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1. Three objects

• (E, d) is a separable, complete metric space with Borel field B.

Given two probability measures ν, µ on (E, B),

their Lp-Wasserstein distance is defined by

Wp,d(ν, µ) := inf
π

(∫∫
E×E

d(x, y)pπ(dx, dy)

)1/p

(1)

where the infimum is taken over all probability measures π on E×E such
that its marginal distributions are respectively ν and µ, i.e.,

π(A × E) = ν(A), π(E × B) = µ(B), ∀A, B ∈ B.

Such π is called coupling of (ν, µ).
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Definition 1 the relative entropy (or the Kullback information) of ν w.r.t. µ

is defined by

H(ν|µ) :=


∫

dν
dµ

log dν
dµ

dµ, if ν � µ;

+∞, otherwise.
(2)

For 0 ≤ f ∈ L1(µ), the entropy of f w.r.t. µ is defined as

Entµ(f) :=

∫
f log fdµ − µ(f) log µ(f) ∈ [0, +∞]. (3)

Remarks 1 ν → H(ν|µ) is the rate function in the LDP of

Ln :=
1

n

n∑
k=1

δXk

where (Xk) is i.i.d.r.v. of law µ.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Definition 2 Given the Dirichlet form E with domain D(E) on L2(µ), the
Fisher-Donsker-Varadhan information of ν with respect to µ is defined by

I(ν|µ) :=

E(
√

f,
√

f), if ν = fµ,
√

f ∈ D(E)

+∞, otherwise.
(4)

Remarks 2 ν 7→ I(ν|µ) is exactly the Donsker-Varadhan entropy i.e. the rate
function governing the large deviation principle of the empirical measure

Lt :=
1

t

∫ t

0

δXsds

for large time t, where (Xt) is the reversible Markov process associated with
(E, D(E)).

This was proved by Donsker and Varadhan (CPAM75, 76, 83) under some con-
ditions of absolute continuity and regularity of Pt(x, dy), and established in full
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generality by L. Wu (JFA00).

Example 1 µ = e−V (x)dx/Z (Z is the normalization constant) with V ∈
C1 on a complete connected Riemannian manifold E = M , the diffusion
(Xt) generated by L = ∆−∇V ·∇ (∆, ∇ are respectively the Laplacian
and the gradient on M ) is µ-reversible and the corresponding Dirichlet
form is given by

Eµ(g, g) =

∫
M

|∇g|2 dµ, g ∈ D(Eµ) = H1(X , µ)

If ν = fµ with 0 < f ∈ C1(M), then

I(ν|µ) =

∫
M

|∇
√

f |2 dµ =
1

4

∫
M

|∇f |2

f
dµ. (5)
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Information for discrete time Markov chains

Definition 3 Given a symmetric Markov kernel P (x, dy) on L2(µ), Donsker-
Varadhan information of ν with respect to (P, µ) is defined by

I(ν|P, µ) :=

sup1≤u bounded

∫
log u

P u
dν, if ν � µ,

√
f ∈ D(E)

+∞, otherwise.
(6)

Let (Xn) be the Markov chain with transition kernel P , then ν → I(ν|P, µ)

is the rate function governing the large deviations of Ln := 1
n

∑n
k=1 δXk

.
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2. Transportation-entropy inequalities WpH(C)

Wp(ν, µ)2 ≤ 2CH(ν|µ), ∀ν ∈ M1(E), (WpH(C))

Theorem 1 µ ∈ W1H(C) iff for every Lipschitzian continuous function
f : E → R with ‖f‖Lip = 1, f ∈ L1(µ) and

Eµeλ(f−µ(f)) ≤ eCλ2/2, ∀λ ≥ 0; (7)

(Bobkov-Götze criterion, JFA99), iff for every f with ‖f‖Lip = 1,

P
(√

n(Ln(f) − µ(f)) > r
)

≤ e−r2/2C, ∀r > 0, n ≥ 1.

