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Motivation

BH,K = {BH,K
t : t ≥ 0}: a bi-fractional Brownian motion with

indices H,K such that 2HK = 1 (0 < H < 1, 0 < K ≤ 1).

♠ Then the usual quadratic variation
[
BH,K , BH,K

]
t
equals to

21−Kt, that is

[
BH,K , BH,K

]
t
= P − lim

n→∞

n∑
j=1

(
BH,K

tj
−BH,K

tj−1

)2
= 21−Kt,

where the limit is uniform in t and tj = jt
n .
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♠ Quadratic covariation [f(BH,K), BH,K ] of f(BH,K) and

BH,K : [
f(BH,K), BH,K

]
=?

and

E|
[
f(BH,K), BH,K

]
| ≤?

♠ This motivates the subject matter of the study!
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Bifractional Brownian motion?

♠ In recent years the fractional Brownian motion has become an

object of intense study. These due to its interesting properties

and its applications in various scientific areas including

telecommunications, turbulence, image processing and

finance.

♠ However, contrast to the extensive studies on fractional

Brownian motion, there has been little systematic

investigation on other self-similar Gaussian processes.
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Bifractional Brownian motion?

♠ The main reasons for this are the complexity of dependence

structures and the non-availability of convenient stochastic

integral representations for self-similar Gaussian processes

which do not have stationary increments.

♠ Therefore, it seems interesting to study the quadratic

covariation and extension of Itô’s formula of bifractional

Brownian motion—a rather special class of self-similar

Gaussian processes.
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Bifractional Brownian motion?

♠ Consider the stochastic partial differential equations of the

form
∂u

∂t
=

1
2

∂2u

∂x2
+

∂2W

∂t∂x
,

with initial condition u(0, x) = 0, where

W = {W (t, x), t ≥ 0, x ∈ R} is a two-parameter Wiener

process.

♠ Then the solution u equals to a bifractional Brownian motion

with parameters H = K = 1
2 , multiplied by the constant

(2π)
1
4 2−

1
8 .
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Key Points

? Integration with respect to the local time¶

? Quadratic covariation¶

? Generalized Itô formula:

? an analogue of Bouleau-Yor’s formula;

? an analogue of Föllmer-Protter-Shiryayev’s formula.
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Introduction and statement of results
Integration with respect to local time

Quadratic covariation
The time-dependent case

Case 2HK > 1
References

Motivation
Outline
Bi-fBm
Results

Key Points

? Integration with respect to the local time¶

? Quadratic covariation¶

? Generalized Itô formula:
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NotationµBi-fractional Brownian motion (Bi-fBm)

♠ Bi-fBm BH,K = {BH,K
t , t ≥ 0}

? BH,K is a continuous self-similar Gaussian process¶

? E
[
BH,K

t

]
= 0, ∀t ∈ [0, T ]¶

? E
[
BH,K

s BH,K
t

]
= 1

2K

[
(t2H + s2H)K − |t− s|2HK

]
,

∀s, t ≥ 0¶

? Indices : 0 < H < 1, 0 < K ≤ 1.
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Introduction and statement of results
Integration with respect to local time

Quadratic covariation
The time-dependent case

Case 2HK > 1
References

Motivation
Outline
Bi-fBm
Results

NotationµBi-fractional Brownian motion (Bi-fBm)

♠ Bi-fBm BH,K = {BH,K
t , t ≥ 0}

? BH,K is a continuous self-similar Gaussian process¶

? E
[
BH,K

t

]
= 0, ∀t ∈ [0, T ]¶

? E
[
BH,K

s BH,K
t

]
= 1

2K

[
(t2H + s2H)K − |t− s|2HK

]
,

∀s, t ≥ 0¶

? Indices : 0 < H < 1, 0 < K ≤ 1.

Litan Yan (AAAnnn""") et al Quadratic covariation and Itô’s formula for a bi-fBm
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NotationµBi-fractional Brownian motion (Bi-fBm)

? This process was first introduced by Houdré and Villa

(2002):

[1] C. Houdré and J. Villa, An example of infinite dimensional

quasi-helix. Stochastic models (Mexico City, 2002), 195-201,

Contemp. Math., 336 (2003).
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NotationµBi-fractional Brownian motion (Bi-fBm)

? Clearly, if K = 1, the process BH,K is a fractional

Brownian motion with Hurst parameter H.

