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Abstract: We consider a simple random graph process with hard copying as following: At any

Time-Step t, with probability 0 < α ≤ 1 a new vertex vt is added and then m edges incident with

vt are added in the manner of preferential attachment; or with probability 1−α a existing vertex is

copied uniformly at random. We prove in the paper that, when α large enough, the model possesses

a mean degree sequence as dk ∼ Ck
−(1+2α), where dk be the limit mean proportion of vertices of

degree k. Note that in the present model, while a vertex with large degree is copied, the number of

added edges is just its degree, so the number of added edges is not upper bounded.

1 Introduction and the statement of the main result

Real-world networks such as economic companies, biological oscillators, social networks, and the World

Wild Web (internet) etc. can be modeled by random complex graphs [7, 15, 16, 17, 19, 22]. By studying

random complex graphs, various topological properties such as degree-distribution [6, 8, 12, 14], diameter

[1, 3, 10], clustering [9, 18], stability [4, 5, 11] and spectral gap [2] of these real-world networks have been

presented. One of the most basic properties of real-world networks is the power law degree distribution.

As indicated in [6], this property should be a consequence of two generic mechanisms:

1. Evolution: new vertices and edges are added continuously, and

AMS classification: 60K35; 05C 80.

Key words and phrases: degree sequence; power law; hard copying; random graph process
∗Supported in part by the Natural Science Foundation of China
†Supported in part by the Natural Science Foundation of China and MicroSoft Research Asia under grant 60633010

1

http://arXiv.org/abs/0807.2819v1


2. Preferential attachment: new vertices preferentially attach to vertices that already well connected,

note that mathematical model with the above mechanisms is called BA model. Then many new models

with the BA mechanisms have been introduced and aimed to explain the underlying causes for the emer-

gence of power law degree distributions. This can be observed in ‘LCD model’ [10], the generalization

of ‘LCD model’ due to Buckley and Osthus [8], the very general models defined by Copper and Frieze

[13], Copper, Frieze and Vera [14] etc.

Beyond the power law degree distributions, other degree distributions including the exponential

degree distributions of random graph process are also studied. Actually, phase transitions on degree

distributions of random graph processes are studied in the recent works [20] and [21] of Wu et al..

More precisely, [20] studied a model with edge deletions and showed that, while a relevant parameter

varies, the model exhibits power law degree distribution, a special degree distribution lying between

power law and exponential, and exponential degree distribution in turn. And [21] studied a mixed

model of BA process and ‘classical’ process and showed that, while the pure ‘classical’ process possesses

an exponential degree sequence, the pure BA process and the mixed ones possess power law degree

sequences.

In this paper we will study a ‘copying’ model and show its power law degree distribution. The basic

idea of ‘copying’ comes from the fact that a new web page is often made by copying an old one. It is

well known that Kumar et al. [15] had already studied a kind of ‘copying’ model to explain the observed

power laws in the web graphs in a way different to the BA model: The model is parameterized by a copy

factor α ∈ (0, 1) and a constant out-degree d ≥ 1. At each time step, one vertex u is added and u is

then given d out-links. To generate the out-links, first, choose a existing vertex p uniformly at random

and then with probability 1 − α take the ith out-link of p to be the ith out-link of u, with remaining

probability, choose a vertex from the existing vertices uniformly at random to be the destination of

the ith out-link of u. It is proved in [15] that the above ‘copying’ model possesses a power law degree

sequence as dk ∼ Ck−(2−α)/(1−α).

The above ‘copying’ model had provided another mechanism which leads to power law degree se-

quence of random graphs. But, in fact, at any time step, the probability that a given existing vertex

is chosen to be the destination of some out-link of the new vertex is proportional to the number of its

neighbors (degree), in point of view of degree growth, this is coincident to preferential attachment.

In this paper we will introduce and study another ‘copying’ model created by lazy copiers. Our

copiers are so lazy that the only thing they want to do is ‘copying’. Clearly, the copiers corresponding

to the copying action discussed in [15] should be more clever and diligent: for the chosen vertex p, they

have to distinguish which link be a original out-link of p first and then decide whether or not to copy it.

