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Introduction

Suppose that the behaviour of a system is well described
by a continuous-time Markov chain (X(t), t ≥ 0) on a state
space of the form S

⋃

{0}, where 0 is an absorbing state
and S an irreducible transient class.
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Introduction

Suppose that the behaviour of a system is well described
by a continuous-time Markov chain (X(t), t ≥ 0) on a state
space of the form S

⋃

{0}, where 0 is an absorbing state
and S an irreducible transient class.

Suppose also that an asymptotic analysis of the process
has revealed the certainty of eventual absorption at 0, but
that explicit evaluation of the distribution of X(t) for all t ≥ 0
is unwieldy or even impossible.

Naturally, one then looks for characteristics of the process
that, on the one hand, give more detailed information than
the bare fact that eventual absorption is certain, and, on the
other hand, are easier to obtain than the distribution of X(t)
for all t ≥ 0.
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Introduction

One way to approach this problem is to try to find the
quasi-limiting distribution of the process (if it exists), that
is , the limit as t → ∞ of the distribution of X(t), conditioned
on non-absorption up to time t.
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This distribution, which is called a quasi-stationary
distribution by some authors, provides particularly useful
information if the time-scale for the time to absorption is
substantially larger than that the approach to the
quasi-limiting distribution
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Introduction

One way to approach this problem is to try to find the
quasi-limiting distribution of the process (if it exists), that
is , the limit as t → ∞ of the distribution of X(t), conditioned
on non-absorption up to time t.

This distribution, which is called a quasi-stationary
distribution by some authors, provides particularly useful
information if the time-scale for the time to absorption is
substantially larger than that the approach to the
quasi-limiting distribution

For in that case the process relaxes to the quasi-limiting
regime after a relatively short time, and then, after a very
much longer period, absorption will eventually occur.
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Introduction

Thus the quasi-limiting distribution bridges the gap between
the known stationary behaviour (absorption) and the
unknown time-dependent behaviour of the process.
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Introduction

Thus the quasi-limiting distribution bridges the gap between
the known stationary behaviour (absorption) and the
unknown time-dependent behaviour of the process.

Interesting examples of this phenomenon can be found in
the chemical literature, see Dambrine and Moreau (1981),
Parsons and Pollett (1987) and the references mentioned
there.
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Introduction

In this talk we consider a continuous-time Markov process
(Xt) with a countable state space, taken here to be N+, and
with a single absorbing state 0.
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stable, conservative and regular.
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In this talk we consider a continuous-time Markov process
(Xt) with a countable state space, taken here to be N+, and
with a single absorbing state 0.
Let Q = (qij) denote the generator, suppose here to be
stable, conservative and regular.
We denote by P = (pij(t)) transition probabilities of the
minimal process which here is the unique process with
generator Q.
Let Pi(·) = P(· | X0 = i) and If A is a finite measure on N,
let PA =

∑

aiPi . Here and below any unqualified sum is
taken over N.
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Introduction

In this talk we consider a continuous-time Markov process
(Xt) with a countable state space, taken here to be N+, and
with a single absorbing state 0.
Let Q = (qij) denote the generator, suppose here to be
stable, conservative and regular.
We denote by P = (pij(t)) transition probabilities of the
minimal process which here is the unique process with
generator Q.
Let Pi(·) = P(· | X0 = i) and If A is a finite measure on N,
let PA =

∑

aiPi . Here and below any unqualified sum is
taken over N.
Finally, suppose that N is irreducible and that 0 is accessible
from some (and hence from every) state in N.
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Introduction

We further define

T = inf{t ≥ 0 : X(t) = 0}

the absorption (hitting) time at 0. We shall only be
interested in processes for which EiT < ∞ for all i ≥ 1.
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Review

A Quasi-Stationary Distribution (QSD) M = (mi) is a
probability measure on {1, 2, · · · } with the property that,
starting with M = (mi), the conditional distribution, given
the event that at time t the process has not been absorbed,
still M = (mi). That is,

PM(X(t) = j|T > t) =

∑

miPi(X(t) = j)
∑

miPi(X(t) 6= 0)
= mj. (1)
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Review

A Quasi-Stationary Distribution (QSD) M = (mi) is a
probability measure on {1, 2, · · · } with the property that,
starting with M = (mi), the conditional distribution, given
the event that at time t the process has not been absorbed,
still M = (mi). That is,