? The process BH,K is HK-self similar but it has no

stationary increments.

? The process BH,K is strongly locally nondeterministic.

? The process BH,K has Hölder continuous paths of order

α < HK and its paths are not differentiable.
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? The process BH,K has Hölder continuous paths of order

α < HK and its paths are not differentiable.

Litan Yan (AAAnnn""") et al Quadratic covariation and Itô’s formula for a bi-fBm
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NotationµBi-fractional Brownian motion (Bi-fBm)

? Quadratic variation [BH,K , BH,K ]t satisfies

[BH,K , BH,K ]t =


0, if 1

2 < HK < 1

21−Kt, if HK = 1
2

+∞, if 0 < HK < 1
2

for all t > 0.
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NotationµBi-fractional Brownian motion (Bi-fBm)

? If HK > 1
2 the process BH,K has long memory, and for

HK < 1
2 it has short memory.

? If HK = 1
2 and K 6= 1 the process BH,K is a short-memory

process.

? For every H ∈ (0, 1
2) ∪ (1

2 , 1) and K ∈ (0, 1), the process

BH,K is not a semimartingale .
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NotationµBi-fractional Brownian motion (Bi-fBm)

? The process BH,K satisfies the following estimates (see

Houdré-Villa [1]) :

2−K |t− s| ≤ E

[(
BH,K

t −BH,K
s

)2
]
≤ 21−K |t− s|.

? The left estimate can improved as

|t− s|2HK ≤ E

[(
BH,K

t −BH,K
s

)2
]

,
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Introduction and statement of results
Integration with respect to local time

Quadratic covariation
The time-dependent case

Case 2HK > 1
References

Motivation
Outline
Bi-fBm
Results

NotationµBi-fractional Brownian motion (Bi-fBm)

? The process BH,K satisfies the following estimates (see
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NotationµBi-fractional Brownian motion (Bi-fBm)

? by applying the inequality

(1 + x)α ≤ 1 + (2α − 1)xα, 0 ≤ x ≤ 1

with 0 ≤ α ≤ 1.

? Remark:

(1 + x)α ≤ 1 + αxα ≤ 1 + xα.
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NotationµBi-fractional Brownian motion (Bi-fBm)

In the following discussion we assume that 2HK = 1.

? Denote µ = E(BH,K
s BH,K

r ) and ρ2 = sr − µ2.

? Then we have

0 ≤ r − µ ≤ 2(1−K)/2
√

r(s− r),

0 ≤ s− µ ≤ 2(1−K)/2
√

s(s− r),

for s ≥ r ≥ 0
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NotationµBi-fractional Brownian motion (Bi-fBm)

? For s ≥ r ≥ 0 we have

r(s− r) ≤ ρ2 ≤ 41−Ks(s− r);

? For T ≥ t > s > t′ > s′ > 0 we have

0 ≤ E(BH,K
t −BH,K

s )(BH,K
t′ −BH,K

s′ ) ≤ c
(t− s)(t′ − s′)√

t′(t− t′)
.
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Bi-fractional Brownian motion: References

F [2] I. Kruk, F. Russo and C. A. Tudor, Wiener integrals,

Malliavin calculus and covariance measure structure, J. Funct.

Anal. 249 (2007), 92-142.

F [3] F. Russo and C. A. Tudor, On the bifractional Brownian

motion, Stoc. Proc. Appl. 5 (2006), 830–856.