Let’s consider the following random process Gt, t = 2, 3, · · · . Assume that graph Gt = (Vt, Et) and

t = |Vt|, et = |Et|. In order to simplify the statement and the proof of our main result, technically, we
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start our process at Time-Step 2.

Time-Step 2: To begin the process, we start with G2 consisting of vertices v1, v2 and 2m multi-edges

between them.

Time-Step t ≥ 3:

• With probability α > 0 we add a new vertex vt to Gt−1 and then add m random edges incident

with vt. The m random neighbors w1, w2, . . . , wm are chosen independently and for any 1 ≤ i ≤ m,

w ∈ Vt−1,

P(wi = w) =
dw(t − 1)

2et−1
, (1.1)

where dw(t−1) denotes the degree of vertex w in Gt−1. Thus neighbors are chosen by preferential

attachment.

• With probability 1 − α we generate vertex vt by copying a existing vertex vi, 1 ≤ i ≤ t − 1 from

Vt−1 uniformly at random. Note that in this case, all neighbors of vt are those of the copied vertex

vi.

As defined above, our copying is executed in a direct and simple way, and we call it hard copying. With

hard copying, et may increase nonlinearly, this makes bounding et a rather hard problem.

Now, Let Dk(t) be the number of vertices with degree k ≥ 0 in Gt and let Dk(t) be the expectation

of Dk(t). The main result of this paper follow as:

Theorem 1.1 Assume that 2m(1 − α) < α. Then, for all k ≥ 0, the limit dk = lim
t→∞

Dk(t)

t
exists and

satisfies

dk = 0, 0 ≤ k < m; dm =
2α

m + 2α
; dk =

k
∏

i=m+1

(

1 +
1 + 2α

i + 2α

)

dm, ∀ k > m.

Obviously, dk ∼ Ck−(1+2α) for some constant C.

We follow the basic procedures in [13] and [14] to prove our main theorem. The rest of the paper

is organized as follows. In Section 2, we bound the maximum degree and then bound et, the number

of edges in Gt. In Section 3, using the estimations given in Section 2, we establish the recurrence for

Dk(t). Finally, in section 4, we derive the approximation of Dk(t) by a recurrence with respect to k

and then solve the recurrence in k to finish the proof of Theorem 1.1.

2 Bounding the degree and the number of edges

In this section, we first bound the maximum degree in Gt and then bound et. Actually, we will give

four kinds of estimations to et, as will be seen in section 3, the four estimations are all necessary for

establishing the recurrence of Dk(t).
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For t ≥ 2, let V o
t be set of original vertices in Vt, namely

V o
t := {v ∈ Vt : v = v1, v2 or v is added as a new vertex at some Time-Step 3 ≤ s ≤ t}.

For any times s and t with 3 ≤ s ≤ t, if vs ∈ V o
t , then,

dvs
(s) =

1

2
dv1

(2) =
1

2
dv2

(2) = m. (2.1)

We say an event happens quite surely (qs) if the probability of the complimentary set of the event is

O(t−K) for any K > 0.

We bound the degree in Gt from top as follows

Lemma 2.1 Assume that 2m(1 − α) < 1 and vs ∈ V o
t . Then

dvs
(t) ≤ (t/s)

α/2+m(1−α)
(log t)3 qs. (2.2)

Proof: Let Y be the {0, 1}-valued random variable with P(Y = 1) = α = 1 − P(Y = 0). Then using

the fact that et ≥ mt, we have

E(dvs
(t + 1) | Gt) ≤ dvs

(t) + Y B

(

m,
dvs

(t)

2mt

)

+ (1 − Y )mB

(

1,
dvs

(t)

t

)

, (2.3)

where B(·, ·) be the general Binomial random variable.

