[The sixth Workshop on Markov processes and related topics, Anhui Normal University, 21-26 July 2008]

Transportation-Information inequalities for Markov chains

Liming Wu

Wuhan University and Université Blaise Pascal

Based on a series of works :
[1] A. Guillin, Ch. Léonard, L. Wu and N. Yao, [I], to appear in PTRF
[2] A. Guillin, Ch. Léonard, F.Y. Wang and L. Wu, [II] relations with other functional inequalities. Preprint 08
[3] A. Guillin, A. Joulin, Ch. Léonard, and L. Wu, [III] jumps case. Preprint 08
[4] F. Gao and L. Wu, Gibbs measures, Preprint 07
[5] L. Wu, discrete time case. Preprint 08.

1. Three objects

- $(\boldsymbol{E}, \boldsymbol{d})$ is a separable, complete metric space with Borel field \mathcal{B}.

Given two probability measures ν, μ on $(\boldsymbol{E}, \mathcal{B})$,
their L^{p}-Wasserstein distance is defined by

$$
\begin{equation*}
W_{p, d}(\nu, \mu):=\inf _{\pi}\left(\iint_{E \times E} d(x, y)^{p} \pi(d x, d y)\right)^{1 / p} \tag{1}
\end{equation*}
$$

where the infimum is taken over all probability measures $\boldsymbol{\pi}$ on $\boldsymbol{E} \times \boldsymbol{E}$ such that its marginal distributions are respectively ν and μ, i.e.,

$$
\pi(A \times E)=\nu(A), \pi(E \times B)=\mu(B), \forall A, B \in \mathcal{B}
$$

Such $\boldsymbol{\pi}$ is called coupling of $(\boldsymbol{\nu}, \boldsymbol{\mu})$.

Definition 1 the relative entropy (or the Kullback information) of $\boldsymbol{\nu}$ w.r.t. $\boldsymbol{\mu}$ is defined by

$$
H(\nu \mid \mu):= \begin{cases}\int \frac{d \nu}{d \mu} \log \frac{d \nu}{d \mu} d \mu, & \text { if } \nu \ll \mu \tag{2}\\ +\infty, & \text { otherwise }\end{cases}
$$

For $0 \leq f \in L^{1}(\mu)$, the entropy of f w.r.t. μ is defined as

$$
\begin{equation*}
\operatorname{Ent}_{\mu}(f):=\int f \log f d \mu-\mu(f) \log \mu(f) \in[0,+\infty] \tag{3}
\end{equation*}
$$

Remarks $1 \boldsymbol{\nu} \rightarrow \boldsymbol{H}(\boldsymbol{\nu} \mid \boldsymbol{\mu})$ is the rate function in the LDP of

$$
L_{n}:=\frac{1}{n} \sum_{k=1}^{n} \delta_{X_{k}}
$$

where $\left(X_{k}\right)$ is i.i.d.r.v. of law μ.

Definition 2 Given the Dirichlet form \mathcal{E} with domain $\mathbb{D}(\mathcal{E})$ on $L^{2}(\mu)$, the Fisher-Donsker-Varadhan information of ν with respect to μ is defined by

$$
I(\nu \mid \mu):= \begin{cases}\mathcal{E}(\sqrt{f}, \sqrt{f}), & \text { if } \nu=f \mu, \sqrt{f} \in \mathbb{D}(\mathcal{E}) \tag{4}\\ +\infty, & \text { otherwise }\end{cases}
$$

Remarks $2 \boldsymbol{\nu} \mapsto \boldsymbol{I}(\boldsymbol{\nu} \mid \boldsymbol{\mu})$ is exactly the Donsker-Varadhan entropy i.e. the rate function governing the large deviation principle of the empirical measure

$$
L_{t}:=\frac{1}{t} \int_{0}^{t} \delta_{X_{s}} d s
$$

for large time \boldsymbol{t}, where $\left(\boldsymbol{X}_{\boldsymbol{t}}\right)$ is the reversible Markov process associated with $(\mathcal{E}, \mathbb{D}(\mathcal{E}))$.

