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1. General ID processes

By a natural analogy to Gaussian processes we consider

Definition
Let T be an arbitrary nonempty set. A process X = {Xt}t∈T is
said to be an infinitely divisible (ID) stochastic process if for any
t1, . . . , tn ∈ T the random vector

(Xt1 , . . . ,Xtn )

has an ID distribution.
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Examples:
(i) Lévy processes. (Additive processes.)

(ii) Linearly additive random fields.
Recall, a random field {Xt}t∈Rd is called linearly additive if
the stochastic process ξ defined by ξs = Xa+sb, s ∈ R has
independent increments for every pair (a, b), a, b ∈ Rd . Mori
(1992) characterized all ID, stochastically continuous, linearly
additive random fields. (Chentsov type representations.)

(iii) Multiparameter Lévy processes.

(iv) ID random measures. E.g., cluster Poisson processes, Cox
processes with infinitely divisible directing measures, etc.
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(v) Gaussian and stable processes.

(vi) Stationary ID processes. E.g., moving averages driven by
Lévy processes (Ornstein-Uhlenbeck processes), harmonizable
processes, etc.

(vii) Stationary increment ID processes. E.g., fractional processes.

(viii) Linear ID random fields. {Xt}t∈H , H is a linear space
(Hilbert space,M(Rd ), etc.),

Xax+by = aXx + bXy a.s.

for every x , y ∈ H, a, b ∈ R. (Cylindrical processes.)

p. 5 of 32



In his fundamental work Maruyama (1970) defined a Lévy measure
of an ID process on a special σ-ring of subsets of RT . Such σ-ring
has a complicated structure when the index set T is uncountable.

We simplify this approach defining a (path) Lévy measure on the
cylindrical σ-field

(B (R))T =
∏
t∈T
B (Rt) (Rt = R)

of RT for an arbitrary index set T .
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Definition
A measure ν on the cylindrical σ-field (B (R))T is said to be a
Lévy measure on RT if

(i) for every t ∈ T∫
RT

(
|xt |2 ∧ 1

)
ν(dx) <∞

and
(ii) for every countable set T1 ⊂ T such that

ν

{
x : x∣∣T1

≡ 0
}
> 0 there exists t /∈ T1 such that

ν

{
x : x∣∣T1

≡ 0, xt 6= 0
}
> 0.
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Remark
(a) If T is a countable index set, then condition (ii) in the

definition of a Lévy measure is equivalent to

ν{0} = 0, (1)

where {0} denotes the origin of RT .
(b) When T is uncountable, (1) does not make sense. We

introduce (ii) as a proper generalization of (1) to arbitrary
index sets. It gives the uniqueness of a Lévy measure
corresponding to an infinitely divisible process.

(c) ν is a σ-finite Lévy measure if and only if for some countable
set T0 ⊂ T

ν

{
x : x∣∣T0

≡ 0
}

= 0. (2)
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Lévy-Khintchine representation
Notation: Define the truncation function

[[u]] :=
u

|u| ∨ 1 =


u |u| ≤ 1,
1 u > 1,
−1 u < −1,

and truncation of x ∈ RT by applying the truncation function to
each component xt

[[x ]]t := [[xt ]], t ∈ T .

R(T ) = {x ∈ RT : xt = 0 for all but finitely many t}.

〈y , x〉 =
∑
t∈T

ytxt , y ∈ R(T ), x ∈ RT .
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Theorem (Lévy-Khintchine representation)
Let X = {Xt}t∈T be an infinitely divisible stochastic process. Then
there exist a unique (generating) triplet (Σ, ν, b) consisting of
(i) a nonnegative symmetric operator Σ : R(T ) 7→ RT ,
(ii) a Lévy measure ν on RT ,
(iii) a function b ∈ RT ,
such that for any y ∈ R(T )

Eei
∑

t∈T ytXt =

exp
{
−1
2〈y ,Σy〉+

∫
RT

(
ei〈y ,x〉 − 1− i〈y , [[x ]]〉

)
ν(dx) + i〈y , b〉

}
.
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Lévy-Itô representation
Any infinitely divisible process X = {Xt}t∈T has a version
X′ = {X ′t}t∈T of the form

X ′t = Gt +

∫
RT

xt

(
N(dx)− ν(dx)

|xt | ∨ 1

)
+ bt ,

where G = {Gt}t∈T is a mean-zero Gaussian process, N is a
Poisson random measure on RT with intensity ν, and G and N are
independent.