F [4] C. A. Tudor and Y. Xiao, Some path properties of

bifractional brownian motion, Bernoulli, 13 (2007),

1023-1052.
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♠ Remarks

∗ The Malliavin derivative DH,K ;

∗ The variance of integral (2HK ≥ 1)

E

∣∣∣∣∣
∫ T

0

usdBH,K
s

∣∣∣∣∣
2

;

∗ Estimate the express

∂2

∂r∂l
R(r, l).

where R(s, r) = 1
2K

[
(s2H + r2H)K − |s− r|2HK

]
.
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Stochastic integral

♠ By applying the decomposition

R(r, l) =
1

2K

[
(s2H + l2H)K − (s2HK + l2HK)

]
+

1
2K

[
−|s− l|2HK + (s2HK + l2HK)

]
,

we can estimate the express

| ∂2

∂r∂l
R(r, l)|
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Results

Stochastic integral

♠ For 2HK = 1 we have∣∣∣∣ ∂2

∂r∂l
R(r, l)

∣∣∣∣ = (2H − 1)2−K
(
r2H + l2H

)K−2
r2H−1l2H−1

≤ (2H − 1)2−Kr2Hβ(K−2)+2H−1l2Hα(K−2)+2H−1

by Young’s inequality with 0 < α < 1
2−K , 1 > β > 1−K

2−K ,

α + β = 1.
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Results

♠ In the following discussion

∗ 2HK = 1;

∗ the stochastic integral ∫ t

0

usdBH,K
s

is of Skorohod type (see Es-sebaiy and Tudor [5]).
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Result 1: Integration wrt local time

♠ L H,Kµthe local time of bi-fBm defined by Tanaka’s formula

|BH,K
t −x| = |BH,K

0 −x|+
∫ t

0
sign(BH,K

s −x)dBH,K
s +L H,K(t, x);

? Occupation formula∫ t

0

f(BH,K
s , s)ds =

∫
R

dx

∫ t

0

f(x, s)L H,K(x, ds);
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Result 1: Integration wrt local time

♠ Result I : Define the integral∫
R

f(x)L H,K(dx, t).

∗ We find a Banach Space H of measurable functions such

that the above integral is well-defined for f ∈ H , and

E

∣∣∣∣∫
R

f(x)L H,K(dx, t)
∣∣∣∣ ≤ c‖f‖H .
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Result 1: Integration wrt local time

♠ Similarly, we can define the integral of two parameters∫
R

∫ t

0
f(x, s)L H,K(dx, ds).
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Result 2: Quadratic covariation

♠ Result II : We give the existence of quadratic covariation

[f(BH,K), BH,K ] of f(BH,K) and BH,Kµ

[f(BH,K),BH,K ]t

≡ P − lim
n→∞

n∑
k=1

{f(BH
tk

)− f(BH
tk−1

)}(BH
tk
−BH

tk−1
)

with tk = kt/n.
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Result 2: Quadratic covariation

♠ Quadratic covariation [f(BH,K , ·), BH,K ] of f(BH,K , ·) and

BH,Kµ

[f(BH,K , ·), BH,K ]t

≡ P − lim
n→∞

n∑
k=1

{f(BH
tk

, tk)− f(BH
tk−1

, tk−1)}(BH
tk
−BH

tk−1
)

with tk = kt/n.
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Result 2: Quadratic covariation

♠ The quadratic covariation can also be defined by the following

limit in probability (See Russo et al (2000))µ

lim
ε↓0

1
ε

∫ t

0

{
f(BH,K

s+ε )− f(BH,K
s )

}
(BH,K

s+ε −BH,K
s )ds.

lim
ε↓0

1
ε

∫ t

0

{
f(BH,K

s+ε , s + ε)− f(BH,K
s , s)

}
(BH,K

s+ε −BH,K
s )ds.
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Result 3: Two Itô formulas

♠ Result III. The following Bouleau-Yor’s formula holds

F (BH,K
t ) = F (0) +

∫ t

0
f(BH,K

s )dBH,K
s − 1

2

∫
R

f(x)L H,K(dx, t),

where F ′ = f ∈ H .
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Result 3: Two Itô formulas

♠ Result III. The following (Föllmer-Protter-Shiryayev’s) formula

holds

F (BH,K
t ) = F (0) +

∫ t

0
f(BH,K

s )dBH,K
s + 2K−2[f(BH,K), BH,K ]t,

where F ′ = f ∈ H .
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Result 3: Two Itô formulas

F (BH,K
t , t) = F (0, 0)+

∫ t

0
f(BH,K

s , s)dBH,K
s

− 1
2

∫
R

∫ t

0
f(x, s)L H,K(dx, ds)

