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Outline

e Markov modulated risk model. We introduce definition of Markov
modulated risk model.

e Exponential martingale and Laplace functional. We construct an
exponential martingale associated with the Markov modulated risk
model which plays an important role.

e \Main results. The functional LDP and MDP are established in this
part.

e Other models. The exponential martingale method is applied to
delayed claim risk models and risk processes with Poisson shot noise
Cox process.



1. Markov modulated risk model

Let J = {J(t),t > 0} be an irreducible continuous time Markov chain
with finite state space E and let m;,72 € E denote the stationary distri-
bution of the Markov chain J.

Let {U;,l > 1} be a sequence of positive random variables and let
G,;, 1 € E be probability distributions with supports in [0, +00). Assume
that for all i € E, p; := [5° zG;(dx) < co and that )\;, i € E are positive
numbers,

Let N(t) =372, It7<4y be a Markov modulated Poisson process where
T1 >0 a.s., T} <Tjyq on {1} < oo} and lim;_, T} = oo, i.e.,

B(expli0(N (1) - NDNF) = exp { (¥~ 1) [ Ay} (D

where Fs = o(N(u),u < s) Vo(J(u),u > 0).



A reinsurance policy is a measurable function from R : [0,c0)x[0,00) —
[0, 00) which satisfies 0 < Ri(a) < a, where Ri(a) = R(t, o).

A Markov modulated risk process with a reinsurance policy R is defined
by

X% () = x4+ pr(t) — Sr(t), (2)

where xz > 0 is the initial capital; pr(t) = pt — qr(t) is the deterministic
premium, p = (1 + k) X jcg miXil; IS constant premium rate, qr(t) =
(1 4+ ) SicgmiNi J§ (u; — [§° Rs(x)G;(dx)) ds is the premium up to time
t paid by the insurer to reinsurer;

N (t)

Sr(t) = > Rp(Up) (3)

=1
IS aggregate claim process.



The Markov modulated risk process with reinsurance is a generalization
of classical case. For examples, if G;, = G and \; = X\ for all : € E,
and {U;,l > 1}, {N(t),t > 0} and J are independent, then Si(t) is the
classic case. Recently, Macci and Stabile JAP 43(2006), 713—728)
studied the large deviations and the ruin probability of risk processes
with reinsurance and obtained a functional large deviation principle for
the classic case. In this talk, we present an exponential martingale
method to establish large deviations and moderate deviations for risk
processes, including Markov modulated risk models, delayed claim risk
models, risk processes with the Poisson shot noise Cox process, etc.



2. Exponential martingale and Laplace functional

Lemma 1 (1). Set

Mt = SR(t) — i RU(ZB)GJ(U) (da:))\J(u)du (4)
0 JO

Then {M;, G, t > 0} is a martingale where Gs = o(N(u),u < s)V
o(J(u),u>0)Vo(U,l <N(s)).

(2). If for some § > 0,
8
sup e’?G;(dx) < oo,
ick /0
then for any measurable function 6(t) satisfying supy>g0(t) <9,

Zte = exp {/Ot O(u)dSp(u) — /Ot /OOO (69(u)Ru(a:) — 1) Gj(u>(da:))\J(u)du}
(5)

is a {Gt}-martingale.



Proof of (2). Set L; = [{0(u)dSr(u). Applying Itd formula to e,

we have
elt =1 —I-/ Lu— O(u)dSp(u) + Z eL’“—( T ALu>
O<u<t
_ Lo Loy
_1—|-/Oe G(U)dMu—I-/O/O e"u=0(u) Ru(2) Gy () (d) Ay ds
=1

where AL, = L, — L,_. Conditioning expectation both sides the above
equation on o(J(s),s > 0), we can get

( Lt|<] == 1 ‘I‘/ / u—|J ( Q(U)Ru(x) — 1) GJ(U)(dm))\J(u)du

which implies

K (eLt|J) = &Xp {/Ot /OOO (GH(u)Ru(a:) — 1> GJ(U)(dm))\J(U)du} .



Corollary 1 If for some 6 > O,

o8
sup e’?G;(dx) < oo,

ickE JO
then forany m>1, 0=tg<t1 <---<tmandby, - ,0m € (—0,9),
n t—t 1
I] inf E; <exp {/ Vi(u, J(u))du})
j=1"F 0
m N(tl)

<E |expq > 6 > R, (Un)
l:]. n:N(tl_1)+1

U ti—ti—1
< - d
< 1] supE (exo{ [ Vicu, J(w))du} )
where E;(-) ;= E(-|J(0) = i) and
Vi(u, z) = /O ~ (e(’ZRuHH(”’) — 1) .G, (dz).