The independence of Gaussian and Poissonian parts allows to
study these parts separately. We will concentrate on ID processes
without Gaussian part.

p. 11 of 32



EXAMPLES OF PATH LÉVY MEASURES:

1. Lévy processes.
X = {Xt}t≥0 be a Lévy process with

EeiuXt = etψ(u),

ψ(u) =

∫ ∞
−∞

(eiuv − 1− iu[[v ]]) η(dv).

Here T = R+. What is the path Lévy measure ν of X?
ANSWER: Path Lévy measure ν of a Lévy process X is the image
measure of η × Leb by

R× R+ 3 (v , s) 7→ v1[s,∞) ∈ RR+ .
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In particular, every such ν is concentrated on the set of
one-step functions

S = supp ν = {v1[s,∞) : v ∈ R, s ≥ 0}.

(Precisely, ν∗(RR+ \ S) = 0.) Properties such as discontinuities of
sample path of Lévy processes are inherited from the support of
the path Lévy measure.

For a Poisson process with parameter λ,

supp ν = {1[s,∞) : s ≥ 0}

and ν is the image measure of η × Leb by the map s 7→ 1[s,∞).
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2. ID point processes.
Let N be an ID point process on Rd . Thus,

{N(A) : A ∈ B0(Rd )}

is an ID process indexed by bounded Borel subsets of Rd . Its Lévy
measure ν is obtained on the cylindrical σ-field of RB0(Rd ).
It can be shown that ν is concentrated on NRd , the space of
nonnegative integer-valued measures, finite on bounded Borel sets.

The restriction of ν to NRd is known as KLM measure of N.
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2. Classes of ID processes

We begin with the case T = {1, . . . , n}.

Definition (Class IDρ(Rn))

Let ρ be a given Lévy measure on (0,∞). An ID distribution µ on
Rn belongs to IDρ(Rn) if its Lévy measure ν is of the form

ν(A) = ηρ(A) :=

∫ ∞
0

η(As−1) ρ(ds), A ∈ B(Rn),

for some measure η on Rn with η{0} = 0.
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EXAMPLES OF IDρ(Rn) classes:

1 α-stable distributions: ρ(ds) = s−α−1 ds, α ∈ (0, 2);
2 selfdecomposable distributions: ρ(ds) = s−11(0,1](s) ds;

3 tempered α-stable distributions: ρ(ds) = s−α−1e−s ds,
α ∈ (0, 2);

4 Goldie–Steutel–Bondesson class: ρ(ds) = e−s ds;
5 Thorin class (generalized gamma convolutions):
ρ(ds) = s−1e−s ds;

6 type G (conditionally Gaussian) distributions:
ρ(ds) = e−s2/2 ds;

7 Maejima class: ρ(ds) = s−1e−s2/2 ds;
8 Jurek class: ρ(ds) = 1(0,1](s) ds.
9 general ID: ρ(ds) = δ1(ds).
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Define
Υρ(η) = ηρ =

∫ ∞
0

η(· s−1) ρ(ds)

on the domain

domΥ(d)
ρ = {η : η measure on Rd , η{0} = 0, and ηρ Lévy measure}.

domΥ
(d)
ρ is a dense subset of the set of Lévy measures. It

coincides with the set of all Lévy measures if and only if∫ ∞
0

s2 ∨ 1 ρ(ds) <∞.

IDρ2(Rn) ⊂ IDρ1(Rn) ⇐⇒ ∃ ρ : ρ2 = ρ1 ~ ρ.

