[The sixth Workshop on Markov processes and related topics, Anhui Normal University, 21-26 July 2008]

Transportation-Information inequalities for Markov chains

Liming Wu

Wuhan University and Université Blaise Pascal

Based on a series of works :

[1] A. Guillin, Ch. Léonard, L. Wu and N. Yao, [I], to appear in PTRF

[2] A. Guillin, Ch. Léonard, F.Y. Wang and L. Wu, [II] relations with other functional inequalities. Preprint 08

[3] A. Guillin, A. Joulin, Ch. Léonard, and L. Wu, [III] jumps case. Preprint 08

[4] F. Gao and L. Wu, Gibbs measures, Preprint 07

[5] L. Wu, discrete time case. Preprint 08.

1. Three objects

• (E, d) is a separable, complete metric space with Borel field \mathcal{B} . Given two probability measures ν, μ on (E, \mathcal{B}) ,

their L^p -Wasserstein distance is defined by

$$W_{p,d}(\nu,\mu) := \inf_{\pi} \left(\iint_{E \times E} d(x,y)^p \pi(dx,dy) \right)^{1/p} \tag{1}$$

where the infimum is taken over all probability measures π on $E \times E$ such that its marginal distributions are respectively ν and μ , i.e.,

$$\pi(A imes E) =
u(A), \pi(E imes B) = \mu(B), \ orall A, B \in \mathcal{B}.$$

Such π is called *coupling of* (ν , μ).

Definition 1 the relative entropy (or the Kullback information) of ν w.r.t. μ is defined by

$$H(
u|\mu) := egin{cases} \int rac{d
u}{d\mu} \log rac{d
u}{d\mu} d\mu, & ext{if }
u \ll \mu; \ +\infty, & ext{otherwise.} \end{cases}$$

For $0 \leq f \in L^1(\mu)$, the entropy of f w.r.t. μ is defined as

$$Ent_{\mu}(f) := \int f \log f d\mu - \mu(f) \log \mu(f) \in [0, +\infty].$$
(3)

(2)

Remarks 1 $\nu \rightarrow H(\nu|\mu)$ is the rate function in the LDP of

$$L_n := rac{1}{n} \sum_{k=1}^n \delta_{X_k}$$

where (X_k) is i.i.d.r.v. of law μ .

Definition 2 Given the Dirichlet form \mathcal{E} with domain $\mathbb{D}(\mathcal{E})$ on $L^2(\mu)$, the Fisher-Donsker-Varadhan information of ν with respect to μ is defined by

$$I(\nu|\mu) := \begin{cases} \mathcal{E}(\sqrt{f}, \sqrt{f}), & \text{if } \nu = f\mu, \sqrt{f} \in \mathbb{D}(\mathcal{E}) \\ +\infty, & \text{otherwise.} \end{cases}$$
(4)

Remarks 2 $\nu \mapsto I(\nu|\mu)$ is exactly the Donsker-Varadhan entropy i.e. the rate function governing the large deviation principle of the empirical measure

$$L_t:=rac{1}{t}\int_0^t \delta_{X_s} ds$$

for large time t, where (X_t) is the reversible Markov process associated with $(\mathcal{E}, \mathbb{D}(\mathcal{E}))$.

This was proved by Donsker and Varadhan (CPAM75, 76, 83) under some conditions of absolute continuity and regularity of $P_t(x, dy)$, and established in full

generality by L. Wu (JFA00).

Example 1 $\mu = e^{-V(x)} dx/Z$ (*Z* is the normalization constant) with $V \in C^1$ on a complete connected Riemannian manifold E = M, the diffusion (X_t) generated by $\mathcal{L} = \Delta - \nabla V \cdot \nabla (\Delta, \nabla \text{ are respectively the Laplacian and the gradient on <math>M$) is μ -reversible and the corresponding Dirichlet form is given by

$$\mathcal{E}_{\mu}(g,g) = \int_{M} |
abla g|^2 \, d\mu, \ g \in \mathbb{D}(\mathcal{E}_{\mu}) = H^1(\mathcal{X},\mu)$$

If $u = f\mu$ with $0 < f \in C^1(M)$, then

$$I(\nu|\mu) = \int_{M} |\nabla \sqrt{f}|^2 \, d\mu = \frac{1}{4} \int_{M} \frac{|\nabla f|^2}{f} \, d\mu.$$
 (5)