This was proved by Donsker and Varadhan (CPAM75, 76, 83) under some conditions of absolute continuity and regularity of $\boldsymbol{P}_{\boldsymbol{t}}(\boldsymbol{x}, \boldsymbol{d} \boldsymbol{y})$, and established in full
generality by L. Wu (JFA00).

Example $1 \mu=e^{-V(x)} d x / Z$ (Z is the normalization constant) with $V \in$ C^{1} on a complete connected Riemannian manifold $\boldsymbol{E}=M$, the diffusion $\left(X_{t}\right)$ generated by $\mathcal{L}=\Delta-\nabla \boldsymbol{V} \cdot \nabla(\Delta, \nabla$ are respectively the Laplacian and the gradient on M) is μ-reversible and the corresponding Dirichlet form is given by

$$
\mathcal{E}_{\mu}(\boldsymbol{g}, \boldsymbol{g})=\int_{M}|\nabla g|^{2} d \mu, g \in \mathbb{D}\left(\mathcal{E}_{\mu}\right)=H^{1}(\mathcal{X}, \mu)
$$

If $\nu=f \mu$ with $0<f \in C^{1}(M)$, then

$$
\begin{equation*}
I(\nu \mid \mu)=\int_{M}|\nabla \sqrt{f}|^{2} d \mu=\frac{1}{4} \int_{M} \frac{|\nabla f|^{2}}{f} d \mu \tag{5}
\end{equation*}
$$

Information for discrete time Markov chains

Definition 3 Given a symmetric Markov kernel $P(x, d y)$ on $L^{2}(\mu)$, DonskerVaradhan information of ν with respect to (P, μ) is defined by

$$
I(\nu \mid P, \mu):= \begin{cases}\sup _{1 \leq u \text { bounded }} \int \log \frac{u}{P u} d \nu, & \text { if } \nu \ll \mu, \sqrt{f} \in \mathbb{D}(\mathcal{E}) \tag{6}\\ +\infty, & \text { otherwise. }\end{cases}
$$

Let $\left(X_{n}\right)$ be the Markov chain with transition kernel P, then $\nu \rightarrow \boldsymbol{I}(\nu \mid \boldsymbol{P}, \boldsymbol{\mu})$ is the rate function governing the large deviations of $L_{n}:=\frac{1}{n} \sum_{k=1}^{n} \delta_{X_{k}}$.
2. Transportation-entropy inequalities $W_{p} H(C)$

$$
\begin{equation*}
W_{p}(\nu, \mu)^{2} \leq 2 C H(\nu \mid \mu), \forall \nu \in M_{1}(E), \tag{p}
\end{equation*}
$$

Theorem $1 \boldsymbol{\mu} \in \boldsymbol{W}_{\mathbf{1}} \boldsymbol{H}(\boldsymbol{C})$ iff for every Lipschitzian continuous function $f: E \rightarrow \mathbb{R}$ with $\|f\|_{L i p}=1, f \in L^{1}(\mu)$ and

$$
\begin{equation*}
\mathbb{E}^{\mu} e^{\lambda(f-\mu(f))} \leq e^{C \lambda^{2} / 2}, \forall \lambda \geq 0 \tag{7}
\end{equation*}
$$

(Bobkov-Götze criterion, JFA99), iff for every f with $\|f\|_{\text {Lip }}=1$,

$$
\mathbb{P}\left(\sqrt{n}\left(L_{n}(f)-\mu(f)\right)>r\right) \leq e^{-r^{2} / 2 C}, \forall r>0, n \geq 1 .
$$

(Gozlan-Léonard's criterion, PTRF 08). So the best constant \boldsymbol{C} in $\boldsymbol{W}_{\mathbf{1}} \boldsymbol{H}(\boldsymbol{C})$ could be called "Gaussian constant $C_{G}(\mu)$ " of μ.

