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The operator

Our work is concerned with the Dirichlet bound-

ary value problems for the elliptic operators of

the following form:

L =
1

2
∇ · (a∇) + b · ∇ −∇ · (̂b·) + q,

=
1

2

d∑

i,j=1

∂

∂xi

(
aij(x)

∂

∂xj

)
+

d∑

i=1

bi(x)
∂

∂xi

−“div(̂b·)′′ + q(x) (1)



in a d-dimensional Euclidean domain D, where
a = (aij) : Rd → Rd×Rd is a measurable, sym-
metric matrix-valued function which satisfies
the uniform elliptic condition

λ−1Id ≤ a(·) ≤ λId (2)

for some constant λ ≥ 1, b, b̂ : Rd → Rd and
q : Rd → R are measurable functions which
could be singular and such that

ID|b|2 ∈ Kd, ID |̂b|2 ∈ Kd and IDq ∈ Kd,

(3)
where Kd denotes the space of Kato class mea-
sures. The operator L is defined by the follow-
ing quadratic form

Q(u, v) = (−Lu, v) (4)

=
1

2

d∑

i,j=1

∫

Rd
aij(x)

∂u

∂xi

∂v

∂xj
dx

−
d∑

i=1

∫

Rd
bi(x)

∂u

∂xi
v(x)dx

−
d∑

i=1

∫

Rd
b̂i(x)

∂v

∂xi
u(x)dx

−
∫

Rd
q(x)u(x)v(x)dx. (5)



Introduce the following condition

d∑

i=1

∫

Rd
b̂i(x)

∂φ

∂xi
dx +

∫

Rd
q(x)φ(x)dx ≤ 0, (6)

for all nonnegative function φ in C∞0 (D). This

condition is equivalent to

div(̂b)− q ≥ 0

in the sense of distribution.

The following theorem is due to Trüdinger.

Theorem[Trüdinger]. Let f ∈ W1,2(D) be

bounded. Assume (6). Then there exists a

unique weak solution to the Dirichlet bound-

ary value problem

Lu = 0, u|∂D = f. (7)

Recall that u is said to be a weak solution to

(7) if Q(u, φ) = 0 for any φ in C∞0 (D) and

u− f ∈ W
1,2
0 (D).



Our first aim is to provide a probabilistic rep-

resentation for the weak solution. It is not ob-

vious how to do it because there is no Markov

process associated with the operator L due to

the appearance of b̂. The theory of Dirichlet

forms and time reversal play an important role

in our approach. Our second objective is to

use the probabilistic representation to extend

Trüdinger’s result and to study the regularities

of the solutions.

The process

The process we will use is the process gener-

ated by the symmetric part of the operator L.

Consider the following regular Dirichlet form

E(u, v) =
1

2

d∑

i,j=1

∫

Rd
aij(x)

∂u

∂xi

∂v

∂xj
dx

D(E) = {u ∈ L2(Rd, dx);
∂u

∂xi
∈ L2(Rd, dx)}

It is well known that there exists a diffusion

process, denoted by {Ω,F , Xt, θt, γt, Px, x ∈ Rd},



associated with (E, D(E)), where Ω = C([0,∞) →
Rd), Xt is the canonical coordinate process,
θt, γt are the shift and reverse operators defined
by

Xs(θt(ω)) = Xt+s(ω), (8)

Xs(γt(ω)) = Xt−s(ω), s ≤ t. (9)

Xt is not a semimartingale in general. But for
any u ∈ D(E), the following Fukushima decom-
position holds:

u(Xt)−u(X0) = Mu
t +Nu

t , Px−a.s., (10)

where Mu
t is a Ft = σ(Xs, s ≤ t) square in-

tegrable continuous martingale additive func-
tional and Nu

t is a continuous process of zero
energy. Mu is often referred as the martingale
part of the decomposition and Nu is the zero
energy part. By a localization argument one
can show that

Xt = x + Mt + Nt, Px − a.s., (11)

where Mt = (M1
t , ..., Md

t ) is a Ft = σ(Xs, s ≤ t)
square integrable continuous martingale addi-
tive functional with

< M i, Mj >t=
∫ t

0
aij(Xs)ds, (12)



and Nt is a continuous process of local zero

energy.

Theorem 1. Let u be the weak solution of

(7). Then following representation holds.

u(x) = Ex

[
f(XτD)exp

( ∫ τD

0
(a−1b)∗(Xs)dMs

+(
∫ τD

0
(a−1b̂)∗(Xs)dMs) ◦ γτD

−1

2

∫ τD

0
(b− b̂)a−1(b− b̂)∗(Xs)ds

+
∫ τD

0
q(Xs)ds

)]
, (13)

where τD = inf{t > 0;Xt ∈ Dc}.

Key points of the proof. Choose a special se-

quence of smooth vectors b̂n and smooth func-

tions qn that approximates b̂ and q respectively.