Information for discrete time Markov chains

Definition 3 Given a symmetric Markov kernel P(x, dy) on $L^2(\mu)$, Donsker-Varadhan information of ν with respect to (P, μ) is defined by

$$I(\nu|P,\mu) := \begin{cases} \sup_{1 \le u \text{ bounded}} \int \log \frac{u}{Pu} d\nu, & \text{ if } \nu \ll \mu, \sqrt{f} \in \mathbb{D}(\mathcal{E}) \\ +\infty, & \text{ otherwise.} \end{cases}$$
(6)

Let (X_n) be the Markov chain with transition kernel P, then $\nu \to I(\nu | P, \mu)$ is the rate function governing the large deviations of $L_n := \frac{1}{n} \sum_{k=1}^n \delta_{X_k}$.

2. Transportation-entropy inequalities $W_pH(C)$

$$W_p(
u,\mu)^2 \leq 2 C H(
u|\mu), \ orall
u \in M_1(E), \qquad (W_p H(C))$$

Theorem 1 $\mu \in W_1H(C)$ iff for every Lipschitzian continuous function $f: E \to \mathbb{R}$ with $\|f\|_{Lip} = 1$, $f \in L^1(\mu)$ and

$$\mathbb{E}^{\mu} e^{\lambda(f-\mu(f))} \le e^{C\lambda^2/2}, \ \forall \lambda \ge 0;$$
(7)

(Bobkov-Götze criterion, JFA99), iff for every f with $||f||_{Lip} = 1$,

 $\mathbb{P}\left(\sqrt{n}(L_n(f)-\mu(f))>r
ight)\leq e^{-r^2/2C},\ orall r>0,n\geq 1.$

(Gozlan-Léonard's criterion, PTRF 08). So the best constant C in $W_1H(C)$ could be called "Gaussian constant $C_G(\mu)$ " of μ .

Theorem 2 (*Djellout-Guillin-Wu, AOP04*) A given probability measure μ on (E, d) satisfies $W_1H(C)$ on (E, d) if and only if

$$\exists \delta > 0: \iint e^{\delta d^2(x,y)} d\mu(x) d\mu(y) < +\infty.$$
(8)

In the latter case,

$$C = C(\delta) := \frac{1}{2\delta} \left(1 + 2\log \mathbb{E}e^{\delta d(\xi, \xi')^2} \right)$$
(9)

(estimate due to Bolley-Villani 05 and Gozlan 06)

About $W_2H(C)$: Talagrand's transportation inequality

Theorem 3 (Talagrand, GFA96) Let μ be $\mathcal{N}(0, I)$ on \mathbb{R}^d . Then

 $\mu \in W_2H(C), \ C = 1$ (sharp).

Theorem 4 (Otto-Villani, JFA00) On a complete connected Riemannian manifold, if μ satisfies log-Sobolev inequality, i.e.

 $H(\nu|\mu) \le 2CI(\nu|\mu) \tag{HI(C)}$

then $\mu \in W_2H(C)$. If $\mu \in W_2H(C)$, then μ satisfies the Poincaré inequality

 $Var_{\mu}(f) \leq C\mathcal{E}(f, f).$ (P(C))

In summary,

$HI(C) \implies W_2H(C) \implies P(C).$

Remarks 3 • $P(C) \Rightarrow W_2H(C)$:

counter-example $\mu = e^{-|x|}/2dx$ on $\mathbb R$.

• $W_2H(C) \Rightarrow HI(C)$:

first counter-example given by Cattiaux-Guillin (JPAM 06)

Further reading:

- F.Y. Wang, W_2H on path spaces JFA 02
- Djellout-Guillin-Wu, W_2H for paths of dissipative diffusions w.r.t. L^2 -metric, AOP 04
- J. Shao and S. Fang, W_2H on loop groups,
- K. Marton, W_2H for Gibbs measures
- L. Wu, W_1H for Gibbs measures, AOP 06
- F. Gao and L. Wu, $W_pI(C)$ for Gibbs measures.

Central idea: (1) $H(\nu|\mu)$ is the rate function for i.i.d. sequence (X_n) of common law μ .