Theorem 2 (Djellout-Guillin-Wu, AOP04) A given probability measure μ on $(\boldsymbol{E}, \boldsymbol{d})$ satisfies $\boldsymbol{W}_{\mathbf{1}} \boldsymbol{H}(\boldsymbol{C})$ on $(\boldsymbol{E}, \boldsymbol{d})$ if and only if

$$
\begin{equation*}
\exists \delta>0: \iint e^{\delta d^{2}(x, y)} d \mu(x) d \mu(y)<+\infty \tag{8}
\end{equation*}
$$

In the latter case,

$$
\begin{equation*}
C=C(\delta):=\frac{1}{2 \delta}\left(1+2 \log \mathbb{E} e^{\delta d\left(\xi, \xi^{\prime}\right)^{2}}\right) \tag{9}
\end{equation*}
$$

(estimate due to Bolley-Villani 05 and Gozlan 06)

About $W_{2} H(C)$: Talagrand's transportation inequality

Theorem 3 (Talagrand, GFA96) Let $\boldsymbol{\mu}$ be $\mathcal{N}(\mathbf{0}, I)$ on \mathbb{R}^{d}. Then

$$
\mu \in W_{2} H(C), C=1 \text { (sharp). }
$$

Theorem 4 (Otto-Villani, JFA00) On a complete connected Riemannian manifold, if μ satisfies log-Sobolev inequality, i.e.

$$
\begin{equation*}
H(\nu \mid \mu) \leq 2 C I(\nu \mid \mu) \tag{C}
\end{equation*}
$$

then $\boldsymbol{\mu} \in \boldsymbol{W}_{2} \boldsymbol{H}(C)$. If $\boldsymbol{\mu} \in \boldsymbol{W}_{\mathbf{2}} \boldsymbol{H}(C)$, then $\boldsymbol{\mu}$ satisfies the Poincaré inequality

$$
\begin{equation*}
\operatorname{Var}_{\mu}(f) \leq C \mathcal{E}(f, f) \tag{C}
\end{equation*}
$$

In summary,

$$
H I(C) \Longrightarrow W_{2} H(C) \Longrightarrow P(C)
$$

Remarks $3 \bullet P(C) \nRightarrow W_{2} H(C)$:
counter-example $\mu=e^{-|x|} / 2 d x$ on \mathbb{R}.

- $W_{2} H(C) \nRightarrow H I(C):$
first counter-example given by Cattiaux-Guillin (JPAM 06)

Further reading:

- F.Y. Wang, $\boldsymbol{W}_{2} \boldsymbol{H}$ on path spaces JFA 02
- Djellout-Guillin-Wu, $\boldsymbol{W}_{\mathbf{2}} \boldsymbol{H}$ for paths of dissipative diffusions w.r.t. \boldsymbol{L}^{2} metric, AOP 04
- J. Shao and S. Fang, $\boldsymbol{W}_{2} \boldsymbol{H}$ on loop groups,
—K. Marton, $\boldsymbol{W}_{2} \boldsymbol{H}$ for Gibbs measures
- L. Wu, $\boldsymbol{W}_{\mathbf{1}} \boldsymbol{H}$ for Gibbs measures, AOP 06
- F. Gao and L. Wu, $\boldsymbol{W}_{p} \boldsymbol{I}(\boldsymbol{C})$ for Gibbs measures.

Central idea: (1) $\boldsymbol{H}(\boldsymbol{\nu} \mid \boldsymbol{\mu})$ is the rate function for i.i.d. sequence (\boldsymbol{X}_{n}) of common law μ.
(2) In the dependent stationary case of common law μ, if $I(\nu)$ is the rate function for LD of \boldsymbol{L}_{n}, then

$$
\mathbb{P}\left(W_{1}\left(L_{n}, \mu\right)>r\right)=e^{-n \inf \left\{I(\nu) ; W_{1}(\nu, \mu)>r\right\}+o(n)} \leq e^{-n \alpha(r)+o(n)}
$$

if the following transportation inequality holds:

$$
\alpha\left(W_{1}(\nu, \mu)\right) \leq I(\nu)
$$

3. Transportation-information inequality $W_{p} I$

$$
\begin{equation*}
W_{p}(\nu, \mu)^{2} \leq 2 C I(\nu \mid \mu), \forall \nu \in M_{1}(E), \tag{p}
\end{equation*}
$$