Using the fact (2.1) and the relation (2.3), Lemma 2.1 follows from the same argument as used in

[13], [14] and [20]. �

For any v ∈ Vt, if v is copied at Time-Step s from some vertex vr, 1 ≤ r ≤ s − 1, we call v the

daughter vertex of vr and call vr the mother vertex of v. Denote by D(v, Gt) the set of all descendants

of v in Gt. By the definition of the model, we know that, for any vs ∈ V o
t and v ∈ D(vs, Gt), dv(t) is

same distributed as dvs
(t). Now, denote by ∆t the maximum degree in Gt, then, by Lemma 2.1 and

the above analysis, we have

∆t ≤ tα/2+m(1−α)(log t)3, qs. (2.4)

For any vs ∈ V o
t , let fvs

(t) = |D(vs, Gt)| be the number of all descendants of vs, then, we have

Lemma 2.2 For any s ≥ 1, if vs is a original vertex, i.e., for some t ≥ 2, vs ∈ V o
t , then

fvs
(t) ≤ (t/s)1−α (log t)3 , qs. (2.5)

Proof: Let Y be the random variable used in the proof of Lemma 2.1, then,

E(fvs
(t + 1) | Gt) = fvs

(t) + (1 − Y )B

(

1,
fvs

(t)

t

)

. (2.6)

The Lemma follows from the relation (2.6) and the same argument as used in Lemma 2.1. �
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Now we begin to bound et, the number of edges in Gt. Let at be the number of edges added at

Time-Step t + 1, i.e., et+1 = at + et. By the definition of the model, we have at ≤ max{∆t, m} = ∆t,

∀ t ≥ 2; on the other hand, noticing that the number of multi-edges between any given vertices pair is

fewer than 2m, we have

∆2 = 2m, ∆t+1 ≤ ∆t + 2m, ∀ t ≥ 2.

This gives the following determined upper bound on et,

et = 2m +

t−1
∑

s=2

as ≤ 2m +

t−1
∑

s=2

2m(s − 1) = O(t2). (2.7)

For random upper bounds on et, firstly, we prove a crude one as

et ≤ O
(

t(log t)6
)

, qs. (2.8)

Indeed, we have

2et =

t
∑

s=1

dvs
(t) =

∑

vs∈V o

t

∑

v∈D(vs,Gt)

dv(t).

By Lemma 2.1 and Lemma 2.2,

∑

vs∈V o

t

∑

v∈D(vs,Gt)

dv(t) ≤

t
∑

s=1

[

(t/s)
α/2+(m+1)(1−α)

(log t)6
]

= O
(

t(log t)6
)

, qs.

Note that for the last equality we have used the condition 2m(1−α) < α, which is given in the statement

of Theorem 1.1.

Secondly, we try to give a estimation to E(et), the expectation of the number of edges in Gt. By the

definition of the model, we have

E(et+1|Gt) = et + αm + (1 − α)
2et

t
, (2.9)

so

E(et+1) = E(et)

(

1 +
2(1 − α)

t

)

+ αm. (2.10)

Let

ηt := et − µt,

where µ =
αm

1 − 2(1 − α)
. Then, (2.10) implies that

E(ηt+1) = E(ηt)

(

1 +
2(1 − α)

t

)

.

Thus, E(ηt) = O(t2(1−α)) and we have

E(et) = µt + O(t2(1−α)). (2.11)

Finally, we have the following probability estimation on et as
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Lemma 2.3 Assume that 2m(1 − α) < 1. Take ε0 > 0 such that 1 + 2ε0 + 2m(1 − α) < 2, then

P

(

|et − µt| > t
1

2
+ε0+m(1−α)

)

= O(t−ε0 ). (2.12)

Proof: To get the estimation (2.12), we have to bound Var(et), the variance of et. First of all, we

have

Var(et+1) = Var(at + et) = Var(et) + Var(at) + 2 (E(atet) − E(at)E(et)) . (2.13)

By definition, we have

E(a2
t | Gt) = αm2 + (1 − α)

t
∑

s=1

d2
vs

(t)

t
.

