|B_{t}^{H, K}-x\right|=\left|B_{0}^{H, K}-x\right|+\int_{0}^{t} \operatorname{sign}\left(B_{s}^{H, K}-x\right) d B_{s}^{H, K}+\mathscr{L}^{H, K}(t, x)
$$

Result 1：Integration wrt local time

A $\mathscr{L}^{H, K}$ ：the local time of bi－fBm defined by Tanaka＇s formula

$$
\left|B_{t}^{H, K}-x\right|=\left|B_{0}^{H, K}-x\right|+\int_{0}^{t} \operatorname{sign}\left(B_{s}^{H, K}-x\right) d B_{s}^{H, K}+\mathscr{L}^{H, K}(t, x)
$$

＊Occupation formula

$$
\int_{0}^{t} f\left(B_{s}^{H, K}, s\right) d s=\int_{\mathbb{R}} d x \int_{0}^{t} f(x, s) \mathscr{L}^{H, K}(x, d s) ;
$$

Introduction and statement of results

Result 1：Integration wrt local time

© Result I：Define the integral

$$
\int_{\mathbb{R}} f(x) \mathscr{L}^{H, K}(d x, t)
$$

Introduction and statement of results

Result 1：Integration wrt local time

A Result I：Define the integral

$$
\int_{\mathbb{R}} f(x) \mathscr{L}^{H, K}(d x, t)
$$

＊We find a Banach Space \mathscr{H} of measurable functions such that the above integral is well－defined for $f \in \mathscr{H}$ ，and

$$
E\left|\int_{\mathbb{R}} f(x) \mathscr{L}^{H, K}(d x, t)\right| \leq c\|f\|_{\mathscr{C}} .
$$

Introduction and statement of results

Result 1：Integration wrt local time

A Similarly，we can define the integral of two parameters

$$
\int_{\mathbb{R}} \int_{0}^{t} f(x, s) \mathscr{L}^{H, K}(d x, d s)
$$

Introduction and statement of results
Integration with respect to local time Quadratic covariation The time－dependent case Case $2 H K>1$ References

Result 2：Quadratic covariation

A Result II：We give the existence of quadratic covariation

$$
\left[f\left(B^{H, K}\right), B^{H, K}\right] \text { of } f\left(B^{H, K}\right) \text { and } B^{H, K}:
$$

$$
\left[f\left(B^{H, K}\right), B^{H, K}\right]_{t}
$$

$$
\equiv P-\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left\{f\left(B_{t_{k}}^{H}\right)-f\left(B_{t_{k-1}}^{H}\right)\right\}\left(B_{t_{k}}^{H}-B_{t_{k-1}}^{H}\right)
$$

with $t_{k}=k t / n$ ．

Introduction and statement of results
Integration with respect to local time Quadratic covariation The time－dependent case Case $2 H K>1$ References

Result 2：Quadratic covariation

© Quadratic covariation $\left[f\left(B^{H, K}, \cdot\right), B^{H, K}\right]$ of $f\left(B^{H, K}, \cdot\right)$ and $B^{H, K}$ ：

$$
\begin{aligned}
& {\left[f\left(B^{H, K}, \cdot\right), B^{H, K}\right]_{t}} \\
& \equiv P-\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left\{f\left(B_{t_{k}}^{H}, t_{k}\right)-f\left(B_{t_{k-1}}^{H}, t_{k-1}\right)\right\}\left(B_{t_{k}}^{H}-B_{t_{k-1}}^{H}\right)
\end{aligned}
$$

with $t_{k}=k t / n$ ．

Introduction and statement of results
Integration with respect to local time

Result 2：Quadratic covariation

© The quadratic covariation can also be defined by the following limit in probability（See Russo et al（2000））：

$$
\begin{gathered}
\lim _{\varepsilon \downarrow 0} \frac{1}{\varepsilon} \int_{0}^{t}\left\{f\left(B_{s+\varepsilon}^{H, K}\right)-f\left(B_{s}^{H, K}\right)\right\}\left(B_{s+\varepsilon}^{H, K}-B_{s}^{H, K}\right) d s \\
\lim _{\varepsilon \downarrow 0} \frac{1}{\varepsilon} \int_{0}^{t}\left\{f\left(B_{s+\varepsilon}^{H, K}, s+\varepsilon\right)-f\left(B_{s}^{H, K}, s\right)\right\}\left(B_{s+\varepsilon}^{H, K}-B_{s}^{H, K}\right) d s
\end{gathered}
$$