(6)



3. Main Results
3.1. Large deviations
Assumptions:

(H1). There exists a measurable function R : [0,00) — [0,00) such
that

lim sup |Ri(z) — R(z)|/(x+ 1) =0.

t—=00 2¢[0,00)

(H2). For all r>0,

@)
sup e""G;(dx) < oco.
i€eE J0

Let Q@ = (¢;5)i jcr be the intensity matrix of the Markov chain {J(t),t >
0}. For any vector v = (v;);cp, set Q(v) = (g + d;vi); jep and let



A(v) be the logarithm of the simple and positive eigenvalue of the
exponential matrix e?(V). By the LDP for the Markov chain {J(t),t >
0} (cf. Donsker-Varadhan(1976, CPAM),Baldi-Piccioni (1999, SPL),
Wu(2000,JFA)), for any j € E,

lim lIogIEZ <exp {/Ot fuJ(u)du}) = A(V). (7)

t—oo t
Therefore, under assumptions (H1) and (H2), (7) implies that for any
7 € E and for any 0 € R,

im S 10gE; (exp (0SR (1)) = A ((/\ / (IR _ 1)Gi(daz)>i€E) (8)

t—oo t

Define

A*(z) = sup {ex _A ((A /O (IR _ 1)Gi(dz))i€E)} (9

0eR



Theorem 1 Let assumptions (H1) and (H2) hold. Then

{P((SR(at)> e ) ,a>0}
@ t€[0,1]

satisfies the LDP in D[0, 1] with speed « and rate function 14 defined
by

I(ld)(f) _ fol N*(f(t))dt if f(0) =0 and f is absolutely continuous
] 4+ otherwise

(10)
i.e., for any closed set F' and open set G in D([0,1]) ,

1 :
limsup —logP (SR(a ) € F>

a—00 ¢ 87

< — inf 71U
< - Inf) (f),

lim inf = log P (SR(O"> e G) > — inf 14D (5).

a—00 oy Q feG

Lemma 2 Let assumptions (H1) and (H2) hold. Then for any m > 1,



and 0 =tg <t1 <to<- - <tm<1,

{(Z8r(at), ~Sr(ata), -+, Sr(atm)) o > 0}

satisfies the LDP with speed o and with rate function It(llfl?_’tm defined
by

t15eestm N1 o —l—]_ l =t tr — 11

where xqg = 0.

Lemma 3 for any t € [0,1] and for any n > 0O,

1 1
lim lim —logP|— sup |Sp(at)— Sp(as)| > = —00. 12
im Jim, 1ooP (2 sup[sp(an) - Sp(as)| = ) (12)

Proof By lLemma 1, for any g € R, (Zf)—12f+s,s > 0 is a martingale
under probability P(:|J), where

Ztﬁ .— exp {ﬁSR(t) — /Ot /OOO (eﬁRu(CU) — 1) GJ(u) (dx))\J(u)du} .



Then by the maximum inequality for martingale, we have that for any
6>0

1 1
—logP <— sup [Sgr(at) — Sgr(as)| > n)

o x t<s<t+o
:l log P < sup (Sgp(at) — Sp(as)) > 77)
o X t<s<t+6
1 B\—1,0 af aéC(ﬁ)‘
<— > n=
< Iog]E( (Oilig(s(Z ) ZQ(H_S) e J
1
<~ 1ogE (e~ (28728 5| 7)) = B+ 6C(5)

where

C(B) := fgp)\ OOO <eﬁx — 1) G, (dx).

Now letting o — oo firstly, then 6 | 0, and 3 — oo finally, we get (12).



3.2. Moderate deviations

{a(t),t > 0} denotes a positive function satisfying

| B a(t)
Jim ——= =0, N~ = oo (13)

We introduce the following assumptions:

(H3). There exist two non-negative measurable functions R(z) and
m(u) such that for all w > 0 and = > 0, |Ry(z) — R(z)| < m(u)(z+ 1)
and

. . : 1 t —
lim m(u) =0, lim —t)/o m(u)du = 0.

U— 00 t—00 a(

(H4). There exists § > 0 such that

> 8
sup e’?G;(dx) < oco.
i€k J0



For example, if Ry(x) = c(1—-1/(14¢)7)x™ where ¢,7 € (0,1] and v > 0,
then (H3) holds for R(z) = cz™, m(u) = 1/(14+w)? and a(t) = t° where
max{l —~,1/2} < g < 1.

Let P(t) = (p;j(t))ijer = €% be the semigroup of the Markov chain
J. Since {J(t),t > 0} is uniformly ergodic, the following conclusions
are known.

(1). There exists ¢ > 0 such that for any function f on E

SUD

> pik@®) (k) — D> mif()

<e “sup|f(3)].
ElkeE jEE ek

(2). For any j € E and any function f on FE,
2
Jfim ([ (0@ ~ Ex(F(I()))du)
=2 [" Y = <f<z> D3 wkf<k>) > par(w)f (k)du.

1€F keFE keFE



Set R; = [§° R(z)G;(dz). Then

2 _— bra 5 °
71 = (( Jo (Rotroe) = Bx (Rogyroe)) du) ) (14)

exists and

oo - —~ ~
O'% = 2/0 Z Uy (AjRj — Z ﬂ'i)‘iRz) Z pjk(t)Akdet. (15)

JjeE ek kek

By the MDP for the Markov chain {J(t),t > 0} (cf. Wu(1995, AP),
Gao(1995, Acta Mathematica Scientia)), for any ¢ € £ and any func-
tion f on E,

% 42(a)

=t /OOO > m (f(??) - ka%)) > pik(u) f(k)du.