PM(X(t) = j|T > t) =

∑

miPi(X(t) = j)
∑

miPi(X(t) 6= 0)
= mj. (2)

It is not hard to show if such M exist then

PM(T > t) = e−µt

for some µ ∈ (0,∞).
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Review

Quasi-stationary distributions for Markov processes and
chains have been studied by several authors. Vere-Jones
(1962), Seneta and Vere-Jones (1996) and Kingman (1963)
studied the case of a general denumerable state space.
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Review

Quasi-stationary distributions for Markov processes and
chains have been studied by several authors. Vere-Jones
(1962), Seneta and Vere-Jones (1996) and Kingman (1963)
studied the case of a general denumerable state space.

Actually, there are a great deal of papers (nearly 400
papers, see P.K.Pollett "Quasi stationary distributions: a
bibliography". available at
http://www.maths.uq.edu.au/ pkp/papers/qsds/qsds.html,
regularly undated) dealing with the QSDs
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Review

We now distinguish several related notions; Anderson
(1991), Chapter 5 is a good general reference.
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We now distinguish several related notions; Anderson
(1991), Chapter 5 is a good general reference.

Given µ ≥ 0 we call a measure M on N a µ-invariant
measure for Q if for each j ≥ 1,

∑

miqij = −µmj , (5)
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Review

We now distinguish several related notions; Anderson
(1991), Chapter 5 is a good general reference.

Given µ ≥ 0 we call a measure M on N a µ-invariant
measure for Q if for each j ≥ 1,

∑

miqij = −µmj , (7)

and if for all t > 0,
∑

mipij(t) = e−µtmj , (8)

it is called µ-invariant on {1, 2, · · · } for P .
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Review

We call M = (mj) A- the limit conditional distribution
(A-LCD) if A is a probability measure on {1, 2, · · · } and each
j ≥ 1

mj = lim
t→∞

PA(Xt = j | T > t) (9)

exists and is a probability measure on {1, 2, · · · } .
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We call M = (mj) A- the limit conditional distribution
(A-LCD) if A is a probability measure on {1, 2, · · · } and each
j ≥ 1

mj = lim
t→∞

PA(Xt = j | T > t) (11)

exists and is a probability measure on {1, 2, · · · } .

Trivially, any QSD M is an M -LCD.

The A-LCD is a QSD (Vere-Jones(1996)).
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Review

A complete treatment of the QSD problem for a given family
of processes should accomplish two things:
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A complete treatment of the QSD problem for a given family
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(ii) solve the domian of attraction problem, namely,
characterize all probability measure A such that a given
QSD M is a A-LCD.
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Review

A complete treatment of the QSD problem for a given family
of processes should accomplish two things:

(i) determination of all QSD’s; and

(ii) solve the domian of attraction problem, namely,
characterize all probability measure A such that a given
QSD M is a A-LCD.

Although (i) has been addressed for several cases, details
about (ii) are known only for finite Markov processes, and
for the subcritical Markov Branching Process(MBP).
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Review

For finite Markov chains, the answer for QSD problem is
easy, that is, there exists exactly one QSD and for all
probability measure A, this unique QSD is a A-LCD.
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Review

For finite Markov chains, the answer for QSD problem is
easy, that is, there exists exactly one QSD and for all
probability measure A, this unique QSD is a A-LCD.

For the subcritical MBP, the decay parameter is λ = (1−m)a
where m is the per capita mean number of offspring. Also,
N is λ-recurrent, and the λ-invariant measure (for Q and P )
is finite which , after normalization, has the p.g.f.

Q(s) = 1 − exp

(

−

∫ s

0

1 − m

f(v) − v
dv

)

.
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Review

For finite Markov chains, the answer for QSD problem is
easy, that is, there exists exactly one QSD and for all
probability measure A, this unique QSD is a A-LCD.

For the subcritical MBP, the decay parameter is λ = (1−m)a
where m is the per capita mean number of offspring. Also,
N is λ-recurrent, and the λ-invariant measure (for Q and P )
is finite which , after normalization, has the p.g.f.

Q(s) = 1 − exp

(

−

∫ s

0

1 − m

f(v) − v
dv

)

.