Result 3：Two Itô formulas

A Result III．The following Bouleau－Yor＇s formula holds

$$
F\left(B_{t}^{H, K}\right)=F(0)+\int_{0}^{t} f\left(B_{s}^{H, K}\right) d B_{s}^{H, K}-\frac{1}{2} \int_{\mathbb{R}} f(x) \mathscr{L}^{H, K}(d x, t),
$$

where $F^{\prime}=f \in \mathscr{H}$ ．

Introduction and statement of results
Integration with respect to local time

Result 3：Two Itô formulas

A Result III．The following（Föllmer－Protter－Shiryayev＇s）formula holds

$$
\begin{aligned}
& F\left(B_{t}^{H, K}\right)=F(0)+\int_{0}^{t} f\left(B_{s}^{H, K}\right) d B_{s}^{H, K}+2^{K-2}\left[f\left(B^{H, K}\right), \quad B^{H, K}\right]_{t} \\
& \quad \text { where } F^{\prime}=f \in \mathscr{H}
\end{aligned}
$$

Introduction and statement of results
Integration with respect to local time Quadratic covariation The time－dependent case Case $2 H K>1$ References

Result 3：Two Itô formulas

$$
\begin{aligned}
F\left(B_{t}^{H, K}, t\right)=F(0,0)+ & \int_{0}^{t} f\left(B_{s}^{H, K}, s\right) d B_{s}^{H, K} \\
& -\frac{1}{2} \int_{\mathbb{R}} \int_{0}^{t} f(x, s) \mathscr{L}^{H, K}(d x, d s) \\
F\left(B_{t}^{H, K}, t\right)=F(0,0)+ & \int_{0}^{t} f\left(B_{s}^{H, K}, s\right) d B_{s}^{H, K} \\
& +2^{K-2}\left[f\left(B^{H, K}, \cdot\right), B^{H, K}\right]_{t},
\end{aligned}
$$

Result 4：The local time on curve

－Result IV．Let $t \mapsto a(t)$ be a continuous function on $[0,1]$ ． Then the local time $\ell^{H, K}(a, t)$ of Bi －fBm $B^{H, K}$ on curve a exists for all $t \in[0,1]$ ，and

$$
\ell^{H, K}(a, t)=-2^{1-K} \int_{\mathbb{R}} \int_{0}^{t} 1_{[a(s),+\infty)}(x) \mathscr{L}^{H, K}(d x, d s)
$$

where $f_{a}(x, s)=1_{[a(s), \infty)}(x)$ ．

A Banach Space of Measurable Functions

Consider the set \mathscr{H} of measurable functions f on \mathbb{R} such that $\|f\|<+\infty$ ，where

$$
\begin{aligned}
\|f\| & =\sqrt{\int_{0}^{1} \frac{d s}{\sqrt{2 \pi s}}} \int_{\mathbb{R}} f^{2}(x) e^{-\frac{x^{2}}{2 s}} d x
\end{aligned}+\int_{0}^{1} \frac{d s}{s \sqrt{2 \pi s}} \int_{\mathbb{R}}|f(x) x| e^{-\frac{x^{2}}{2 s}} d x .
$$

A Banach Space of Measurable Functions

Consider the set \mathscr{H} of measurable functions f on \mathbb{R} such that $\|f\|<+\infty$ ，where

$$
\begin{aligned}
\|f\|= & \sqrt{\int_{0}^{1} \frac{d s}{\sqrt{2 \pi s}}} \int_{\mathbb{R}} f^{2}(x) e^{-\frac{x^{2}}{2 s}} d x
\end{aligned}+\int_{0}^{1} \frac{d s}{s \sqrt{2 \pi s}} \int_{\mathbb{R}}|f(x) x| e^{-\frac{x^{2}}{2 s}} d x .
$$