(Gozlan-Léonard’s criterion, PTRF 08). So the best constant C in W1H(C)

could be called “Gaussian constant CG(µ)” of µ.
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Theorem 2 (Djellout-Guillin-Wu, AOP04) A given probability measure µ

on (E, d) satisfies W1H(C) on (E, d) if and only if

∃δ > 0 :

∫∫
eδd2(x,y)dµ(x)dµ(y) < +∞. (8)

In the latter case,

C = C(δ) :=
1

2δ

(
1 + 2 log Eeδd(ξ,ξ′)2

)
(9)

(estimate due to Bolley-Villani 05 and Gozlan 06)
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About W2H(C): Talagrand’s transportation inequality

Theorem 3 (Talagrand, GFA96) Let µ be N (0, I) on Rd. Then

µ ∈ W2H(C), C = 1(sharp).

Theorem 4 (Otto-Villani, JFA00) On a complete connected Riemannian
manifold, if µ satisfies log-Sobolev inequality, i.e.

H(ν|µ) ≤ 2CI(ν|µ) (HI(C))

then µ ∈ W2H(C). If µ ∈ W2H(C), then µ satisfies the Poincaré
inequality

V arµ(f) ≤ CE(f, f). (P(C))
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In summary,

HI(C) =⇒ W2H(C) =⇒ P (C).

Remarks 3 • P (C) ; W2H(C) :

counter-example µ = e−|x|/2dx on R.

• W2H(C) ; HI(C) :

first counter-example given by Cattiaux-Guillin (JPAM 06)
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Further reading:

— F.Y. Wang, W2H on path spaces JFA 02

— Djellout-Guillin-Wu, W2H for paths of dissipative diffusions w.r.t. L2-
metric, AOP 04

— J. Shao and S. Fang, W2H on loop groups,

— K. Marton, W2H for Gibbs measures

— L. Wu, W1H for Gibbs measures, AOP 06

— F. Gao and L. Wu, WpI(C) for Gibbs measures.
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Central idea: (1) H(ν|µ) is the rate function for i.i.d. sequence (Xn)

of common law µ.

(2) In the dependent stationary case of common law µ, if I(ν) is the rate
function for LD of Ln, then

P (W1(Ln, µ) > r) = e−n inf{I(ν);W1(ν,µ)>r}+o(n) ≤ e−nα(r)+o(n)

if the following transportation inequality holds:

α(W1(ν, µ)) ≤ I(ν).
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3. Transportation-information inequality WpI

Wp(ν, µ)2 ≤ 2CI(ν|µ), ∀ν ∈ M1(E), (WpH(C))

Theorem 5 (Guillin-Léonard-Wu-Yao 06) Let c > 0 and let (Xt) be a
µ-reversible and ergodic Markov process associated with (E, D(E)) such
that ∫

d2(x, x0) dµ(x) < +∞.

Let

P u
t f(x) := Exf(Xt) exp

(∫ t

0

u(Xs)ds

)
the Feynmann-Kac semigroup, whose generator is L+u. The statements
below are equivalent:
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(i) The following W1I(C) inequality holds true:

W 2
1 (ν, µ) ≤ 2CI(ν|µ), ∀ν ∈ M1(X ); (W1I(C))

(ii) For all Lipschitz function u with ‖u‖Lip ≤ 1, µ(u) = 0 and all λ ≥ 0,

lim sup
t→+∞

1

t
log Eµ exp

(
λ

∫ t

0

u(Xs) ds

)
≤ Cλ2/2;

(iii) For all Lipschitz function u, r > 0 and β ∈ M1(X )such that
dβ/dµ ∈ L2(µ),

Pβ

(
1

t

∫ t

0

u(Xs) ds ≥ µ(u) + r

)
≤
∥∥∥∥dβ

dµ

∥∥∥∥
2

exp

(
−

r2

2C‖u‖2
Lip

)
.