(2) In the dependent stationary case of common law μ , if $I(\nu)$ is the rate function for LD of L_n , then

 $\mathbb{P}\left(W_1(L_n,\mu) > r\right) = e^{-n\inf\{I(\nu); W_1(\nu,\mu) > r\} + o(n)} \le e^{-n\alpha(r) + o(n)}$

if the following transportation inequality holds:

 $lpha(W_1(
u,\mu)) \leq I(
u).$

3. Transportation-information inequality W_pI

$$W_p(
u,\mu)^2 \leq 2CI(
u|\mu), \ orall
u \in M_1(E), \qquad (W_pH(C))$$

Theorem 5 (Guillin-Léonard-Wu-Yao 06) Let c > 0 and let (X_t) be a μ -reversible and ergodic Markov process associated with $(\mathcal{E}, \mathbb{D}(\mathcal{E}))$ such that

$$\int d^2(x,x_0)\,d\mu(x)<+\infty.$$

Let

$$P^u_t f(x) := \mathbb{E}_x f(X_t) \exp\left(\int_0^t u(X_s) ds
ight)$$

the Feynmann-Kac semigroup, whose generator is $\mathcal{L}+u$. The statements below are equivalent:

(i) The following $W_1I(C)$ inequality holds true:

$$W_1^2(
u,\mu) \leq 2CI(
u|\mu), \ orall
u \in M_1(\mathcal{X}); \qquad (W_1I(C))$$

(ii) For all Lipschitz function u with $\|u\|_{\mathrm{Lip}} \leq 1, \ \mu(u) = 0$ and all $\lambda \geq 0$,

$$\limsup_{t o +\infty} rac{1}{t} \log \mathbb{E}_{\mu} \exp\left(\lambda \int_{0}^{t} u(X_s) \, ds
ight) \leq C \lambda^2/2;$$

(iii) For all Lipschitz function u, r > 0 and $\beta \in M_1(\mathcal{X})$ such that $d\beta/d\mu \in L^2(\mu),$

$$\mathbb{P}_eta\left(rac{1}{t}\int_0^t u(X_s)\,ds \geq \mu(u) + r
ight) \leq \left\|rac{deta}{d\mu}
ight\|_2 \exp\left(-rac{r^2}{2C\|u\|_{ ext{Lip}}^2}
ight).$$

The constant *C* in $W_1I(C)$ can be again interpreted as the Gaussian constant $C_G((P_t), \mu)$ for (X_t) .

Relations between W₂I, Poincaré and log-Sobolev inequalities

Proposition 1 (Guillin-Léonard-Wu-Yao 06) Let \mathcal{X} be a complete connected Riemannian manifold and $\mu = e^{-V(x)}dx/Z$ where dx is the Riemannian volume measure, $V \in C^2(\mathcal{X})$ and $Z = \int_{\mathcal{X}} e^{-V}dx < +\infty$. Let $\mathbb{D}(\mathcal{E})$ be the space $H^1(\mathcal{X}, \mu)$ of those functions $g \in L^2(\mathcal{X}, \mu)$ such that $\nabla g \in L^2(TM, \mu)$ in the sense of distribution and consider the Dirichlet form,

$${\mathcal E}_
abla(g,g):=\int_{{\mathcal X}} |
abla g|^2\, d\mu, \ g\in \mathbb{D}({\mathcal E}) \, .$$

and the associated Fisher-Donsker-Varadhan information $I(\nu|\mu)$, see (5).

(a) If the log-Sobolev inequality below

 $H(
u|\mu) \leq 2C I(
u|\mu), \, \forall
u$

is satisfied, then μ satisfies $W_2I(2C^2)$.

(b) If $W_2I(C)$ holds, then the Poincaré inequality holds with constant $C_P \leq \sqrt{2C}$.

(c) Assume that the Bakry-Emery curvature

 $\mathrm{Ric} + \mathrm{Hess} \mathrm{V} \geq \mathrm{K}$

where Ric is the Ricci curvature and HessV is the Hessian of V. If $W_2I(C)$ holds with $\sqrt{C/2}K \leq 1$ (this is possible by Part (a) and Bakry-Emery's criterion), then the log-Sobolev inequality

 $H(
u|\mu) \leq 2(\sqrt{2C} - CK/2) I(
u|\mu), \, \forall
u$

Proposition 2 (Guillin-Léonard-Wang-Wu 07) In the same framework, we have for p = 1 or 2,

 $W_pI(C) \implies W_pH(C).$

4. $W_1I(C)$ for μ -symmetric Markov chain (X_n) with transition P $W_1I(C)$:

 $W_1(
u,\mu)^2 \leq 2CI(
u|P,\mu).$

Two questions:

Q1. What is the probabilistic meaning of $W_1I(C)$?