Theorem 5 (Guillin-Léonard-Wu-Yao 06) Let $c>0$ and let $\left(\boldsymbol{X}_{\boldsymbol{t}}\right)$ be a μ-reversible and ergodic Markov process associated with $(\mathcal{E}, \mathbb{D}(\mathcal{E}))$ such that

$$
\int d^{2}\left(x, x_{0}\right) d \mu(x)<+\infty
$$

Let

$$
P_{t}^{u} f(x):=\mathbb{E}_{x} f\left(X_{t}\right) \exp \left(\int_{0}^{t} u\left(X_{s}\right) d s\right)
$$

the Feynmann-Kac semigroup, whose generator is $\mathcal{L}+\boldsymbol{u}$. The statements below are equivalent:
(i) The following $W_{1} I(C)$ inequality holds true:

$$
\begin{equation*}
W_{1}^{2}(\nu, \mu) \leq 2 C I(\nu \mid \mu), \forall \nu \in M_{1}(\mathcal{X}) \tag{1}
\end{equation*}
$$

(ii) For all Lipschitz function u with $\|u\|_{\text {Lip }} \leq 1, \mu(u)=0$ and all $\lambda \geq 0$,

$$
\limsup _{t \rightarrow+\infty} \frac{1}{t} \log \mathbb{E}_{\mu} \exp \left(\lambda \int_{0}^{t} u\left(X_{s}\right) d s\right) \leq C \lambda^{2} / 2
$$

(iii) For all Lipschitz function $u, r>0$ and $\beta \in M_{1}(\mathcal{X})$ such that $d \boldsymbol{\beta} / d \mu \in L^{2}(\mu)$,

$$
\mathbb{P}_{\beta}\left(\frac{1}{t} \int_{0}^{t} u\left(X_{s}\right) d s \geq \mu(u)+r\right) \leq\left\|\frac{d \beta}{d \mu}\right\|_{2} \exp \left(-\frac{r^{2}}{2 C\|u\|_{\text {Lip }}^{2}}\right)
$$

The constant \boldsymbol{C} in $\boldsymbol{W}_{\mathbf{1}} \boldsymbol{I}(\boldsymbol{C})$ can be again interpreted as the Gaussian constant $\boldsymbol{C}_{\boldsymbol{G}}\left(\left(\boldsymbol{P}_{t}\right), \boldsymbol{\mu}\right)$ for $\left(\boldsymbol{X}_{\boldsymbol{t}}\right)$.

Relations between $W_{2} I$, Poincaré and log-Sobolev inequalities

Proposition 1 (Guillin-Léonard-Wu-Yao 06) Let \mathcal{X} be a complete connected Riemannian manifold and $\mu=e^{-V(x)} d x / Z$ where $d x$ is the Riemannian volume measure, $V \in C^{2}(\mathcal{X})$ and $Z=\int_{\mathcal{X}} e^{-V} d x<+\infty$. Let $\mathbb{D}(\mathcal{E})$ be the space $\boldsymbol{H}^{1}(\mathcal{X}, \boldsymbol{\mu})$ of those functions $g \in L^{2}(\mathcal{X}, \mu)$ such that $\nabla g \in L^{2}(T M, \mu)$ in the sense of distribution and consider the Dirichlet form,

$$
\mathcal{E}_{\nabla}(g, g):=\int_{\mathcal{X}}|\nabla g|^{2} d \mu, g \in \mathbb{D}(\mathcal{E})
$$

and the associated Fisher-Donsker-Varadhan information $I(\nu \mid \mu)$, see (5).
(a) If the log-Sobolev inequality below

$$
H(\nu \mid \mu) \leq 2 C I(\nu \mid \mu), \forall \nu
$$

is satisfied, then μ satisfies $W_{2} I\left(2 C^{2}\right)$.
(b) If $W_{2} I(C)$ holds, then the Poincaré inequality holds with constant $C_{P} \leq \sqrt{2 C}$.
(c) Assume that the Bakry-Emery curvature