The constant C in W1I(C) can be again interpreted as the Gaussian
constant CG((Pt), µ) for (Xt).
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Relations between W2I, Poincaré and log-Sobolev inequalities

Proposition 1 (Guillin-Léonard-Wu-Yao 06) Let X be a complete con-
nected Riemannian manifold and µ = e−V (x)dx/Z where dx is the Rie-
mannian volume measure, V ∈ C2(X ) and Z =

∫
X e−V dx < +∞. Let

D(E) be the space H1(X , µ) of those functions g ∈ L2(X , µ) such that
∇g ∈ L2(TM, µ) in the sense of distribution and consider the Dirichlet
form,

E∇(g, g) :=

∫
X

|∇g|2 dµ, g ∈ D(E)

and the associated Fisher-Donsker-Varadhan information I(ν|µ), see (5).

(a) If the log-Sobolev inequality below

H(ν|µ) ≤ 2C I(ν|µ), ∀ν
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is satisfied, then µ satisfies W2I(2C2).

(b) If W2I(C) holds, then the Poincaré inequality holds with constant
CP ≤

√
2C.

(c) Assume that the Bakry-Emery curvature

Ric + HessV ≥ K

where Ric is the Ricci curvature and HessV is the Hessian of V. If
W2I(C) holds with

√
C/2K ≤ 1 (this is possible by Part (a) and

Bakry-Emery’s criterion), then the log-Sobolev inequality

H(ν|µ) ≤ 2(
√

2C − CK/2) I(ν|µ), ∀ν
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Proposition 2 (Guillin-Léonard-Wang-Wu 07) In the same framework, we
have for p = 1 or 2,

WpI(C) =⇒ WpH(C).
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4. W1I(C) for µ-symmetric Markov chain (Xn) with transition P

W1I(C):

W1(ν, µ)2 ≤ 2CI(ν|P, µ).

Two questions:

Q1. What is the probabilistic meaning of W1I(C) ?

Q2. Criteria for W1I(C) ?
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Q1. Probabilistic meaning

Theorem 6 (Wu 08) Let C > 0 and let (Xn) be a µ-reversible Markov
chain with transition P . The statements below are equivalent:

(i) The following W1I(C) inequality holds true:

W 2
1 (ν, µ) ≤ 2CI(ν|µ), ∀ν; (W1I(C))

(ii) For all bounded Lipschitz function u with ‖u‖Lip ≤ 1, µ(u) = 0 and
all λ ≥ 0,

lim sup
n→+∞

1

n
log Eµ exp

(
λ

n∑
k=1

u(Xk)

)
≤ Cλ2/2;

(iii) For all Lipschitz function u with ‖u‖Lip = 1, r > 0 and β ∈
M1(X )such that dβ/dµ ∈ L2(µ),

Pβ

(
L̃n(u) > µ(u) + r

)
≤
∥∥∥∥dβ

dµ

∥∥∥∥
2

exp

(
−

nr2

2C

)
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where L̃n(u) := 1
n

(
u(X0)+u(Xn)

2
+
∑n−1

k=1 u(Xk)
)

is the trapeze
type empirical mean.

The constant C in W1I(C) can be again interpreted as the Gaussian
constant CG(P, µ) for (Xn).
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Proof : (i) =⇒ (iii). By Lei (Bernoulli 07), for any ε > 0,

Pβ

(
L̃n(u) > µ(u) + r + ε

)
≤
∥∥∥∥dβ

dµ

∥∥∥∥
2

exp (−n inf{I(ν|P, µ); ν(u) − µ(u) > r})

≤
∥∥∥∥dβ

dµ

∥∥∥∥
2

exp

(
−

nr2

2C

)
because r < ν(u) − µ(u) ≤ W1(ν, µ) ≤

√
2CI(ν|P, µ).

(ii) =⇒ (i): by large deviations in Wu (JFA 00).
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5. Three criteria

5.1. Poincaré is equivalent to W1I(C) in the trivial metric case

Fact: if d(x, y) = 1x6=y, W1(ν, µ) = ‖ν − µ‖T V /2.