Q2. Criteria for $W_1I(C)$?

Q1. Probabilistic meaning

Theorem 6 (Wu 08) Let C > 0 and let (X_n) be a μ -reversible Markov chain with transition P. The statements below are equivalent:

(i) The following $W_1I(C)$ inequality holds true:

 $W_1^2(
u,\mu) \le 2CI(
u|\mu), \ \forall
u; \qquad (W_1I(C))$

(ii) For all bounded Lipschitz function u with $\|u\|_{\mathrm{Lip}} \leq 1, \ \mu(u) = 0$ and all $\lambda \geq 0$,

$$\limsup_{n o +\infty} rac{1}{n} \log \mathbb{E}_{\mu} \exp\left(\lambda \sum_{k=1}^n u(X_k)
ight) \leq C \lambda^2/2;$$

(iii) For all Lipschitz function u with $||u||_{\text{Lip}} = 1$, r > 0 and $\beta \in M_1(\mathcal{X})$ such that $d\beta/d\mu \in L^2(\mu)$,

$$\mathbb{P}_eta\left(ilde{L}_n(u)>\mu(u)+r
ight)\leq \left\|rac{deta}{d\mu}
ight\|_2\exp\left(-rac{nr^2}{2C}
ight)$$

where $\tilde{L}_n(u) := \frac{1}{n} \left(\frac{u(X_0) + u(X_n)}{2} + \sum_{k=1}^{n-1} u(X_k) \right)$ is the trapeze type empirical mean.

The constant *C* in $W_1I(C)$ can be again interpreted as the Gaussian constant $C_G(P, \mu)$ for (X_n) .

Proof : (i) \implies (iii). By Lei (Bernoulli 07), for any $\varepsilon > 0$,

$$egin{split} \mathbb{P}_etaig(ilde{L}_n(u)>\mu(u)+r+arepsilonig)\ &\leq \left\|rac{deta}{d\mu}
ight\|_2\exp\left(-n\inf\{I(
u|P,\mu);
u(u)-\mu(u)>r\}
ight)\ &\leq \left\|rac{deta}{d\mu}
ight\|_2\exp\left(-rac{nr^2}{2C}
ight) \end{split}$$

because $r <
u(u) - \mu(u) \leq W_1(
u,\mu) \leq \sqrt{2CI(
u|P,\mu)}.$

 $(ii) \implies (i)$: by large deviations in Wu (JFA 00).

5. Three criteria

5.1. Poincaré is equivalent to $W_1I(C)$ in the trivial metric case

Fact: if $d(x, y) = 1_{x \neq y}$, $W_1(\nu, \mu) = \|\nu - \mu\|_{TV}/2$.

Theorem 7 Let $((X_n)_{n\geq 0}, \mathbb{P}_{\mu})$ be a μ -symmetric ergodic Markov chain with transition probability P.

1. The Poincaré inequality

$$Var_{\mu}(g) \leq C_P \langle g, (I-P)g \rangle_{\mu}, \ \forall g \in L^2(\mu)$$
 (10)

implies

$$\|\nu - \mu\|_{TV}^2 \le 4C_P I(\nu|P,\mu), \,\forall \nu \in M_1(\mathcal{X}). \tag{11}$$

In particular for $u \in b\mathcal{B}$, for every initial probability measure $\beta \ll \mu$ with $d\beta/d\mu \in L^2(\mu)$ and with $\mu(u) = 0$ and for all $r, \varepsilon > 0$ and

 $n\in\mathbb{N}^{st}$,

$$\mathbb{P}_{\beta}\left(\tilde{L}_{n}(u) \geq \mu(u) + r\right) \leq \left\|\frac{d\beta}{d\mu}\right\|_{2} \exp\left(-\frac{nr^{2}}{c_{P}\delta(u)^{2}}\right)$$
(12)

where $\delta(u):=\sup_{x,y\in\mathcal{X}}|u(x)-u(y)|$ is the oscillation of u.