Ref.: Barndorff-Nielsen, R., Thorbjörnsen.
General Υ-transformations, ALEA 2008.
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Definition

A stochastic process X = {Xt}t∈T is an IDρ-process if for every
n ≥ 1, t1, . . . , tn ∈ T ,

L{(Xt1 , . . . ,Xtn )}

is a probability measure in the class IDρ(Rn).

A stable process is an IDρ-process with ρ(ds) = s−α−1 ds.
Stationary stable processes and random fields have been studied
extensively by many authors, including Hardin, Samorodnitsky,
Pipiras – Taqqu, and R.

We will concentrate on selfdecomposable (SD) processes.
That is, IDρ-processes for ρ(ds) = s−11(0,1](s) ds.
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3. Stationary selfdecomposable processes
Let T = Rd or Zd . Recall that a process X = {Xt}t∈T is
stationary if ∀ t1, . . . , tn, t ∈ T

(Xt1+t , . . . ,Xtn+t)
d
= (Xt1 , . . . ,Xtn ).

Theorem (Stationary SD processes)
Let {Xt}t∈T be a stationary measurable mean-zero
selfdecomposable process. Then there exists a Borel space
(S,B(S)) equipped with a σ-finite measure m and a measurable
measure m-preserving flow

φt : S 7→ S t ∈ T

such that ∀ t ∈ T

Xt =

∫
S
f (φt(s))M(ds) a.s. (3)

for certain function f : S 7→ R satisfying
∫

S f 2 ∧ |f | dm <∞ and
equality (3) holds on enlarged probability space.
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Theorem (Stationary SD processes (cont.))
The stochastic integral is with respect to an independently
scattered random measure M on (S,B(S)) satisfying

EeiuM(A) = exp{m(A)ψ(u)}, A ∈ B(S), (4)

with

ψ(u) =

∫ 1

0
(eius − 1− ius)s−1 ds

= −γ + Ci(u)− ln(u) + i(Si(u)− u).

Here Ci, Si are the cosine and sine integral functions, respectively,
and γ is the Euler constant.

Stationary stable processes: R. (AoP 1995, 2001).
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Decomposition of stationary SD processes:

Xt =

∫
S
f (φt(s))M(ds).

Suppose S = A ∪ B, where A,B disjoint shift invariant Borel sets
in S. Define

XA
t =

∫
A
f ◦ φt dM, XB

t =

∫
B
f ◦ φt dM.

Then {XA
t }t∈T and {XB

t }t∈T are independent mean zero
stationary SD processes.

[
Flow φ Stationary SD process X

decomposition into invariant parts sum of indep. stat. SD components

]

p. 21 of 32



Decomposition of S = RZ with respect to the shift θ:

C0 = {s ∈ S : θs = s};

C1 is the largest modulo m shift-invariant set disjoint with C0
such that m|C1 is equivalent to a probability measure;

C2 is the largest modulo m shift-invariant set disjoint with
C0 ∪ C1 such that ∀A ⊂ C2, if m(A) > 0 then
lim supn→∞m(A ∩ θ−nA) > 0;

C3 is the largest modulo m shift-invariant set disjoint with
C0 ∪ C1 ∪ C2 such that C3 does not contain a wandering set
and ∀A ⊂ C3, if m(A) ∈ (0,∞) then
limn→∞m(A ∩ θ−nA) = 0;

C4 the largest modulo m set in S such that C4 =
⋃

n∈Z θ
−nW

with θ−nW disjoint. θ is dissipative on C4.
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The decomposition: S =
⋃4

i=0 Ci into disjoint shift invariant sets is
obtained by combining the following decompositions in ergodic
theory: Hopf decomposition, Krengel - Sucheston decomposition,
and positive-null decomposition.