This gives the LCD even though N can be λ-null (iff
Σpj log+ j = ∞).
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Review

Furthermore, Qδ(s) = 1 − (1 − Q(s))δ is a p.g.f. when
0 < δ ≤ 1, and only then, and its weights comprise a
µ-invariant measure for µ = δλ. When δ < 1 it is a A-LCD iff
A has an upper tail which is regularly varying with index−δ.
When δ = 1 the corresponding condition is regular variation
with index −1 or that Σjaj < ∞. This describes all
A − LCD′s. See Asmussen and Hering (1983), p.122, for
proofs.
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Review

The QSD structure of birth and death processes has
received much attention; See Van Doorn (1991) for
references. In particular he shows that either the forward
system has a unique solution and either no QSD exists
(λ = 0) or there is a continuum of QSD’s indexed by µ in an
interval (0, λ]; or the forward system is not uniquely solved
and then λ > 0 and there is exactly one QSD . The
λ-invariant measure is finite and, normalized, is the LCD.
I’ll back to these more details.
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New results

We now discuss the QSD problem for a general Markov
Chain.
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New results

We now discuss the QSD problem for a general Markov
Chain.

P.A. Ferrari, H. Kesten, S. Martinez and P. Picco (1995)
prove the following interesting result which makes no
reference to this general theory. They make the following
definition of asymptotic remoteness (AR) of the absorbing
state: For each t > 0

lim
i→∞

Pi(T > t) = 1. (13)
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New Results

Suppose that AR condition holds, Ferrari et al. prove that a
QSD exists iff

Ei(e
ǫT) < ∞ (14)

for some ǫ > 0 and i ∈ N.
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New Results

Suppose that AR condition holds, Ferrari et al. prove that a
QSD exists iff

Ei(e
ǫT) < ∞ (15)

for some ǫ > 0 and i ∈ N.

Indeed this condition is necessary with, or without, AR
condition.
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New Results

Suppose that AR condition holds, Ferrari et al. prove that a
QSD exists iff

Ei(e
ǫT) < ∞ (16)

for some ǫ > 0 and i ∈ N.

Indeed this condition is necessary with, or without, AR
condition.

T. G. Pakes (1994) investigates what happens in a number
of examples when AR condition fails. In fact, he examines
quite closely two examples which violate AR condition but
which nevertheless can have a QSD , showing AR
condition is far from being a necessary condition, though it
seems essential for the proofs of Ferrari et al.’s theorem.
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New Results

Phil Pollett and Hanjun Zhang (2007) obtained that the
following condition

lim
i→∞

EiT = ∞ (17)

can substitute for the AR condtion (that is, for each t > 0
limi→∞ Pi(T > t) = 1.) which preserves the main result of
Ferrari et al. (1995). We call condition (17) is AR* condition.
That is, we have proved that if AR* holds, then a QSD
exists iff

Ei(e
ǫT) < ∞

for some ǫ > 0 and i ∈ N.
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New Results
Our main result is as follows
Theorem 1 Suppose that Q is stable, conservative and
regular, and that Q restricted to {1, 2, · · · } is irreducible.
Suppose further that Ei(e

ǫT) < ∞. for some ǫ > 0 and i ∈ N,
limi→∞ EiT = ∞, and that Pi(T < ∞) = 1 for some (and
hence all) i.
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New Results
Our main result is as follows
Theorem 1 Suppose that Q is stable, conservative and
regular, and that Q restricted to {1, 2, · · · } is irreducible.
Suppose further that Ei(e

ǫT) < ∞. for some ǫ > 0 and i ∈ N,
limi→∞ EiT = ∞, and that Pi(T < ∞) = 1 for some (and
hence all) i.
Then (i) λC = sup{λ : Eie

λT < ∞} > 0;
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New Results
Our main result is as follows
Theorem 1 Suppose that Q is stable, conservative and
regular, and that Q restricted to {1, 2, · · · } is irreducible.
Suppose further that Ei(e

ǫT) < ∞. for some ǫ > 0 and i ∈ N,
limi→∞ EiT = ∞, and that Pi(T < ∞) = 1 for some (and
hence all) i.
Then (i) λC = sup{λ : Eie

λT < ∞} > 0;
(ii) for each 0 < δ ≤ λC , there exists a QSD M such that

PM (T > t) = e−δt

That means that there is a continuum of QSD’s indexed by δ

in an interval (0, λC ].
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Sketch of the main proof

The first step: we prove that for any 0 < δ ≤ λC , there exists
a probability measure M such that
δ = sup{λ : EMeλT < ∞}.
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Sketch of the main proof

The first step: we prove that for any 0 < δ ≤ λC , there exists
a probability measure M such that
δ = sup{λ : EMeλT < ∞}.