Theorem 7 Let ((Xn)n≥0, Pµ) be a µ-symmetric ergodic Markov chain
with transition probability P .

1. The Poincaré inequality

V arµ(g) ≤ CP 〈g, (I − P )g〉µ, ∀g ∈ L2(µ) (10)

implies

‖ν − µ‖2
TV ≤ 4CP I(ν|P, µ), ∀ν ∈ M1(X ). (11)

In particular for u ∈ bB, for every initial probability measure β � µ

with dβ/dµ ∈ L2(µ) and with µ(u) = 0 and for all r, ε > 0 and



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

n ∈ N∗,

Pβ

(
L̃n(u) ≥ µ(u) + r

)
≤
∥∥∥∥dβ

dµ

∥∥∥∥
2

exp

(
−

nr2

cP δ(u)2

)
(12)

where δ(u) := supx,y∈X |u(x) − u(y)| is the oscillation of u.

2. Conversely in the symmetric case, if α(‖ν−µ‖T V ) ≤ I(ν|P, µ), ∀ν,
for some nonnegative nondecreasing left-continuous function α :

R+ → [0, +∞] with α(1) > 0, then the Poincaré inequality (10)
holds with

cP ≤
1

1 − e−α(1)
. (13)
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5.2. Unbounded metric: spectral gap in the space of Lipschitzian
functions

The carré-du-champs operator associated with L = P − I is

Γ(g, h)(x) =
1

2

∫
(g(y) − g(x))(h(y) − h(x))P (x, dy)

Consider the following condition relating P with the metric d:

sup
g:‖g‖Lip=1

sup
x∈X

√
Γ(g)(x) ≤ M. (14)

Notice that (14) is satisfied if

1

2

∫
d2(x, y)P (x, dy) ≤ M2, ∀x. (15)

Let CLip(X ) (resp. CLip,0(X )) be the space of all d-Lipschitzian functions
g (resp. with µ(g) = 0) on X .
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Theorem 8 Assume (14) and
∫

d2(x, x0)dµ(x) < +∞ and P is µ-
symmetric. Suppose that P admits a spectral gap in CLip(X ), i.e., for
any g ∈ CLip,0(X ), there is G ∈ CLip,0(X ) solving the Poisson equation
(I − P )G = g, µ − a.s. and satisfying

‖G‖Lip ≤ cP,Lip‖g‖Lip (16)

where cP,Lip > 0 is the best constant (here the index P refers to Poincaré).
Then µ satisfies the Poincaré inequality with cP ≤ cP,Lip and it satisfies
W1I below

W1(ν, µ)2 ≤ 4(McP,Lip)
2I(ν), ∀ν ∈ M1(X ). (17)

The following result, inspired of Djellout-Guillin-Wu (AOP 04), provides
sharp constant.
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Proposition 3 In the framework of Theorem 8 but without condition (14),
assume that for some constant cH(P ) > 0,

W 2
1 (ν, P (x, ·)) ≤ 2cH(P )H(ν|P (x, ·)), ∀x ∈ X , ν ∈ M1(X ) (18)

Then

W 2
1 (ν, µ) ≤ 2(cP,Lip)

2cH(P )I(ν|P, µ). (19)

Remarks 4 The (inverse) Lipschitzian spectral gap constant cP,Lip can be esti-
mated easily by

cP,Lip ≤
∞∑

n=0

‖P n‖Lip

where

‖P‖Lip = sup
g:‖g‖Lip=1

‖Pg‖Lip = sup
x6=y

W1(P (x, ·), P (y, ·))
d(x, y)

.
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Ollivier called

κ(x, y) = 1 −
W1(P (x, ·), P (y, ·))

d(x, y)