A Banach Space of Measurable Functions

Consider the set \mathscr{H} of measurable functions f on \mathbb{R} such that $\|f\|<+\infty$ ，where

$$
\|f\|=\sqrt{\int_{0}^{1} \frac{d s}{\sqrt{2 \pi s}} \int_{\mathbb{R}} f^{2}(x) e^{-\frac{x^{2}}{2 s}} d x}+\int_{0}^{1} \frac{d s}{s \sqrt{2 \pi s}} \int_{\mathbb{R}}|f(x) x| e^{-\frac{x^{2}}{2 s}} d x
$$

$\Downarrow \Downarrow \Downarrow \downarrow$
＊ \mathscr{H} is a Banach space；
＊the set \mathscr{E} of elementary functions is dense in \mathscr{H} ．

Introduction and statement of results Integration with respect to local time Quadratic covariation The time－dependent case Case $2 H K>1$ References

Integration wrt local time

Lemma（1）

For any $f_{\triangle}=\sum_{j} x_{j} 1_{\left(a_{j-1}, a_{j}\right]} \in \mathscr{E}$ ，the integral

$$
\int_{\mathbb{R}} f_{\triangle}(x) \mathscr{L}^{H, K}(d x, t):=\sum_{j} x_{j}\left[\mathscr{L}^{H, K}\left(a_{j}, t\right)-\mathscr{L}^{H, K}\left(a_{j-1}, t\right)\right]
$$

is well－defined，and

$$
E\left|\int_{\mathbb{R}} f_{\Delta}(x) \mathscr{L}^{H, K}(d x, t)\right| \leq c\left\|f_{\Delta}\right\|
$$

for all $0 \leq t \leq T$ ．

Integration wrt local time

Now，for $f \in \mathscr{H}$ we can define

$$
\int_{\mathbb{R}} f(x) \mathscr{L}^{H, K}(d x, t):=\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f_{\triangle, n}(x) \mathscr{L}^{H, K}(d x, t), \quad \text { in } L^{1},
$$

if $f_{\triangle, n} \rightarrow f$ in \mathscr{H} ，where $\left\{f_{\triangle, n}\right\} \subset \mathscr{E}$ ．Clearly，the definition is well－defined，and

$$
E\left|\int_{\mathbb{R}} f(x) \mathscr{L}^{H, K}(d x, t)\right| \leq c\|f\|
$$

Integration wrt local time

＊For all $f \in C^{1}(\mathbb{R})$ ，we have

$$
\int_{\mathbb{R}} f(x) \mathscr{L}^{H, K}(d x, t)=-\int_{\mathbb{R}} f^{\prime}(x) \mathscr{L}^{H, K}(x, t) d x, \quad t \geq 0 ;
$$

Introduction and statement of results

Integration wrt local time

＊For all $f \in C^{1}(\mathbb{R})$ ，we have

$$
\int_{\mathbb{R}} f(x) \mathscr{L}^{H, K}(d x, t)=-\int_{\mathbb{R}} f^{\prime}(x) \mathscr{L}^{H, K}(x, t) d x, \quad t \geq 0
$$

＊Let $f, f_{1}, f_{2}, \ldots \in \mathscr{H}$ and let $f_{n} \rightarrow f$ in \mathscr{H} ．We then have

$$
\int_{\mathbb{R}} f_{n}(x) \mathscr{L}^{H, K}(d x, t) \longrightarrow \int_{\mathbb{R}} f(x) \mathscr{L}^{H, K}(d x, t), \quad \text { in } L^{1}
$$

for all $0 \leq t \leq T$ ，as $n \rightarrow \infty$ ．

Introduction and statement of results Integration with respect to local time Quadratic covariation The time－dependent case Case $2 H K>1$ References

Theorem（1）

Let the measurable function $f \in \mathscr{H}$ and let $F^{\prime}=f \in \mathscr{H}$ ．Then the following ltô type formula holds：

$$
F\left(B_{t}^{H, K}\right)=F(0)+\int_{0}^{t} f\left(B_{s}^{H, K}\right) d B_{s}^{H, K}-\frac{1}{2} \int_{\mathbb{R}} f(x) \mathscr{L}^{H, K}(d x, t)
$$

p－variation of local time

Lemma（2）

For $t \geq 0, x \in \mathbb{R}$ set

$$
\widehat{B}_{t}^{H, K}(x):=\int_{0}^{t} 1_{\left(B_{s}^{H, K}>x\right)} d B_{s}^{H, K} .
$$

