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Outline of this talk:

1. The background of the question and some known results.

2. Generalized variational formula for Dirichlet form.

3. Barta’s Formula for Schr̈odinger operators.
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• Definitions and Notations

1. Assume (X, m) is a measure space, (E , D(E )) is a symmetric

Dirichlet form on L2(X, m). We define

λ = inf{E (f, f) : f ∈ D(E ), m(f2) = 1},

and call λ the principal eigenvalue of (E , D(E )).

2. L is a Markovian infinitesimal generator, c is a function bounded

from below. The operator

Lc := L − c

is called Schrödinger operator.
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• Known Results

Assume (X, m) is a Polish space, (q(x), q(x, dy)) is a m-symmetric

jump process, and its corresponding Dirichlet form is defined as

E (f, f) =
1

2

∫
m(dx)q(x, dy) [f(y) − f(x)]2+

∫
m(dx)r(x)f(x)2,

D(E ) =
{
f ∈ L2 : f |{q>n} = 0 for some n

}
.

Theorem A(Chen,2000). f ∈ D+(E ), then

E (f, f) = sup
g

〈f2/g, −Ωg〉,

where g varies over all the bounded positive functions.
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• Known Results

Theorem B(Chen,2000).

λ ≥ sup
0<φ∈D(E )

ess inf(−Ωφ/φ).
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• Known Results

Assume {Xt} is a Markov process with cadlag path. Cφ and Cφ
b

are the sets of all finely continuous functions and bounded finely

continuous functions on X respectively.

Shiozawa and Takeda defined (Ã, D(Ã)) , the weak generator of

{Xt} as following. For u ∈ Cφ
b (X), if there exists g ∈ Cφ

b (X)

such that

u(Xt) − u(X0) −
∫ t

0

g(Xs)ds

is a martingale, then we write

Ãu = g,

and let D(Ã) be the set of all u with above property.
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• Known Results

Theorem C.(Shiozawa & Takeda,2005) For f ∈ D+(E ),

E (f, f) = sup

{∫
X

−Ãu

u + ε
f2dm : ε > 0, u ∈ D+(Ã)

}
,

where D+(Ã) =
{

u ∈ D(Ã) : u ≥ 0
}

.

Theorem D.(Shiozawa & Takeda,2005)

λ ≥ sup
φ∈F

ess inf(−Ãφ/φ),

where F = {u ∈ D(Ã) : sup |u| < ∞, u > 0, −Ãu > 0}.
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• Main Results

Instead of the operator (Ã, D(Ã)) we mentioned just now, we now

define (Â, Dloc(Â)), the local generator of the process {Xt}.

For u ∈ Cφ(X), if there exists g ∈ Cφ(X) such that

u(Xt) − u(X0) −
∫ t

0

g(Xs)ds

is a local martingale, then we write

Âu = g,

and let Dloc(Â) be the set of u with above property .
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• Main Results

Theorem 1. For f ∈ D+(E ),

E (f, f) = sup

{∫
X

−Âu

u + ε
f2dm : ε > 0, u ∈ D+

loc(Â)

}
.

Theorem 2. λ ≥ sup
φ∈Floc

ess inf(−Âφ/φ), where Floc = {u ∈

Dloc(Â) : sup |u| < ∞, u > 0, −Âu > 0}.
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• Barta’s Formula forSchrödinger Operators

Assume V is a differentiable function on Rn, and

µ(dx) = eV (x)dx,

is the measure on Rn. We study the operator

Lc =
1

2

n∑
i,j=1

aij∂i∂j +
n∑

i=1

bi∂i − c,

where aij ∈ C2, bi =
n∑

j=1

(aij∂jV + ∂jaij).

Theorem 3.

λ(Lc) ≥ sup
u∈C2

++

inf
−Lcu

u
,

where C2
++ = {f ∈ C2 : f > 0}.
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• Comparison of Some Known Estimations

We consider the diffusion process on [0, +∞) with Dirichlet bound-

ary at 0. Assume a is a strictly positive measurable function on

[0, +∞), and b is measurable on [0, +∞),C(x) :=
∫ x

0
b
a
. We

study the second differential operator

Lf(x) = a(x)f ′′(x) + b(x)f ′(x),

and the reference measure µ(dx) =
eC(x)

a(x)
dx.

Estimation A.(Muchenhoupt)

λ(L) ≥ (4B)−1,

where B = sup
x>0

∫ x

0
e−C(y)dy

∫ +∞
x

eC(y)

a(y)
dy..
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• Comparison of Some Known Estimations

Estimation B.(Chen)

λ ≥ sup
f∈F ′

inf
x>0

II(f)−1(x),

where

F ′ =
{
f ∈ C[0, +∞) : f(0) = 0, f |(0,+∞) > 0

}
,

II(f)(x) =
1

f(x)

∫ x

0

dye−C(y)

∫ +∞

y

feC

a
, f ∈ F ′,

When a is continuous, the equality holds.
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• Comparison of Some Known Estimations

Conclusion: For the principal eigenvalue of L in dimension 1, Barta’s

formula is equivalent to Chen’s variational estimation, and both

barta’s formula and Chen’s estimation are better than Muchenhoupt’s

estimation.
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——————————————–

THANK YOU VERY MUCH

——————————————–