F (BH,K
t , t) = F (0, 0)+

∫ t

0
f(BH,K

s , s)dBH,K
s

+ 2K−2[f(BH,K , ·), BH,K ]t,
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Result 4: The local time on curve

♠ Result IV. Let t 7→ a(t) be a continuous function on [0, 1].
Then the local time `H,K(a, t) of Bi-fBm BH,K on curve a

exists for all t ∈ [0, 1], and

`H,K(a, t) = −21−K

∫
R

∫ t

0
1[a(s),+∞)(x)L H,K(dx, ds)

where fa(x, s) = 1[a(s),∞)(x).
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A related result

A Banach Space of Measurable Functions

Consider the set H of measurable functions f on R such that

‖f‖ < +∞, where

‖f‖ =

√∫ 1

0

ds√
2πs

∫
R

f2(x)e−
x2

2s dx +
∫ 1

0

ds

s
√

2πs

∫
R
|f(x)x|e−

x2

2s dx.

⇓⇓⇓

∗ H is a Banach space;

∗ the set E of elementary functions is dense in H .

Litan Yan (AAAnnn""") et al Quadratic covariation and Itô’s formula for a bi-fBm
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Introduction and statement of results
Integration with respect to local time

Quadratic covariation
The time-dependent case

Case 2HK > 1
References

Integration
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Integration wrt local time

Lemma (1)

For any f4 =
∑

j xj1(aj−1,aj ] ∈ E , the integral∫
R

f4(x)L H,K(dx, t) :=
∑

j

xj

[
L H,K(aj , t)−L H,K(aj−1, t)

]
is well-defined, and

E

∣∣∣∣∫
R

f4(x)L H,K(dx, t)
∣∣∣∣ ≤ c‖f4‖

for all 0 ≤ t ≤ T .

Litan Yan (AAAnnn""") et al Quadratic covariation and Itô’s formula for a bi-fBm
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Integration wrt local time

Now, for f ∈ H we can define∫
R

f(x)L H,K(dx, t) := lim
n→∞

∫
R

f4,n(x)L H,K(dx, t), in L1,

if f4,n → f in H , where {f4,n} ⊂ E . Clearly, the definition is

well-defined, and

E

∣∣∣∣∫
R

f(x)L H,K(dx, t)
∣∣∣∣ ≤ c‖f‖.
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Integration wrt local time

∗ For all f ∈ C1(R), we have∫
R

f(x)L H,K(dx, t) = −
∫

R
f ′(x)L H,K(x, t)dx, t ≥ 0;

∗ Let f, f1, f2, . . . ∈ H and let fn → f in H . We then have∫
R

fn(x)L H,K(dx, t) −→
∫

R
f(x)L H,K(dx, t), in L1

for all 0 ≤ t ≤ T , as n →∞.
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Theorem (1)

Let the measurable function f ∈ H and let F ′ = f ∈ H . Then

the following Itô type formula holds:

F (BH,K
t ) = F (0) +

∫ t

0
f(BH,K

s )dBH,K
s − 1

2

∫
R

f(x)L H,K(dx, t).
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p-variation of local time

Lemma (2)

For t ≥ 0, x ∈ R set

B̂H,K
t (x) :=

∫ t

0
1
(BH,K

s >x)
dBH,K

s .

Then the estimate

E

[(
B̂H,K

t (b)− B̂H,K
t (a)

)2
]

6 CH,K,t(b− a)2−K (2.1)

holds for all 2HK = 1 and a, b ∈ R, a < b, where CH,K,t > 0 is a

constant depending only on H,K, t.