(Ricci) curvature of the Markov chain. If κ(x, y) ≥ κ > 0, then ‖P‖Lip ≤
1 − κ and then cP,Lip ≤ 1/κ. This last estimate is far from being sharp in
general: for the Markov chain on {0, 1} given by P (0, 1) = P (1, 0) = 1, we
have κ = 0 whereas cP,Lip = 1/2.
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Lyapunov function criterion for W1I:

Theorem 9 Assume that P is µ-symmetric and satisfies Poincaré inequal-
ity (10) with best constant cP < ∞. If the Lyapunov condition

(H) There exist a measurable function U : X → [1, +∞) and a non-
negative function φ and a constant b > 0 such that PU(x) <

+∞, µ − a.e. and

log
U

PU
≥ δd2(x, x0) − b, µ-a.s.

holds. Then

W1(ν, µ)2 ≤ 2C̃I(ν), ∀ν; C̃ :=
2

δ
[1 + (1 + b)cP µ(d2(x, x0))] (20)
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6. Two examples

6.1. Two points model We begin with the simplest Markov chain on
X = {0, 1} equipped with the trivial metric d, with transition matrix P =(

1 − a a

b 1 − b

)
, where a, b ∈ (0, 1]. Notice that P is symmetric w.r.t.

µ given by

µ(0) =
b

a + b
=: q, µ(1) =

a

a + b
=: p.

Though this model is simple, but its study is abundant: for the Dirichlet
form

EP (g, g) = 〈g, (I − P )g〉mu =
ab

a + b
(g(1) − g(0))2

associated with the continuous time Markov process generated by L =

P − I,

1. the best log-Sobolev constant is known, see Saloff-Coste and al.;
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2. the best constant CH(p) in W1(ν, µ)2 ≤ 2CH(ν|µ) is obtained
recently by Bobkov, Houdré and Tetali (JIM 08) :

CH(p) =
p − q

2(log p − log q)
(:= 1/4 if p = q); (21)

3. the best rate κ > 0 in the exponential entropy convergence

H(νPt|µ) ≤ e−κtH(ν|µ)

is unknown, only some accurate estimates are known, see M.F.
Chen (07).

4. the best constant C in W1(ν|µ)2 ≤ 2CIc(ν) where

Ic(ν) = 〈(I − P )

√
dν

dµ
,

√
dν

dµ
〉µ

is known: C = 1/[2(a + b)] (Guillin-Léonard-Wu-Yao 08).
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cP,Lip = cP = (a + b)−1

(however its curvature κ = 1 − |1 − (a + b)|).

CG(P, µ) ≤
max{cH(a), cH(b)}

(a + b)2
(22)

which becomes equality if a+b = 1 (i.e., i.i.d. case, for cH(a) = cH(b) =

CH(µ)). By the calculation of the asymptotic variance V (g) we have

CG(P, µ) ≥
(

2

a + b
− 1

)
ab

(a + b)2
.

Notice also a curious phenomena: if a = b = 1, cH(P ) = 0 and then
CG(P, µ) = 0.

We do not know the exact expression of CG(P, µ).
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6.2. Complete graph Let X be the complete graph of N (≥ 3) ver-
tices, i.e., any two vertices are connected by an edge and then the graph
distance is given by d(x, y) = 1x6=y (the trivial metric). The probability
transition matrix is given by P (x, y) = 1

N−1
for all y 6= x. It is symmetric

w.r.t. the uniform measure µ(x) = 1/N (for each x ∈ X ). It is easy to
see that

(I − P )G =
N

N − 1
(G − µ(G)).

Thus cP = N−1
N

= cP,Lip. By Theorem 7, we have

CG(P, µ) ≤
N − 1

2N
.

Proposition 3 yields the better

CG(P, µ) ≤
1

4

(
N − 1

N

)2

. (23)
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This is sharp for large N . Indeed

CG(P, µ) ≥

N−2
4N

, if N even;

N−2
4N

(1 − 1
N2 ), if N odd.
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——————

Thanks!

——————