Then the estimate

$$
\begin{equation*}
E\left[\left(\widehat{B}_{t}^{H, K}(b)-\widehat{B}_{t}^{H, K}(a)\right)^{2}\right] \leqslant C_{H, K, t}(b-a)^{2-K} \tag{2.1}
\end{equation*}
$$

holds for all $2 H K=1$ and $a, b \in \mathbb{R}, a<b$ ，where $C_{H, K, t}>0$ is a constant depending only on H, K, t ．

Introduction and statement of results Integration with respect to local time Quadratic covariation The time－dependent case Case $2 H K>1$ References

p－variation of local time

Theorem（2）

Let $2 K H=1$ ．Then the limit in probability

$$
\lim _{\left|\Delta_{n}\right| \rightarrow 0} \sum_{a=a_{0}<a_{1}<\ldots<a_{n}=b}\left|\mathscr{L}^{H, K}\left(a_{i+1}, t\right)-\mathscr{L}^{H, K}\left(a_{i}, t\right)\right|^{\frac{2}{2-K}}
$$

exists，where $\left|\Delta_{n}\right|=\max _{j}\left\{\left|a_{j+1}-a_{j}\right|\right\}$ ．

Introduction and statement of results Integration with respect to local time Quadratic covariation The time－dependent case Case $2 H K>1$ References

p－variation of local time

Theorem（3）

Let $2 H K=1$ ．Then the local time $\mathscr{L}^{H, K}(x, t)$ is of bounded p－variation in x for any $0 \leq t \leq T$ ，for all $p>\frac{2}{2-K}$ ，almost surely．

Introduction and statement of results Integration with respect to local time Quadratic covariation The time－dependent case Case $2 H K>1$ References

p－variation of local time

Theorem（4）

For $2 H K=1$ ，if $x \mapsto f(x)$ is of bounded p－variation with $1 \leqslant p<\frac{2}{K}$ ，then the（Young）integral
$\int_{a}^{b} f(x) \mathscr{L}^{H, K}(d x, t)$
$:=\lim _{\left|\Delta_{n}\right| \rightarrow 0} \sum_{a=a_{0}<a_{1}<\ldots<a_{n}=b} f\left(a_{j}\right)\left[\mathscr{L}^{H, K}\left(a_{j+1}, t\right)-\mathscr{L}^{H, K}\left(a_{j}, t\right)\right]$
is well defined．

Quadratic covariation

© Consider a partition $t_{j}=\frac{j t}{n}, j=0,1,2, \ldots, n$ of $[0, t]$ ．
A Denote $\triangle_{j} B^{H, K}=B_{t_{j}}^{H, K}-B_{t_{j-1}}^{H, K}$ ，for $1 \leq j \leq n$ ．Then the quadratic covariation $\left[f\left(B^{H, K}\right), B^{H, K}\right]$ is defined by

$$
\left[f\left(B^{H, K}\right), B^{H, K}\right]_{t}=\lim _{n \rightarrow \infty} \sum_{j=1}^{n}\left\{f\left(B_{t_{j}}^{H, K}\right)-f\left(B_{t_{j-1}}^{H, K}\right)\right\} \triangle_{j} B^{H, K}
$$

as a limit in probability．

Quadratic covariation

A A result introduced by Russo－Vallois yields

$$
\left[f\left(B^{H, K}\right), B^{H, K}\right]_{t}=2^{1-K} \int_{0}^{t} f^{\prime}\left(B_{s}^{H, K}\right) d s
$$

for all $f \in C^{1}(\mathbb{R})$ ．
$\Downarrow \Downarrow$

Quadratic covariation

A A result introduced by Russo－Vallois yields

$$
\left[f\left(B^{H, K}\right), B^{H, K}\right]_{t}=2^{1-K} \int_{0}^{t} f^{\prime}\left(B_{s}^{H, K}\right) d s
$$

for all $f \in C^{1}(\mathbb{R})$ ．
$\Downarrow \Downarrow$
＊For $f \in C^{1}(\mathbb{R})$ we have

$$
\left[f\left(B^{H, K}\right), B^{H, K}\right]_{t}=-2^{1-K} \int_{\mathbb{R}} f(x) \mathscr{L}^{H, K}(d x, t)
$$