Xn =
4∑

i=0
X (i)

n , n ∈ Z,

where
X (i)

n :=

∫
Ci
f ◦ θn dM, i = 0, . . . , 4.
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Theorem

Every stationary zero mean selfdecomposable process {Xn}n∈Z can
be written uniquely in distribution as the sum

Xn =
4∑

i=0
X (i)

n , n ∈ Z,

where {X (i)
n }n∈Z, i = 0, . . . , 4 are independent stationary zero

mean selfdecomposable process (some may be zero) such that
(0) {X (0)

n }n∈Z has constant paths;
(1) {X (1)

n }n∈Z is not ergodic;
(2) {X (2)

n }n∈Z is weakly mixing (and so ergodic) but not mixing;
(3) {X (3)

n }n∈Z is mixing and does not have mixed moving average
component;

(4) {X (4)
n }n∈Z is a mixed moving average process.
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For an illustration, consider a bilateral integer-valued Markov chain
{ξn}n∈Z defined on the canonical coordinate space S = ZZ.
Suppose that {ξn}n∈Z is irreducible and recurrent. Let Qx be the
distribution of {ξn}n∈Z in RZ starting from x ∈ Z (i.e.,
Qx{ξ0 = x} = 1). Define a shift-invariant measure m on ZZ by

m(A) =

∫
Z
Qx (A)m0(dx), A ∈ B(S),

where m0 is a (possibly infinite) stationary distribution of the
Markov chain.
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Let M be an SD random measure with control measure m on ZZ

given by (4) and let

Xn =

∫
ZZ

f (θn(s))M(ds)

be the corresponding stationary zero-mean SD process. Here∫
(f 2 ∧ |f |) dm <∞ and θ is the shift.

Then

the SD process {Xn}n∈Z is mixing if and only if the Markov chain
{ξn}n∈Z is null-reccurent. In this case ZZ = C3 mod m.
{Xn}n∈Z is not ergodic when {ξn}n∈Z is positive-recurrent. In this
case ZZ = C2 mod m.
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Lévy processes representation. Suppose m as above is an infinite

atomless measure on RZ. Since measure spaces (RZ,m) and
(R+, Leb) are isomorphic, we can write

Xn =

∫ ∞
0

g(V n(t)) dZt , n ∈ Z

where V : R+ 7→ R+ is a Lebesgue measure preserving
transformation of R+ and Zt is a Lévy process with

EeiuXt = etψ(u),

where ψ(u) = −γ + Ci(u)− ln(u) + i(Si(u)− u), as on page 20.
Thus {Xn} can be viewed as a process in the first order chaos of
Zt , t ≥ 0.
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D. Nualart and Schoutens (2000) gave a chaotic decomposition of
L2(Ω, σ(Zt , t ≥ 0),P) as

∞⊕
n=0

⊕
i1,...,in∈N

H(i1,...,in),

where H(i1,...,in) are spaces of multiple stochastic integrals with
respect to strongly orthogonal Teugels martingales Y (i)

t , t ≥ 0.
Such martingales are obtained by applying orthogonal polynomials
to powers of jumps of Zt , t ≥ 0.
Orthogonal polynomials related to a selfdecomposable Lévy process
Zt , t ≥ 0 can be given explicitely. These are orthogonal
polynomials of L2([0, 1], xdx),

pn(x) =
n∑

k=0
(−1)n−k

(
n
k

)(
n + k + 1

n

)
xk .
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pn(x) = P(0,1)
n (2x − 1) ← Jacobi polynomial.

p0(x) = 1 p1(x) = 3x − 2
p2(x) = 10x2 − 12x + 3 p3(x) = 35x3 − 60x2 + 30x − 4
p4(x) = 126x4 − 280x3 + 210x2 − 60x + 5

∫ 1

0
pn(x)2 xdx =

1
2(n + 1)

.

{
√
2(n + 1) pn : n ≥ 0} is a CONS for L2([0, 1], xdx).

Transformation V of R, corresponding to the shift on RZ,
generates an isometry on each chaos space H(i1,...,in). Ergodic
decomposition of V induces related ergodic decompositions in the
space of chaos of selfdecomposable processes.
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Thank you!
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