Litan Yan (AAAnnn""") et al Quadratic covariation and Itô’s formula for a bi-fBm
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Integration
An Itô type formula
A related result

p-variation of local time

Theorem (2)

Let 2KH = 1. Then the limit in probability

lim
|∆n|→0

∑
a=a0<a1<...<an=b

∣∣L H,K(ai+1, t)−L H,K(ai, t)
∣∣ 2
2−K

exists, where |∆n| = maxj{|aj+1 − aj |}.
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Integration
An Itô type formula
A related result

p-variation of local time

Theorem (3)

Let 2HK = 1. Then the local time L H,K(x, t) is of bounded

p-variation in x for any 0 ≤ t ≤ T , for all p > 2
2−K , almost surely.
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Integration
An Itô type formula
A related result

p-variation of local time

Theorem (4)

For 2HK = 1, if x 7→ f(x) is of bounded p-variation with

1 6 p < 2
K , then the (Young) integral∫ b

a
f(x)L H,K(dx, t)

:= lim
|∆n|→0

∑
a=a0<a1<...<an=b

f(aj)
[
L H,K(aj+1, t)−L H,K(aj , t)

]
is well defined.
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Existence
Föllmer-Protter-Shiryayev’s formula

Quadratic covariation

♠ Consider a partition tj = jt
n , j = 0, 1, 2, . . . , n of [0, t].

♠ Denote 4jB
H,K = BH,K

tj
−BH,K

tj−1
, for 1 ≤ j ≤ n. Then the

quadratic covariation
[
f(BH,K), BH,K

]
is defined by

[
f(BH,K), BH,K

]
t
= lim

n→∞

n∑
j=1

{f(BH,K
tj

)− f(BH,K
tj−1

)}4jB
H,K

as a limit in probability.
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Existence
Föllmer-Protter-Shiryayev’s formula

Quadratic covariation

♠ A result introduced by Russo-Vallois yields[
f(BH,K), BH,K

]
t
= 21−K

∫ t

0
f ′(BH,K

s )ds

for all f ∈ C1(R).
⇓⇓

∗ For f ∈ C1(R) we have[
f(BH,K), BH,K

]
t
= −21−K

∫
R

f(x)L H,K(dx, t);

∗ For f ∈ C(R) we have

n−1∑
j=0

f(BH,K
tj

)
(
BH,K

tj+1
−BH,K

tj

)2 P−→ 21−K

∫ t

0
f(BH,K

s )ds.
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Existence
Föllmer-Protter-Shiryayev’s formula

A related result

♠ If p ≥ 2 is even and f ∈ C(R), then

n
p
2
−1

n∑
j=1

f(BH,K
tj

)
(
4jB

H,K
)p P−→ 21−Kcp

∫ t

0
f(BH,K

s )ds,

where cp denotes the p-moment of a random variable ξ ∼ N(0, 1).
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Existence
Föllmer-Protter-Shiryayev’s formula

An identity

Theorem (5)

Let f ∈ H . Then the quadratic covariation
[
f(BH,K), BH,K

]
t

exists in L1, and

E
∣∣[f(BH,K), BH,K

]
t

∣∣ ≤ c‖f‖

and [
f(BH,K), BH,K

]
t
= −21−K

∫
R

f(x)L H,K(dx, t) (3.1)

for all t ∈ [0, T ].
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Existence
Föllmer-Protter-Shiryayev’s formula

Föllmer-Protter-Shiryayev’s formula

♠ Let the measurable function f ∈ H and let F ′ = f ∈ H . Then

the following Itô type formula holds:

F (BH,K
t ) = F (0)+

∫ t

0
f(BH,K

s )dBH,K
s +2K−2

[
f(BH,K), BH,K

]
t
.
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♠ Let (x, s) 7→ f(x, s) a measurable function on R× [0, T ].
♠ In this section, we define the integral for two parameters∫

R

∫ t

0
f(x, s)L H,K(dx, ds), t ≥ 0, (4.1)

and study existence of the quadratic covariation[
f(BH,K , ·), BH,K

]
.
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Weighted quadratic covariation

♠
[
f(BH,K), BH,K

]
t
= 0 if 2HK > 1.

♠ Weighted quadratic covariation
[
f(BH,K), BH,K

](W )
:[

f(BH,K), BH,K
](W )

t

≡ P − lim
n→∞

n∑
k=1

(k − 1)2HK−1{f(BH,K
tk

)− f(BH,K
tk−1

)}4kB
H,K

with tk = kt/n.
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116 (2006), 757-778.

? Local time-space calculus for reversible semi-martingales. Sém. Prob. 40

(2006).

Litan Yan (AAAnnn""") et al Quadratic covariation and Itô’s formula for a bi-fBm
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