Quadratic covariation

A A result introduced by Russo－Vallois yields

$$
\left[f\left(B^{H, K}\right), B^{H, K}\right]_{t}=2^{1-K} \int_{0}^{t} f^{\prime}\left(B_{s}^{H, K}\right) d s
$$

for all $f \in C^{1}(\mathbb{R})$ ．
$\downarrow \Downarrow$
＊For $f \in C^{1}(\mathbb{R})$ we have

$$
\left[f\left(B^{H, K}\right), B^{H, K}\right]_{t}=-2^{1-K} \int_{\mathbb{R}} f(x) \mathscr{L}^{H, K}(d x, t)
$$

＊For $f \in C(\mathbb{R})$ we have

$$
\sum_{j=0}^{n-1} f\left(B_{t_{j}}^{H, K}\right)\left(B_{t_{j+1}}^{H, K}-B_{t_{j}}^{H, K}\right)^{2} \xrightarrow{P} 2^{1-K} \int_{0}^{t} f\left(B_{s}^{H, K}\right) d s
$$

A related result

4．If $p \geq 2$ is even and $f \in C(\mathbb{R})$ ，then

$$
n^{\frac{p}{2}-1} \sum_{j=1}^{n} f\left(B_{t_{j}}^{H, K}\right)\left(\Delta_{j} B^{H, K}\right)^{p} \quad \xrightarrow{P} 2^{1-K} c_{p} \int_{0}^{t} f\left(B_{s}^{H, K}\right) d s,
$$

where c_{p} denotes the p－moment of a random variable $\xi \sim N(0,1)$ ．

Existence

Föllmer－Protter－Shiryayev＇s formula

An identity

Theorem（5）

Let $f \in \mathscr{H}$ ．Then the quadratic covariation $\left[f\left(B^{H, K}\right), B^{H, K}\right]_{t}$ exists in L^{1} ，and

$$
E\left|\left[f\left(B^{H, K}\right), B^{H, K}\right]_{t}\right| \leq c\|f\|
$$

and

$$
\begin{equation*}
\left[f\left(B^{H, K}\right), B^{H, K}\right]_{t}=-2^{1-K} \int_{\mathbb{R}} f(x) \mathscr{L}^{H, K}(d x, t) \tag{3.1}
\end{equation*}
$$

for all $t \in[0, T]$ ．

Föllmer－Protter－Shiryayev＇s formula

© Let the measurable function $f \in \mathscr{H}$ and let $F^{\prime}=f \in \mathscr{H}$ ．Then the following Itô type formula holds：

$$
F\left(B_{t}^{H, K}\right)=F(0)+\int_{0}^{t} f\left(B_{s}^{H, K}\right) d B_{s}^{H, K}+2^{K-2}\left[f\left(B^{H, K}\right), B^{H, K}\right]_{t}
$$

A Let $(x, s) \mapsto f(x, s)$ a measurable function on $\mathbb{R} \times[0, T]$ ．
© In this section，we define the integral for two parameters

$$
\begin{equation*}
\int_{\mathbb{R}} \int_{0}^{t} f(x, s) \mathscr{L}^{H, K}(d x, d s), \quad t \geq 0 \tag{4.1}
\end{equation*}
$$

and study existence of the quadratic covariation $\left[f\left(B^{H, K}, \cdot\right), B^{H, K}\right]$ ．

Weighted quadratic covariation

$\boldsymbol{\omega}\left[f\left(B^{H, K}\right), B^{H, K}\right]_{t}=0$ if $2 H K>1$ ．

Weighted quadratic covariation

© $\left[f\left(B^{H, K}\right), B^{H, K}\right]_{t}=0$ if $2 H K>1$ ．
A Weighted quadratic covariation $\left[f\left(B^{H, K}\right), B^{H, K}\right]^{(W)}$ ： $\left[f\left(B^{H, K}\right), B^{H, K}\right]_{t}^{(W)}$
$\equiv P-\lim _{n \rightarrow \infty} \sum_{k=1}^{n}(k-1)^{2 H K-1}\left\{f\left(B_{t_{k}}^{H, K}\right)-f\left(B_{t_{k-1}}^{H, K}\right)\right\} \triangle_{k} B^{H, K}$
with $t_{k}=k t / n$ ．

