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Thank BNU for invitation,

Thank ANU for hospitality,

Salute to Prof. DING Wanding!
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Plan of the Talk

1. Definition of random stretched graph

2. anchored expansion constant

3. The critical point of percolation model

4. Contact process (I): Critical point

5. Contact process (II): Linear growth
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I. Definition of a random stretched graph

Given graph G and probability distribution ν.

Suppose that ν is concentrated on integers, and that {Xe, e ∈
E(G)} are i.i.d. random variables.

Replacing every edge e of G with a path of Xe edges, we obtain a

random stretched graph.
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Remarks:

1. Benjamini, Lyons & Schramm (1999)

2. Gν can be a realization , or a probability measure.

3. ν can be concentrated on one point. (fixed stretch).

4. Usually the first moment of ν exists,

in some case, ν decays exponentially.

5. G itself can be a random graph.

6. If G is a G-W tree, ν is a geometric distribution, then Gν is still a

G-W tree.
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II. Anchored Expansion Constant

Fix o ∈ V (G), Define ι∗
E(G) to be

lim
n→∞

inf

{ |∂S|
|S|

: o ∈ S ⊂ V (G), S is connected, n ≤ |S| < ∞
}

.

ι∗
E(G) is independent of the choice of o.

Very similar with the isoperimetric constant.

ιE(G) := inf

{ |∂S|
|S|

: S ⊂ V (G), S is connected, 1 ≤ |S| < ∞
}

ιE(G) ≤ ι∗
E(G).

ι∗
E(G) > 0 implies that the speed of SRW on G is positive.
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If the support of ν is not finite, then ιE(Gν) = 0.

But ι∗
E(·) is more robust. ι∗

E(G) > 0 =⇒ ι∗
E(Gν) > 0

Theorem Suppose that G is an infinite graph of bounded degree

and ι∗
E(G) > 0. If ν has an exponential tail, then ι∗

E(Gν) > 0 a.s.

D. Chen & Y. Peres, Anchored expansion, percolation and speed, Ann. of Probability§(2004), Vol.32, No.4, 2978-2995

A Counter-Example.

If ν has a tail that decays slower than exponentially, then taking the

binary tree as G, we have ι∗
E(G) > 0 yet ι∗

E (Gν) = 0 a.s.

Corollary . For a supercritical Galton-Watson tree T, given non-

extinction we have ι∗
E(T) > 0 a.s.
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III. The Critical value of percolation model

(a) Bernoulli bond percolation, Every edge is open with probability

p,closed with probability 1 − p, all edges are independent of each

other.

There is a critical value pc, 0 < pc < 1.

When p > pc there is an open cluster;

When p < pc all open clusters are finite.

General speaking, it is not easy to identify pc.

It can be calculated when G are trees.

(b) Suppose the probability that e is open is pe, pe’s are different.

If {pe, e ∈ E(G)} are i.i.d, essentially every edge is open with

probability p = Epe.
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(c) For a random stretched graph, every edge is open with proba-

bility p, then an edge of the original graph is open with probability

pe. {pe, e ∈ E(G)} are i.i.d.,

P (pe = pk) = νk.

Epe =
∑

k

νkpk = f(p),

where f(s) =
∑

k νksk is the moment generating function of ν.

If pc is the critical value of the original graph G, then f(pc) is the

critical value of random stretched graph Gν .

(d) What about the site percolation?
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IV. Contact Processes (I): Critical Value
Graph G is given. Every vertex x is either healthy or infected, de-

noted by 0 or 1 respectively. State changes from time to time.

1 −→ 0 at rate 1;

0 −→ 1 at rate λ× the number of infected neighbors.

λ is the only parameter of the model,

and there is a critical value λc.

The larger λ is, more easily the infection spreads, more sites are

infected;

On the other hand, the smaller λ is, the smaller the range of infec-

tions, eventually all sites are healthy.
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In the supercritical phase there are two different limiting behaviors.

It is possible that a fixed site is infected only finite many times,

though the infected area increases globally.

λ2 = inf{λ; P ( the origin is infected infinitely many times) > 0}.

0 ≤ λc ≤ λ2 ≤ ∞.

Every strict inequality or equation is non-trivial at all.

For Zd, λc = λ2;

For Td, λc < λ2;
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Given graph G and probability distribution ν, there is a family of

random stretched graphs Gν(ω).

For each random stretched graph Gν(ω), there are also two critical

values λc(ω) ≤ λ2(ω).

For regular graphs such as G = Zd, Td, λc(ω) and λ2(ω) are

constants almost surely, denoted by λc, λ2 respectively.

Question: When λc < λ2?

Stacey (1996) Fixed stretched trees.

He LI (2005), Some G-W trees, ν is the geometric distribution.

Question: For Td, for all ν with exponential decay,λc < λ2?

Conjecture: λc < λ2 ⇐⇒ ι∗
E(G) > 0.
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An estimate of λ1.

G = Zd, fixed stretched qk = 1, λ(k)= the critical value of contact

process on the fixed stretched graph.

Then λ(1) ≤ λ(2) ≤ λ(4) ≤ · · · ≤ λ(2n) ≤ · · · .

Question 1.

λ(1) ≤ λ(2) ≤ λ(3) ≤ · · · ≤ λ(n) ≤ λ(n + 1) ≤ · · · ?

Question 2. For random stretch ν, λ(ν) is a constant. If Eν = k,

λ(ν) > λ(k)?
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V. Contact Processes (II): Linear Growth

Suppose initially only one site o is infected,

At = all sites which have been infected by time t.

Theorem (H.X. ZHOU, 2008): Consider the contact process on

fixed stretched Zd, there is a convex set C, for ε > 0,

lim
t

P ((1 − ε)tC ⊂ At ⊂ (1 + ε)tC) = 1.

Should be valid for the contact process on random stretched Zd.

This is true for the Richardson’s model on random stretched Zd.

For Td, Let Br = {x; dist(x, o) ≤ r}. There are constants a < A

such that

lim
t

P (Bat ⊂ At ⊂ BAt) = 1.
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————————

Thank You

————————

E-Mail: dayue@pku.edu.cn