Let un denote the unique weak solution of the

following Dirichlet problem.

Lnun = 0, un|∂D = f,



where Ln is defined as

Ln =
1

2

d∑

i,j=1

∂

∂xi

(
aij(x)

∂

∂xj

)
+

d∑

i=1

bi(x)
∂

∂xi

−
d∑

i=1

b̂ni(x)
∂

∂xi
− div(̂bn) + qn(x), (14)

The proof involves the following steps.

Step 1. Prove a probabilistic representation

for un.

un(x) = Ex

[
f(XτD)exp

( ∫ τD

0
(a−1b)∗(Xs)dMs

+(
∫ τD

0
(a−1b̂n)

∗(Xs)dMs) ◦ γτD

−1

2

∫ τD

0
(b− b̂)a−1(b− b̂n)

∗(Xs)ds

+
∫ τD

0
qn(Xs)ds

)]
(15)

This can be done using Girsanov theorem.

Step 2. Prove that un converges to u weakly

in W
1,2
loc (D).



Step 3. Prove that the probabilistic represen-

tation of un converges to the corresponding

representation for u.

As a byproduct of our representation, we get

the following extension of Trüdinger’s result;

Theorem 2. For f ∈ C(∂D), there is a unique

weak solution to the Dirichlet boundary value

problem (7) which admits the representation:

u(x) = Ex

[
f(XτD)exp

( ∫ τD

0
(a−1b)∗(Xs)dMs

+(
∫ τD

0
(a−1b̂)∗(Xs)dMs) ◦ γτD

−1

2

∫ τD

0
(b− b̂)a−1(b− b̂)∗(Xs)ds

+
∫ τD

0
q(Xs)ds

)]
(16)

Sketch of the proof. Let u be defined as

in (16). Take a sequence fn ∈ W1,2(D) that

converges uniformly to f on ∂D. Define un as

in (16) with f replaced by fn. Then, it is easy



to see that un → u uniformly. On the other

hand, we can show that un converges weakly

to u in W
1,2
loc (D), and u is a weak solution to

the Dirichlet boundary value problem (7).

Regularity at the boundary

In Trüdinger’s paper, no regularities were es-

tablished for weak solutions on the boundary

of the domain. Using the probabilistic repre-

sentation, we are able to prove the following

Theorem 3. Assume f ∈ C(∂D), |̂b|2|D ∈
Lp(D) for some p > d

2, and |b|2|D, q|D belong

to the Kato class. Let u be the unique weak

solution of the Dirichlet problem (7). Then

lim
x→y,x∈D

u(x) = f(y) (17)

for y ∈ ∂D which is regular for (1
2∆, D).

The general case



In this part, we will drop the condition

div(̂b)− q ≥ 0

and give a general result on the existence and
uniqueness of the Dirichlet boundary value prob-
lem. We start with elliptic operators which do
not have the adjoint drift part b̂.

Let h = (h1(x), ..., hd(x)) : Rd → Rd be a mea-
surable function such that h ∈ Lp(Rd → Rd)
for some p > d. Let µ = µ1 − µ2 be a signed
measure such that µ ∈ Kd −Kd. Consider

L1 =
1

2

d∑

i,j=1

∂

∂xi

(
aij(x)

∂

∂xj

)
+

d∑

i=1

hi(x)
∂

∂xi
+ µ.

(18)
L1 is determined by the following quadratic
form

Q(1)(u, v) = (−L1u, v) (19)

=
1

2

d∑

i,j=1

∫

Rd
aij(x)

∂u

∂xi

∂v

∂xj
dx

−
d∑

i=1

∫

Rd
hi(x)

∂u

∂xi
v(x)dx

−
∫

Rd
u(x)v(x)µ(dx). (20)



Let At be the continuous additive functional

whose Revuz measure is µ. E
Q1

x will stand for

the expectation with respect to the diffusion

measure Q1
x, x ∈ Rd, defined by

dQ1
x

dPx

∣∣∣∣∣Ft

= H1
t , (21)

where

H1
t =

exp

( ∫ t

0
(a−1h)∗(Xs)dMs − 1

2

∫ t

0
ha−1h∗(Xs)ds

)

Consider the Dirichlet boundary value problem:

L1u1 = 0, u|∂D = f(x). (22)

Theorem 4. Assume f ∈ C(∂D) and

Ex

[
exp

( ∫ τD

0
(a−1h)∗(Xs)dMs

−1

2

∫ τD

0
ha−1h∗(Xs)ds + AτD

)]
< ∞



for some x ∈ D. Then there exists a unique,
continuous weak solution to the Dirichlet bound-
ary value problem (22) which is given by

u1(x) = Ex

[
f(XτD)exp

( ∫ τD

0
(a−1h)∗(Xs)dMs

−1

2

∫ τD

0
ha−1h∗(Xs)ds + AτD

)]

= EQ1

x [f(XτD)eAτD]. (23)

Key points of the proof. We need three
steps.