In our proof, AR* holds, i.e. limi→∞ EiT = ∞ seems
essential for the first step.
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Sketch of the main proof

The second step: we prove that there exists a probability
measure M∞ such that

PM∞(T > t) = e−δt
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Sketch of the main proof

The second step: we prove that there exists a probability
measure M∞ such that

PM∞(T > t) = e−δt

It is analogous to Ferrari et al.(1995) for the second step.
The method is based on the study of the renewal process
with interarrival times distributed as the absorption time of
the Markov Process with a given initial measure ν.
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Sketch of the main proof

The third step: we prove that there exists a QSD M such
that

PM (T > t) = e−δt
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Sketch of the main proof

The third step: we prove that there exists a QSD M such
that

PM (T > t) = e−δt

This step is the same as Proposition 4.1 in Ferrari et al.
(1995) that is , the result follows from an application of fixed
point theorem.
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Birth and death process

We shall adopt the usual notation in prescribing birth rates
λi > 0 (i ≥ 1), with λ0 = 0, and death rates µi > 0 (i ≥ 1) .
Now define by π1 = 1 and

πn =
n

∏

k=2

λk−1

µk
, n ≥ 2.

We will assume the process is absorbed with probability 1,
that is,

∞
∑

n=1

1

πnλn
= ∞. (18)
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Birth and death process

In order to state our another result, we need the following
notation:

S =
∞

∑

n=1

(λnπn)−1
∞

∑

m=n+1

πm.
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Birth and death process

In order to state our another result, we need the following
notation:

S =
∞

∑

n=1

(λnπn)−1
∞

∑

m=n+1

πm.

As mentioned before, by Van Doorn (1991), if forward
system is not uniquely solved, which is equivalent to S < ∞,
then λC > 0 and there is exactly one QSD.
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Birth and death process

Now our new result is
Theorem 2 For birth and death process, if both

∞
∑

n=1

1

πnλn
= ∞. (19)

and S < ∞ hold, then for any probability measure A , the
unique QSD M is a A − LCD.That is, for any probability
measure A

mj = lim
t→∞

PA(Xt = j | T > t)

exists and is a probability measure.
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One-dimensional Diffusions

Consider the diffusion operator

L = a(x)
d2

dx2
+ b(x)

d

dx
, on [0,∞).

with a ∈ C2((0,∞)), b ∈ C1((0,∞)). Assume that
a(0) = 0, b(0) = 0, which entails that 0 is an absorbing state;
further assume a(x) > 0 for any x > 0, and denote

C(x) =
∫ x

1
b(t)
a(t)dt.
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One-dimensional Diffusions

Suppose that the diffusion is an absorption with probability
1, that is,

∫

∞

1
exp(−C(x))dx = ∞. (20)
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One-dimensional Diffusions

Suppose that the diffusion is an absorption with probability
1, that is,

∫

∞

1
exp(−C(x))dx = ∞. (22)

We suppose that

∫

∞

1
exp(−C(x))

∫

∞

x

eC(x)

a(x)
dx < ∞ (23)
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One-dimensional Diffusions

Now our result is
Theorem 3 For the diffusion process, suppose that
∫

∞

1 exp(−C(x))dx = ∞hold, then (i) there is exactly one

QSD iff
∫

∞

1 exp(−C(x))
∫

∞

x
eC(x)

a(x) dx < ∞ holds,

and (ii) when it holds, then for any probability measure on
(0,∞) A , the unique QSD M is a A − LCD in the sense
that for any probability measure on (0,∞) A

M(B) = lim
t→∞

PA(Xt ∈ B | T > t),∀ Borel set B ⊆ (0,∞)

exists and is a probability measure.
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Further research

We wish to solve the domain of attraction problem for birth
and death process. That is, we try to solve the case S = ∞.
My guess result is the following If A a probability measure

on N , and x = sup{λ : EAeλT < ∞} then

lim
t→∞

PA(Xt = j | T > t) = qj(x) ≡ µ−1
1 πjxQj(x), j = 1, 2, · · · ,

where {Qn(x)} is a system of polynomials recurrently
defined by

λnQn+1(x) = (λn + µn − x)Qn(x) − µnQn−1(x), n = 2, 3, 4, · · · ,

λ1Q2(x) = λ1 + µ1 − x, Q1(x) = 1.
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