References：Local time－space calculus

＊Rogers and Walsh（1981－1991）
$\star A\left(t, B_{t}\right)$ is not a semimartingale，Progress in Probability， 24 （1990）， 457－482．
\star Local time and stochastic area integrals，Ann．Probab． 19 （1991），457－482．
\star The intrinsic local time sheet of Brownian motion，Prob．Theory Related
Fields， 80 （1991），433－460．
\star Stochastic integral with respect to local time，Progress in Probability， 14 （1981），457－482．

References：Local time－space calculus

* Yor et al (1981-2000)
＊Bouleau－Yor，Sur la variation quadratique des temps locaux de certaines semimartingales．C．R．Acad．Sci．Paris Sér．I Math． 292 （1981），491－494． ＾M．Gradinaru，B．Roynette，P．Vallois and M．Yor，The laws of Brownian local time integrals，Computational and Applied Mathematics， 18 （1999）， 259－331．

References：Local time－space calculus

＊Fölmer－Protter－Shiryaev（1995）
＊Quadratic covariation and an extension of Itô＇s formula，Bernoulli， $\mathbf{1}$（1995），
149－169．

References：Local time－space calculus

＊Esenbaum（2000－2006）
\star Integration with respect to local time．Potent．Anal． 13 （2000），303－328．
夫 Local time－space stochastic calculus for Lévy processes．Stoch．Proc．Appl． 116 （2006），757－778．
＊Local time－space calculus for reversible semi－martingales．Sém．Prob． 40 （2006）．

References：Local time－space calculus

＊S．Moret and D．Nualart（2000）
＊Quadratic Covariation and Itô＇s Formula for Smooth Nondegenerate Martingales，Journal of Theoretical Probability， 13 （2000），193－224．

References：Local time－space calculus

＊Feng－Zhao（2006）
\star Two－parameters p, q－variation Paths and Integrations of Local Times．
Potent．Anal． 25 （2006），165－204．
＊Generalized Itô Formulae and Space－Time Lebesgue－Stieltjes Integrals of
Local Times，Séminaire de Probabilités XL（2006），117－136．

References：Local time－space calculus

＊Bardina－Rovira（2007－2008）

＊On Itô formula for elliptic diffusion processes，Bernoulli， 13 （2007），820－830．
＊Integration with respect to local time and Itô formula for smooth nondegenerate martingales，preprint（2008）．

References：Local time－space calculus

＊Yan et al（2007－2008）
\star L．Yan and X．Yang，Some remarks on local time－space calculus，Stat．Prob． Lett． 77 （2007），1600－1610．
＊L．Yan，J．Liu and X．Yang，Integration with respect to fractional local times with Hurst index $1 / 2<H<1$ ，submitted（2008）．

References：Stochastic Calculus via Regularization

＊Russo－Vallois et al（1993－2007）
＊Forward，backward and symmetric stochastic integration，Probab．Theory Relat．Fields， 97 （1993），403－421．
\star The generalized covariation process and Itô formula，Stoch．Proc．Appl． 5 （1995），830－856．
＊Stochastic calculus with respect to a continuous finite quadratic variation process，Stochastics and Stochastics Reports， 70 （2000），1－40．
\star Elements of Stochastic Calculus via Regularization，Séminaire de Probabilités XL（2007），147－185．

References：Stochastic Calculus via Regularization

＊Russo－Vallois et al（1993－2007）
＊Forward，backward and symmetric stochastic integration，Probab．Theory Relat．Fields， 97 （1993），403－421．
\star The generalized covariation process and Itô formula，Stoch．Proc．Appl． 5 （1995），830－856．
＊Stochastic calculus with respect to a continuous finite quadratic variation process，Stochastics and Stochastics Reports， 70 （2000），1－40．
\star Elements of Stochastic Calculus via Regularization，Séminaire de Probabilités XL（2007），147－185．

$\mathcal{T H} \mathcal{A N K S}!$