09 F; (exp {%O‘) [ (s - Ew(f(J(u))))duD

el kck kck



Theorem 2 Let assumption (H3) and (H4) hold. Then

Sr(at) —atY cp MR,
{P< e :(a) — te0,1] © ')’O‘ > O}

2
satisfies the LDP in DJ[0,1] with speed % and rate function 1(md)
defined by

7(md) () = 2%Qfol(f(t))zdt if f(0) =0 and f is absolutely continuous
| +oo otherwise.

(16)

Lemma 4 Let assumptions (H3) and (H4) hold. Set Sp(:) = Sr(-) —
Er(Sr(-)). Then for any j€ E, 8 € R and t > 0

lim

. 2y

log <exp{ a(a >SR(ozt)}> =%0202t. (17)
2

where o< = 01 -+ 02, and

_ ZE (wz / R2(2)G, (da:))




Lemma 5 for any t € [0,1] and for any n > 0O,

lim lim log PP su So(at) — S > — oo (18
(Slioo‘l_maz(a) ° (a(a)t<s<lr‘,)—l—5| r(at) R<a$)|—"> co. (18)

Proof For any 3>0

oY 1 _ _
az(a) log P (a(a> ,Sup (Sr(at) — Sr(as)) > 77)

<s<t+d
02(04)577+a50 a, 3
2(a) |ogE< o CH (( Py-1z (t+5)‘,})> (19)
2
where
C(a, B) :=sup \; OOO (ea(awm/o‘ —1-— a(a)ﬁa:/oz) G;(dz) = O(a?()/a?).
1€l

Now letting o« — oo firstly, then 6 | O, and 8 — oo finally, we get that

lim lim log P su S t) — S > = —00.
im i, % 109 (a(a) sup (Sr(a) R<as>>_n) ~



3.3. An estimate for the ruin probability

The ruin time and the ruin probability are defined by

> = inf{t > 0; X% (t) < 0}, Y(x) = Py < 00). (20)
Theorem 3 Let assumptions (H1) and (H2) hold. Set

©.@)
R :=sup {7“ > 0; L!QB (rpR(t) — tSUp \; ; (e — 1) Gz-(dx)> > O} .

ek
(21)
T hen

(z) < e 1T, (22)

Proof Without loss of generality we assume 0 < R < co. By Theorem
1, for any 38 € R,

Zy = exp {ﬁSR(t) — /Ot /OOO (eﬁRu(aS) — 1) G j(w) (da:))\J(u)du} .



is @ martingale under probability P(-|J). Therefore, by Doob stop-
ping time theorem, we have that for any 8 > 0 and any ¢t € [0,0),
E (ng> = 1 which implies that K (Z%I{Tw@o}) = 1. Therefore

Y(x) = P(Sr(72) > = + pr(72), T2 < 00)
— Rz R T [° 0 RRu(x
<e E (Zm exp {—RpR(Tx) + /O /O (e (z) _ 1) GJ(U)(dx))\J(u)du} I{Tx<oo

©.@)
§6_RxE (Zg exp {— (RPR(T:::) — Tx Sug A 0 (eRx — 1) G,L-(da:)) } I{Ta:<oo}>
1€

Se_RxE (Z§1{7x<oo}) — e_Rx.
Here we present a numerical example in which we calculate R in The-

orem 3. We consider the proportional policy, i.e. R:(x) = byx for some
b; € [0,1] and assume that lim;—s by = beo € [0, 1].

Example 1 Let J be a Markov chain with two state space E = {1,2}
with intensity matrix

qg11 q12 |\ _ (-1 1}
g21 q22 1 -1



Let A\ =1, > =2 and let G1, G> be the exponential distributions with
parameters 1 and 2 respectively. Then the corresponding stationary
distribution is (m1,m2) = (3,3). Let k =4 and n = 5 be the relative
safety loading for the insurer and the reinsurer respectively. Finally we

assume b, > 5. Then for any 0 <r < 1,

o0 1 —2r)t
rpr(t) —t sup \; 0 (e"" —1)Gi(dx) > r( r) .

1=1,2 —T

1
Therefore, R > % and corresponding ruin probability ¥ (x) < e 2.



4. Other models

e Delayed claims risk model:

Vi=c+pt— ) XploogTi) — > Yilon(Tk+ W)
k=1 k=1

where {7}, k > 1} are the jump times of a Markov modulated Pois-
son process {N(¢),t > O} with intensity Ay, {Xp, k> 1},{Y, k >
14, {Wi, k> 1} and {N(t),t > 0} are conditionally independent given
J.



e CoX risk process with Poisson shot noise intensity:

Ny
Z = a + bt — Z Xy,
k=1

where the intensity of the point process {/N:, t > 0}

neN

the function A(-,-) is nonnegative and h(t,z) = 0 for t < 0, =z € R,
™,n > 1 are the jump time of a Poisson process {N: t > 0} with
intensity p, Yn,n > 1 are positive i.i.d. random variables.



Thank you