$$
\text { Ric }+\mathrm{HessV} \geq \mathrm{K}
$$

where Ric is the Ricci curvature and Hess V is the Hessian of V. If $W_{2} I(C)$ holds with $\sqrt{C / 2} K \leq 1$ (this is possible by Part (a) and Bakry-Emery's criterion), then the log-Sobolev inequality

$$
H(\nu \mid \mu) \leq 2(\sqrt{2 C}-C K / 2) I(\nu \mid \mu), \forall \nu
$$

Proposition 2 (Guillin-Léonard-Wang-Wu 07) In the same framework, we have for $p=1$ or 2 ,

$$
W_{p} I(C) \Longrightarrow W_{p} H(C)
$$

4. $W_{1} I(C)$ for μ-symmetric Markov chain $\left(X_{n}\right)$ with transition P $W_{1} I(C):$

$$
W_{1}(\nu, \mu)^{2} \leq 2 C I(\nu \mid P, \mu)
$$

Two questions:
Q1. What is the probabilistic meaning of $W_{1} I(C)$?
Q2. Criteria for $W_{1} I(C)$?

Q1. Probabilistic meaning

Theorem $6(\mathrm{Wu} 08)$ Let $C>0$ and let $\left(X_{n}\right)$ be a μ-reversible Markov chain with transition \boldsymbol{P}. The statements below are equivalent:
(i) The following $W_{1} I(C)$ inequality holds true:

$$
\begin{equation*}
W_{1}^{2}(\nu, \mu) \leq 2 C I(\nu \mid \mu), \forall \nu ; \tag{1}
\end{equation*}
$$

(ii) For all bounded Lipschitz function \boldsymbol{u} with $\|\boldsymbol{u}\|_{\text {Lip }} \leq \mathbf{1}, \boldsymbol{\mu}(\boldsymbol{u})=\mathbf{0}$ and all $\lambda \geq 0$,

$$
\limsup _{n \rightarrow+\infty} \frac{1}{n} \log \mathbb{E}_{\mu} \exp \left(\lambda \sum_{k=1}^{n} u\left(X_{k}\right)\right) \leq C \lambda^{2} / 2
$$

(iii) For all Lipschitz function u with $\|u\|_{\text {Lip }}=1, r>0$ and $\beta \in$ $M_{1}(\mathcal{X})$ such that $d \beta / d \mu \in L^{2}(\mu)$,

$$
\mathbb{P}_{\beta}\left(\tilde{L}_{n}(u)>\mu(u)+r\right) \leq\left\|\frac{d \beta}{d \mu}\right\|_{2} \exp \left(-\frac{n r^{2}}{2 C}\right)
$$

where $\tilde{L}_{n}(u):=\frac{1}{n}\left(\frac{u\left(X_{0}\right)+u\left(X_{n}\right)}{2}+\sum_{k=1}^{n-1} u\left(X_{k}\right)\right)$ is the trapeze type empirical mean.

The constant C in $W_{1} \boldsymbol{I}(\boldsymbol{C})$ can be again interpreted as the Gaussian constant $C_{G}(\boldsymbol{P}, \mu)$ for $\left(\boldsymbol{X}_{n}\right)$.

Proof : $(\boldsymbol{i}) \Longrightarrow$ (iii). By Lei (Bernoulli 07), for any $\varepsilon>0$,

$$
\begin{aligned}
& \mathbb{P}_{\beta}\left(\tilde{L}_{n}(u)>\mu(u)+r+\varepsilon\right) \\
& \leq\left\|\frac{d \beta}{d \mu}\right\|_{2} \exp (-n \inf \{I(\nu \mid P, \mu) ; \nu(u)-\mu(u)>r\}) \\
& \leq\left\|\frac{d \beta}{d \mu}\right\|_{2} \exp \left(-\frac{n r^{2}}{2 C}\right)
\end{aligned}
$$

because $r<\nu(u)-\mu(u) \leq W_{1}(\nu, \mu) \leq \sqrt{2 C I(\nu \mid P, \mu)}$.
$(i i) \Longrightarrow(i)$: by large deviations in Wu (JFA 00).