Then, by Lemma 2.1 and Lemma 2.2,

E(a2
t ) = αm2 +

(1 − α)

t
E





∑

vs∈V o

t

∑

v∈D(vs,Gt)

d2
v(t)





≤ αm2 +
(1 − α)

t

t
∑

s=1

[

(t/s)α+2m(1−α)(log t)6
]

[

(t/s)1−α(log t)3
]

+ O(t−10)

= O
(

t2m(1−α)(log t)9
)

. (2.14)

In addition, by (2.9) and (2.11), we have

E(at) = αm + 2(1 − α)µ + O(t2(1−α)−1). (2.15)

Thus

Var(at) = O
(

t2m(1−α)(log t)9
)

. (2.16)

For the term E(atet), using (2.9), it is clear that

E(atet|Gt) = etE(at|Gt) = et

(

mα + 2(1 − α)
et

t

)

,

then

E(atet) = mαE(et) +
2(1 − α)

t
E(e2

t ). (2.17)

Using (2.9) again, we have

E(at)E(et) = mαE(et) +
2(1 − α)

t
E(et)

2. (2.18)

Substituting (2.16), (2.17) and (2.18) into (2.13), we get

Var(et+1) =

(

1 +
4(1 − α)

t

)

Var(et) + O
(

t2m(1−α)(log t)9
)

=

(

1 +
4(1 − α)

t

)

Var(et) + O
(

t2m(1−α)+ε0

)

, (2.19)
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where ε0 > 0 is given in the statement of the Lemma. The recurrence (2.19) can be solved directly to

get

Var(et) =

t−1
∏

s=3

(

1 +
4(1 − α)

s

)

(

Var(e3) + O

(

t−1
∑

s=3

s2m(1−α)+ε0

∏s
j=3 (1 + 4(1 − α)/j)

))

for large t, this implies that

Var(et) = O
(

t1+2m(1−α)+ε0

)

. (2.20)

The Lemma follows immediately from (2.11), (2.20) and the Chebychev’s inequality. �

3 Establishing The Recurrence for Dk(t)

Before we establish the recurrence for Dk(t), we have to bound the multi-edges first. For t ≥ 2, let

Zt = {v ∈ Vt : ∃ u ∈ Vt s.t. there are multi-edges between u and v}

and Xt = |Zt|, the cardinality of random set Zt. Clearly, the number of multi-edges in Gt is less than

2mXt.

Lemma 3.1 For any ǫ > 0, we have

E(Xt) = O
(

tα/2+m(1−α)+ǫ
)

. (3.1)

Proof: By the definition of the model, we have

E(Xt+1 | Gt) ≤ Xt + (1 − α)
Xt

t
+ α

(

m

2

)

∆t

et
.

Taking expectation and then using (2.4) and the fact that et ≥ mt, we have

E(Xt+1) ≤

(

1 +
1 − α

t

)

E(Xt) + O
(

tα/2+m(1−α)−1(log t)3
)

=

(

1 +
1 − α

t

)

E(Xt) + O
(

tα/2+m(1−α)−1+ǫ
)

. (3.2)

Using the argument between (2.19) and (2.20), the Lemma follows immediately from (3.2). �

Now, we try to establish the recurrence for Dk(t). Put Dk(t) = 0, 0 ≤ k < m, for all t ≥ 2. For

k ≥ m, we have

Dk(t + 1) = Dk(t) + αmE

(

−
kDk(t)

2et
+

(k − 1)Dk−1(t)

2et
− O

(

∆t

et

))

+(1 − α)(k − 1)E

(

−
Dk(t)

t
+

Dk−1(t)

t
− O

(

Xt

t

))

+ αIk=m. (3.3)
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The terms O

(

∆t

et

)

and O

(

Xt

t

)

account for the probabilities that we create more than one degree

changes due to new vertex addition and vertex copying from Zt respectively.

By Lemma 2.3, the term E

(

kDk(t)

2et

)

can be expressed as

E

(

kDk(t)

2et

∣

∣

∣

∣

|et − µt| ≤ t1/2+ε0+m(1−α)

)

P

(

|et − µt| ≤ t1/2+ε0+m(1−α)
)

+E

(

kDk(t)

2et

∣

∣

∣

∣

|et − µt| > t1/2+ε0+m(1−α)

)

P

(

|et − µt| > t1/2+ε0+m(1−α)
)

=
E
(

kDk(t)| |et − µt| ≤ t1/2+ε0+m(1−α)
)

P
(

|et − µt| ≤ t1/2+ε0+m(1−α)
)

2µt

×
(

1 + O
(

t−1/2+ε0+m(1−α)
))