2. Conversely in the symmetric case, if $\alpha(\|\nu-\mu\||_{TV}) \leq I(\nu|P,\mu), \forall \nu$, for some nonnegative nondecreasing left-continuous function α : $\mathbb{R}^+ \rightarrow [0, +\infty]$ with $\alpha(1) > 0$, then the Poincaré inequality (10) holds with

$$c_P \le \frac{1}{1 - e^{-\alpha(1)}}.$$
 (13)

5.2. Unbounded metric: spectral gap in the space of Lipschitzian functions

The carré-du-champs operator associated with $\mathcal{L}=P-I$ is

$$\Gamma(g,h)(x)=rac{1}{2}\int(g(y)-g(x))(h(y)-h(x))P(x,dy)$$

Consider the following condition relating P with the metric d:

$$\sup_{g:\|g\|_{Lip}=1} \sup_{x \in \mathcal{X}} \sqrt{\Gamma(g)}(x) \le M.$$
(14)

Notice that (14) is satisfied if

$$\frac{1}{2}\int d^2(x,y)P(x,dy) \le M^2, \ \forall x.$$
(15)

Let $C_{Lip}(\mathcal{X})$ (resp. $C_{Lip,0}(\mathcal{X})$) be the space of all *d*-Lipschitzian functions g (resp. with $\mu(g) = 0$) on \mathcal{X} .

Theorem 8 Assume (14) and $\int d^2(x, x_0) d\mu(x) < +\infty$ and P is μ -symmetric. Suppose that P admits a spectral gap in $C_{Lip}(\mathcal{X})$, i.e., for any $g \in C_{Lip,0}(\mathcal{X})$, there is $G \in C_{Lip,0}(\mathcal{X})$ solving the Poisson equation $(I - P)G = g, \ \mu - a.s.$ and satisfying

$$\|G\|_{Lip} \le c_{P,Lip} \|g\|_{Lip} \tag{16}$$

where $c_{P,Lip} > 0$ is the best constant (here the index P refers to Poincaré). Then μ satisfies the Poincaré inequality with $c_P \leq c_{P,Lip}$ and it satisfies W_1I below

$$W_1(\nu,\mu)^2 \le 4(Mc_{P,Lip})^2 I(\nu), \ \forall \nu \in \mathcal{M}_1(\mathcal{X}).$$
(17)

The following result, inspired of Djellout-Guillin-Wu (AOP 04), provides sharp constant.

Proposition 3 In the framework of Theorem 8 but without condition (14), assume that for some constant $c_H(P) > 0$,

$$W_1^2(
u,P(x,\cdot))\leq 2c_H(P)H(
u|P(x,\cdot)),\ orall x\in\mathcal{X},
u\in M_1(\mathcal{X})$$
 (18) Then

$$W_1^2(\nu,\mu) \le 2(c_{P,Lip})^2 c_H(P) I(\nu|P,\mu).$$
⁽¹⁹⁾

Remarks 4 The (inverse) Lipschitzian spectral gap constant $c_{P,Lip}$ can be estimated easily by

$$c_{P,Lip} \leq \sum_{n=0}^{\infty} \|P^n\|_{Lip}$$

where

$$\|P\|_{Lip} = \sup_{g:\|g\|_{Lip}=1} \|Pg\|_{Lip} = \sup_{x \neq y} rac{W_1(P(x,\cdot),P(y,\cdot))}{d(x,y)}.$$

Ollivier called

$$\kappa(x,y)=1-rac{W_1(P(x,\cdot),P(y,\cdot))}{d(x,y)}$$

(*Ricci*) curvature of the Markov chain. If $\kappa(x, y) \geq \kappa > 0$, then $||P||_{Lip} \leq 1 - \kappa$ and then $c_{P,Lip} \leq 1/\kappa$. This last estimate is far from being sharp in general: for the Markov chain on $\{0, 1\}$ given by P(0, 1) = P(1, 0) = 1, we have $\kappa = 0$ whereas $c_{P,Lip} = 1/2$.