5. Three criteria

5.1. Poincaré is equivalent to $W_{1} I(C)$ in the trivial metric case

Fact: if $d(x, y)=1_{x \neq y}, W_{1}(\nu, \mu)=\|\nu-\mu\|_{T V} / 2$.

Theorem 7 Let $\left(\left(X_{n}\right)_{n \geq 0}, \mathbb{P}_{\mu}\right)$ be a μ-symmetric ergodic Markov chain with transition probability \boldsymbol{P}.

1. The Poincaré inequality

$$
\begin{equation*}
\operatorname{Var}_{\mu}(g) \leq C_{P}\langle g,(I-P) g\rangle_{\mu}, \forall g \in L^{2}(\mu) \tag{10}
\end{equation*}
$$

implies

$$
\begin{equation*}
\|\nu-\mu\|_{T V}^{2} \leq 4 C_{P} I(\nu \mid P, \mu), \forall \nu \in M_{1}(\mathcal{X}) \tag{11}
\end{equation*}
$$

In particular for $\boldsymbol{u} \in \mathrm{bB}$, for every initial probability measure $\beta \ll \mu$ with $d \beta / d \mu \in L^{2}(\mu)$ and with $\mu(u)=0$ and for all $r, \varepsilon>0$ and
$n \in \mathbb{N}^{*}$,

$$
\begin{equation*}
\mathbb{P}_{\beta}\left(\tilde{L}_{n}(u) \geq \mu(u)+r\right) \leq\left\|\frac{d \beta}{d \mu}\right\|_{2} \exp \left(-\frac{n r^{2}}{c_{P} \delta(u)^{2}}\right) \tag{12}
\end{equation*}
$$

where $\delta(u):=\sup _{x, y \in \mathcal{X}}|u(x)-u(y)|$ is the oscillation of u.
2. Conversely in the symmetric case, if $\alpha\left(\|\nu-\mu\|_{T v}\right) \leq I(\nu \mid P, \mu), \forall \nu$, for some nonnegative nondecreasing left-continuous function α : $\mathbb{R}^{+} \rightarrow[0,+\infty]$ with $\alpha(1)>0$, then the Poincaré inequality (10) holds with

$$
\begin{equation*}
c_{P} \leq \frac{1}{1-e^{-\alpha(1)}} \tag{13}
\end{equation*}
$$

5.2. Unbounded metric: spectral gap in the space of Lipschitzian

 functionsThe carré-du-champs operator associated with $\mathcal{L}=P-I$ is

$$
\Gamma(g, h)(x)=\frac{1}{2} \int(g(y)-g(x))(h(y)-h(x)) P(x, d y)
$$

Consider the following condition relating \boldsymbol{P} with the metric d :

$$
\begin{equation*}
\sup _{g:\|g\|_{L i_{P}}=1} \sup _{x \in \mathcal{X}} \sqrt{\Gamma(g)}(x) \leq M \tag{14}
\end{equation*}
$$

Notice that (14) is satisfied if

$$
\begin{equation*}
\frac{1}{2} \int d^{2}(x, y) P(x, d y) \leq M^{2}, \forall x . \tag{15}
\end{equation*}
$$

Let $\boldsymbol{C}_{\boldsymbol{L i p}}(\mathcal{X})$ (resp. $\boldsymbol{C}_{\boldsymbol{L i p}, \mathbf{0}}(\mathcal{X})$) be the space of all \boldsymbol{d}-Lipschitzian functions \boldsymbol{g} (resp. with $\boldsymbol{\mu}(\boldsymbol{g})=0$) on \mathcal{X}.

Theorem 8 Assume (14) and $\int d^{2}\left(x, x_{0}\right) d \mu(x)<+\infty$ and P is μ^{-} symmetric. Suppose that P admits a spectral gap in $C_{\text {Lip }}(\mathcal{X})$, i.e., for any $g \in C_{L i p, 0}(\mathcal{X})$, there is $G \in C_{L i p, 0}(\mathcal{X})$ solving the Poisson equation $(I-P) G=g, \mu-a . s$. and satisfying

$$
\begin{equation*}
\|G\|_{L i p} \leq c_{P, L i p}\|g\|_{L i p} \tag{16}
\end{equation*}
$$

where $c_{P, L i p}>0$ is the best constant (here the index P refers to Poincaré). Then μ satisfies the Poincaré inequality with $c_{P} \leq c_{P, L i p}$ and it satisfies $W_{1} I$ below

$$
\begin{equation*}
W_{1}(\nu, \mu)^{2} \leq 4\left(M c_{P, L i p}\right)^{2} I(\nu), \forall \nu \in \mathcal{M}_{1}(\mathcal{X}) \tag{17}
\end{equation*}
$$

The following result, inspired of Djellout-Guillin-Wu (AOP 04), provides sharp constant.