+ O(t−ε0 ), (3.4)

where we used the fact that kDk(t) ≤ 2et to hand the second term. In addition, we have

E

(

kDk(t)| |et − µt| ≤ t1/2+ε0+m(1−α)
)

P

(

|et − µt| ≤ t1/2+ε0+m(1−α)
)

= kDk(t) − E(kDk(t); |et − µt| > t1/2+ε0+m(1−α)), (3.5)

and

E(kDk(t); |et − µt| > t1/2+ε0+m(1−α))

= E(kDk(t); |et − µt| > t1/2+ε0+m(1−α), et ≤ O(t(log t)6))

+E(kDk(t); |et − µt| > t1/2+ε0+m(1−α), et > O(t(log t)6))

≤ O(t(log t)6)P(|et − µt| > t1/2+ε0+m(1−α))

+O(t2)P(et > O(t(log t)6))

≤ O(t1−ε0 (log t)6) + O(t−10) = O(t1−ε0 (log t)6). (3.6)

Note that to get (3.6), we used the fact that kDk(t) ≤ 2et and the bounds on et given in (2.7) and (2.8).

Thus, combining (3.4), (3.5) and (3.6),

E

(

kDk(t)

2et

)

=
kDk(t)

2µt

(

1 + O
(

t−1/2+ε0+m(1−α)
))

+ O(t−ε0(log t)6)

≤
kDk(t)

2µt
+

E(2et)

2µt
O
(

t−1/2+ε0+m(1−α)
)

+ O(t−ε0 (log t)6),

using (2.11), we have for k ≥ m

E

(

kDk(t)

2et

)

=
kDk(t)

2µt
+ O

(

t−1/2+ε0+m(1−α)
)

+ O(t−ε0(log t)6). (3.7)
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On the other hand, by inequality (2.4) and Lemma 3.1, for any fixed ǫ ∈ (0, 1 − α/2 − m(1 − α)), we

have

E

(

∆t

et

)

, E

(

Xt

t

)

= O(t−1+α/2+m(1−α)+ǫ). (3.8)

Let

ε1 = 1/2 min {ε0, 1 − α/2 − m(1 − α), 1/2 − ε0 − m(1 − α)} . (3.9)

Now, substitute (3.7) and (3.8) into (3.3), we get the recurrence for Dk(t) as

Dk(t + 1) = Dk(t) −

(

k

2
− (1 − α)

)

Dk(t)

t
+

(k − 1)

2

Dk−1(t)

t

+O(t−ε1) + αIk=m, ∀ k ≥ m. (3.10)

Note that the hidden constant, denote by L, in term O(t−ε1 ) is independent of k.

4 Solving (3.10) and The Proof Theorem 1.1

In recurrence (3.10), if we heuristically put d̄k =
Dk(t)

t
and assume it is a constant, we get

(k + 2α)

2
d̄k =

(k − 1)

2
d̄k−1 + O(t−ε1) + αIk=m.

This leads to the consideration of the following recurrence in k:















(k + 2α)

2
dk =

(k − 1)

2
dk−1 + αIk=m, k ≥ m;

dk = 0, 0 ≤ k < m.

(4.1)

The following Lemma shows that (4.1) is a good approximation to (3.10).

Lemma 4.1 Suppose that {dk : k ≥ 0} be the solution of (4.1), then there exists a constant M > 0

such that

|Dk(t) − tdk| ≤ Mt1−ε1 , (4.2)

for all t ≥ 1 and k ≥ 0, where ε1 is given in (3.9).

Proof: The recurrence can be solved directly as: dk = 0, 0 ≤ k < m; dm =
2α

m + 2α
and

dk =

k
∏

i=m+1

(

1 +
1 + 2α

i + 2α

)

dm, ∀ k > m. (4.3)

Obviously, dk decay as k−(1+2α), consequently, for some constant C,

dk ≤ C/k for all k ≥ 1. (4.4)
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Using (4.4) and the degree estimation given in Lemma 2.1, the Lemma follows from a standard argument

which can be found in [14] (see Lemma 5.1) and [20] (see Lemma 3.1). �

Proof of Theorem 1.1: Theorem 1.1 follows immediately from (4.2) and (4.3). �
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