Lyapunov function criterion for W_1I :

Theorem 9 Assume that P is μ -symmetric and satisfies Poincaré inequality (10) with best constant $c_P < \infty$. If the Lyapunov condition

(*H*) There exist a measurable function $U : \mathcal{X} \to [1, +\infty)$ and a nonnegative function ϕ and a constant b > 0 such that $PU(x) < +\infty, \mu - a.e.$ and

$$\lograc{U}{PU}\geq \delta d^2(x,x_0)-b, \; \mu ext{-a.s.}$$

holds. Then

$$W_1(\nu,\mu)^2 \le 2\tilde{C}I(\nu), \ \forall \nu; \ \tilde{C} := \frac{2}{\delta} [1 + (1+b)c_P\mu(d^2(x,x_0))]$$
 (20)

6. Two examples

6.1. Two points model We begin with the simplest Markov chain on $\mathcal{X} = \{0, 1\}$ equipped with the trivial metric *d*, with transition matrix $P = \begin{pmatrix} 1-a & a \\ b & 1-b \end{pmatrix}$, where $a, b \in (0, 1]$. Notice that *P* is symmetric w.r.t. μ given by $\mu(0) = \frac{b}{a+b} =: q, \ \mu(1) = \frac{a}{a+b} =: p.$

Though this model is simple, but its study is abundant: for the Dirichlet form

$$\mathcal{E}_P(g,g) = \langle g, (I-P)g
angle_m u = rac{ab}{a+b} (g(1)-g(0))^2$$

associated with the continuous time Markov process generated by $\mathcal{L}=P-I,$

1. the best log-Sobolev constant is known, see Saloff-Coste and al.;

2. the best constant $C_H(p)$ in $W_1(\nu, \mu)^2 \leq 2CH(\nu|\mu)$ is obtained recently by Bobkov, Houdré and Tetali (JIM 08) :

$$C_H(p) = \frac{p-q}{2(\log p - \log q)} (:= 1/4 \ if \ p = q); \qquad (21)$$

3. the best rate $\kappa > 0$ in the exponential entropy convergence

$$H(
u P_t|\mu) \leq e^{-\kappa t} H(
u|\mu)$$

is unknown, only some accurate estimates are known, see M.F. Chen (07).

4. the best constant C in $W_1(\nu|\mu)^2 \leq 2CI_c(\nu)$ where

$$I_c(
u) = \langle (I-P) \sqrt{rac{d
u}{d\mu}}, \sqrt{rac{d
u}{d\mu}}
angle_\mu$$

is known: C = 1/[2(a + b)] (Guillin-Léonard-Wu-Yao 08).

$$c_{P,Lip} = c_P = (a+b)^{-1}$$

(however its curvature $\kappa = 1 - |1 - (a + b)|$).

$$C_G(P,\mu) \le \frac{\max\{c_H(a), c_H(b)\}}{(a+b)^2}$$
 (22)

which becomes equality if a+b = 1 (i.e., i.i.d. case, for $c_H(a) = c_H(b) = C_H(\mu)$). By the calculation of the asymptotic variance V(g) we have

$$C_G(P,\mu) \geq \left(rac{2}{a+b}-1
ight)rac{ab}{(a+b)^2}.$$

Notice also a curious phenomena: if a = b = 1, $c_H(P) = 0$ and then $C_G(P, \mu) = 0$.

We do not know the exact expression of $C_G(P, \mu)$.

6.2. Complete graph Let \mathcal{X} be the complete graph of $N \geq 3$ vertices, i.e., any two vertices are connected by an edge and then the graph distance is given by $d(x, y) = 1_{x \neq y}$ (the trivial metric). The probability transition matrix is given by $P(x, y) = \frac{1}{N-1}$ for all $y \neq x$. It is symmetric w.r.t. the uniform measure $\mu(x) = 1/N$ (for each $x \in \mathcal{X}$). It is easy to see that

$$(I-P)G=rac{N}{N-1}(G-\mu(G)).$$

Thus $c_P = \frac{N-1}{N} = c_{P,Lip}$. By Theorem 7, we have

$$C_G(P,\mu) \leq rac{N-1}{2N}.$$

Proposition 3 yields the better

$$C_G(P,\mu) \le \frac{1}{4} \left(\frac{N-1}{N}\right)^2. \tag{23}$$

This is sharp for large N. Indeed

$$C_G(P,\mu) \geq egin{cases} rac{N-2}{4N}, & ext{if N even:}\ rac{N-2}{4N}(1-rac{1}{N^2}), & ext{if N odd.} \end{cases}$$