Proposition 3 In the framework of Theorem 8 but without condition (14), assume that for some constant $\boldsymbol{c}_{\boldsymbol{H}}(\boldsymbol{P})>0$,

$$
\begin{equation*}
W_{1}^{2}(\nu, P(x, \cdot)) \leq 2 c_{H}(P) H(\nu \mid P(x, \cdot)), \forall x \in \mathcal{X}, \nu \in M_{1}(\mathcal{X}) \tag{18}
\end{equation*}
$$

Then

$$
\begin{equation*}
W_{1}^{2}(\nu, \mu) \leq 2\left(c_{P, L i p}\right)^{2} c_{H}(P) I(\nu \mid P, \mu) \tag{19}
\end{equation*}
$$

Remarks 4 The (inverse) Lipschitzian spectral gap constant $\boldsymbol{c}_{P, L i p}$ can be estimated easily by

$$
c_{P, L i p} \leq \sum_{n=0}^{\infty}\left\|P^{n}\right\|_{L i p}
$$

where

$$
\|P\|_{L i p}=\sup _{g:\|g\|_{L i p}=1}\|P g\|_{L i p}=\sup _{x \neq y} \frac{W_{1}(P(x, \cdot), P(y, \cdot))}{d(x, y)}
$$

Ollivier called

$$
\kappa(x, y)=1-\frac{W_{1}(P(x, \cdot), P(y, \cdot))}{d(x, y)}
$$

(Ricci) curvature of the Markov chain. If $\kappa(x, y) \geq \kappa>0$, then $\|P\|_{\text {Lip }} \leq$ $1-\kappa$ and then $c_{P, \text { Lip }} \leq 1 / \kappa$. This last estimate is far from being sharp in general: for the Markov chain on $\{0,1\}$ given by $P(0,1)=P(1,0)=1$, we have $\kappa=0$ whereas $c_{P, L i p}=1 / 2$.

Lyapunov function criterion for $\boldsymbol{W}_{1} \boldsymbol{I}$:

Theorem 9 Assume that \boldsymbol{P} is $\boldsymbol{\mu}$-symmetric and satisfies Poincaré inequality (10) with best constant $c_{P}<\infty$. If the Lyapunov condition
(\boldsymbol{H}) There exist a measurable function $\boldsymbol{U}: \mathcal{X} \rightarrow[1,+\infty)$ and a nonnegative function ϕ and a constant $b>0$ such that $P U(x)<$ $+\infty, \mu-a . e$. and

$$
\log \frac{U}{P U} \geq \delta d^{2}\left(x, x_{0}\right)-b, \mu \text {-a.s. }
$$

holds. Then

$$
\begin{equation*}
W_{1}(\nu, \mu)^{2} \leq 2 \tilde{C} I(\nu), \forall \nu ; \tilde{C}:=\frac{2}{\delta}\left[1+(1+b) c_{P} \mu\left(d^{2}\left(x, x_{0}\right)\right)\right] \tag{20}
\end{equation*}
$$

6. Two examples

6.1. Two points model We begin with the simplest Markov chain on $\mathcal{X}=\{0,1\}$ equipped with the trivial metric d, with transition matrix $P=$ $\left(\begin{array}{cc}1-a & a \\ b & 1-b\end{array}\right)$, where $a, b \in(0,1]$. Notice that P is symmetric w.r.t. μ given by

$$
\mu(0)=\frac{b}{a+b}=: q, \mu(1)=\frac{a}{a+b}=: p
$$

Though this model is simple, but its study is abundant: for the Dirichlet form

$$
\mathcal{E}_{P}(g, g)=\langle g,(I-P) g\rangle_{m} u=\frac{a b}{a+b}(g(1)-g(0))^{2}
$$

associated with the continuous time Markov process generated by $\mathcal{L}=$ $P-I$,