Step 1. We show that u1 defined by (23) is a
weak solution to the Dirichlet boundary value
problem.

Step 2. We show that

lim
x→y,x∈D

u1(x) = f(y) (24)

for y ∈ ∂D which is regular for (1
2∆, D).

Step 3. We prove the uniqueness. To this
end, using the theory of Dirichlet forms we



show that any bounded, continuous weak so-

lution of the Dirichlet boundary value prob-

lem (22) admits the probabilistic representa-

tion (23).

Now let us go back to our original problem

Lu = 0, u|∂D = f, (25)

where

L =
1

2
∇ · (a∇) + b · ∇ −∇ · (̂b·) + q,

=
1

2

d∑

i,j=1

∂

∂xi

(
aij(x)

∂

∂xj

)
+

d∑

i=1

bi(x)
∂

∂xi

−“div(̂b·)′′ + q(x) (26)

Here is the result.

Theorem 5. Assume f ∈ C(∂D), |̂b| ∈ Lp(D)

for p > d, and that |b|2|D and q|D belong to the



Kato class. Moreover suppose that

Ex

[
exp

( ∫ τD

0
(a−1b)∗(Xs)dMs

+(
∫ τD

0
(a−1b̂)∗(Xs)dMs) ◦ γτD

−1

2

∫ τD

0
(b− b̂)a−1(b− b̂)∗(Xs)ds

+
∫ τD

0
q(Xs)ds

)]
< ∞. (27)

for some x ∈ D. There exists a unique bounded,

continuous weak solution to the Dirichlet prob-

lem (7) which has the representation:

u(x) = Ex

[
f(XτD)exp

( ∫ τD

0
(a−1b)∗(Xs)dMs

+(
∫ τD

0
(a−1b̂)∗(Xs)dMs) ◦ γτD

−1

2

∫ τD

0
(b− b̂)a−1(b− b̂)∗(Xs)ds

+
∫ τD

0
q(Xs)ds

)]
. (28)

The main idea of proof. The crucial idea is

to transform the solution of (7) to a solution



for an operator without adjoint drift by a kind

of h-transform. More precisely, put

M̂t =
∫ τD

0
(a−1b̂)∗(Xs)dMs.

We prove that there exits a bounded, contin-

uous function v ∈ D(E) such that

M̂t ◦ γt = −M̂t + Nv
t ,

where Nv is the zero energy part of the Fukushima

decomposition for v(Xt)−v(X0) and moreover,

v satisfies the following equation in the sense

of distribution:

div(a∇v) = −2div(̂b). (29)

Thus,

(
∫ τD

0
(a−1b̂)∗(Xs)dMs) ◦ γτD

= −
∫ τD

0
(a−1b̂)∗(Xs)dMs + Nv

τD

= −
∫ τD

0
(a−1b̂)∗(Xs)dMs+v(XτD)−v(X0)−Mv

τD

= −
∫ τD

0
(a−1b̂)∗(Xs)dMs + v(XτD)− v(X0)



−
∫ τD

0
∇v(Xs)dMs. (30)

Hence, u = e−v(x)u2(x), where

u2(x)

= Ex

[
f(XτD)exp(v(XτD))×

exp

( ∫ τD

0
(a−1(b− b̂− a∇v))∗(Xs)dMs

−1

2

∫ τD

0
(b− b̂− a∇v)a−1(b− b̂− a∇v)∗(Xs)ds

−
∫ τD

0
< b− b̂,∇v > (Xs)ds

+
1

2

∫ τD

0
(∇v)a(∇v)∗(Xs)ds

+
∫ τD

0
q(Xs)ds

)]
. (31)



Introduce

L2 =
1

2

d∑

i,j=1

∂

∂xi

(
aij(x)

∂

∂xj

)

+
d∑

i=1

(
bi(x)− b̂i(x)− (a∇v)i(x)

)
∂

∂xi

− < b− b̂,∇v > (x) +
1

2
(∇v)a(∇v)∗(x)

+q(x). (32)

By Theorem 4, u2 is a weak solution to the

Dirichlet boundary value problem:

L2u2 = 0, u2|∂D = f(x)ev(x).



Therefore, for any ψ ∈ W
1,2
0 (D),

Q∗(u2, ψ) = (−L2u2, ψ)

=
1

2

d∑

i,j=1

∫

Rd
aij(x)

∂u2

∂xi

∂ψ

∂xj
dx

−
d∑

i=1

∫

Rd

(
bi(x)− b̂i(x)− (a∇v)i(x)

)
∂u2

∂xi
ψdx

−
∫

Rd
q(x)u2(x)ψdx.

+
∫

Rd
< b− b̂,∇v > (x)u2(x)ψdx

−1

2

∫

Rd
(∇v)a(∇v)∗(x)u2ψdx

= 0. (33)

Using this we can show that u is the unique,

bounded continuous slution to the Dirichlet

boundary problem (7).