1. the best log-Sobolev constant is known, see Saloff-Coste and al.;
2. the best constant $C_{H}(p)$ in $W_{1}(\nu, \mu)^{2} \leq 2 C H(\nu \mid \mu)$ is obtained recently by Bobkov, Houdré and Tetali (JIM 08) :

$$
\begin{equation*}
C_{H}(p)=\frac{p-q}{2(\log p-\log q)}(:=1 / 4 \text { if } p=q) \tag{21}
\end{equation*}
$$

3. the best rate $\kappa>0$ in the exponential entropy convergence

$$
H\left(\nu P_{t} \mid \mu\right) \leq e^{-\kappa t} H(\nu \mid \mu)
$$

is unknown, only some accurate estimates are known, see M.F. Chen (07).
4. the best constant C in $W_{1}(\nu \mid \mu)^{2} \leq 2 C I_{c}(\nu)$ where

$$
I_{c}(\nu)=\left\langle(I-P) \sqrt{\frac{d \nu}{d \mu}}, \sqrt{\frac{d \nu}{d \mu}}\right\rangle_{\mu}
$$

is known: $C=1 /[2(a+b)]$ (Guillin-Léonard-Wu-Yao 08).

$$
c_{P, L i p}=c_{P}=(a+b)^{-1}
$$

(however its curvature $\kappa=1-|1-(a+b)|$).

$$
\begin{equation*}
C_{G}(P, \mu) \leq \frac{\max \left\{c_{H}(a), c_{H}(b)\right\}}{(a+b)^{2}} \tag{22}
\end{equation*}
$$

which becomes equality if $a+b=1$ (i.e., i.i.d. case, for $\boldsymbol{c}_{\boldsymbol{H}}(a)=c_{\boldsymbol{H}}(b)=$ $\left.\boldsymbol{C}_{\boldsymbol{H}}(\boldsymbol{\mu})\right)$. By the calculation of the asymptotic variance $\boldsymbol{V}(\boldsymbol{g})$ we have

$$
C_{G}(P, \mu) \geq\left(\frac{2}{a+b}-1\right) \frac{a b}{(a+b)^{2}}
$$

Notice also a curious phenomena: if $a=b=1, c_{H}(P)=0$ and then $C_{G}(P, \mu)=0$.

We do not know the exact expression of $C_{G}(P, \mu)$.
6.2. Complete graph Let \mathcal{X} be the complete graph of $N(\geq 3)$ vertices, i.e., any two vertices are connected by an edge and then the graph distance is given by $d(x, y)=1_{x \neq y}$ (the trivial metric). The probability transition matrix is given by $\boldsymbol{P}(\boldsymbol{x}, \boldsymbol{y})=\frac{1}{N-1}$ for all $\boldsymbol{y} \neq \boldsymbol{x}$. It is symmetric w.r.t. the uniform measure $\mu(x)=1 / N$ (for each $x \in \mathcal{X}$). It is easy to see that

$$
(I-P) G=\frac{N}{N-1}(G-\mu(G))
$$

Thus $c_{P}=\frac{N-1}{N}=c_{P, L i p}$. By Theorem 7, we have

$$
C_{G}(P, \mu) \leq \frac{N-1}{2 N}
$$

Proposition 3 yields the better

$$
\begin{equation*}
C_{G}(P, \mu) \leq \frac{1}{4}\left(\frac{N-1}{N}\right)^{2} \tag{23}
\end{equation*}
$$

This is sharp for large N. Indeed

$$
C_{G}(P, \mu) \geq \begin{cases}\frac{N-2}{4 N}, & \text { if } N \text { even } ; \\ \frac{N-2}{4 N}\left(1-\frac{1}{N^{2}}\right), & \text { if } N \text { odd }\end{cases}
$$

Thanks!

