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QBD

# Quasi-birth and death process (QBD) is the process on
the state space X = {(i,k) :i € Z,k € E;}, here Z IS
the level set, and E; is the phase set.
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QBD

# Quasi-birth and death process (QBD) is the process on
the state space X = {(i,k) :i € Z,k € E;}, here Z IS
the level set, and E; is the phase set.

# The Q-matrix of QBD is as follows
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QBD

# For finite phase set, and A,., B;., C), are same for k > k,
Neuts [1981] has developed the matrix-geometric meth
-0d to study the ergodicity of QBD, and get its invariant
probability measure. And in this case, ergodicity is
equivalent to exponential ergodicity( Hou and Li [2005,
2007]), but no one study the convergence rate.
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# For finite phase set, and A,., B;., C), are same for k > k,
Neuts [1981] has developed the matrix-geometric meth
-0d to study the ergodicity of QBD, and get its invariant
probability measure. And in this case, ergodicity is
equivalent to exponential ergodicity( Hou and Li [2005,
2007]), but no one study the convergence rate.

#® Recently, for infinite phase set, and A;., B, C;. are same
for £ > ko, under some conditions, one can also get the
same results by matrix-geometric method. (Kroese, et
al.[2004, Ann.Appl.Prob.])
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QBD

# For finite phase set, and A,., B;., C), are same for k > k,
Neuts [1981] has developed the matrix-geometric meth
-0d to study the ergodicity of QBD, and get its invariant
probability measure. And in this case, ergodicity is
equivalent to exponential ergodicity( Hou and Li [2005,
2007]), but no one study the convergence rate.

#® Recently, for infinite phase set, and A;., B, C;. are same
for £ > ko, under some conditions, one can also get the
same results by matrix-geometric method. (Kroese, et
al.[2004, Ann.Appl.Prob.])

# For general QBD like Q-matrix defined before, we can’t
analyze it by matrix-geometric method.
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QBD

#® Suppose @ Is regular, irreducible, and reversible with
respect to probability measure «, for i > 0,

W(Z,.f)Az(.f,y) — W(Zay)AZ(yvaj)v T,y € E’Lv

W(Z,LB)BZ(ZE,y) — 7T(7J T 1ay)0i+1(yax)7 S E7,7y < Ei—i—l-
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QBD

#® Suppose @ Is regular, irreducible, and reversible with
respect to probability measure «, for i > 0,

W(Z,.f)Az(.f,y) — W(Zay)AZ(yaaj)v T,y € E’Lv

W(ia CIZ)BZ(CIZ', y) — 7T(7J T 17 y)ci—i—l(ya llf), S Ei7 (NS Ei—i—l-
# Aim: To estimate the spectral gap for QBD,
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Decomposition method

#® Decomposition method has been used in Jerrum et al.
[2004, Ann.Appl.Prob.] and Madras et al. [2002, Ann.
Appl.Prob.] to estimate the spectral gap and Log-Sobo
-lev constant for finite Markov chains. In our paper, we
also use the decomposition method to estimate the

spectral gap for QBD.
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Decomposition method

#® Decomposition method has been used in Jerrum et al.
[2004, Ann.Appl.Prob.] and Madras et al. [2002, Ann.
Appl.Prob.] to estimate the spectral gap and Log-Sobo
-lev constant for finite Markov chains. In our paper, we
also use the decomposition method to estimate the
spectral gap for QBD.

» Decompose r along the level set 7 = (70 71 7)),
where 7(%) is the restriction of = on the level i, and 7;(z)
= ¢ 17l is a probability on E;, here ¢; is the normalizati
-on constant.
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Decomposition method

#® Decompose the Dirichlet form of QBD along the level:

Zﬁk— > (@) Az y) (fr(x) = fily))?

x,ye b

+Z€k Z () Bi(, y) (fr(x) = fr1(v))’

k:O xEEk,yEEkH
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Decomposition method

#® Decompose the Dirichlet form of QBD along the level:

Zﬁk— > mpl@) Az, ) (fe() — foly))?

x,ye b

+Z€k Z () Bi(, y) (fr(x) = fr1(v))’

k:O xEEk,yEEkH

# The variance can be also decomposed

Var(f) = Y &Varg(fi) + > &k(Brfi — Ef)’
k=0 k=0
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Decomposition method

o Comparing D(f), Var(f), we can construct a sequence
Dirichlet forms restricted on each level and a birth
-death process .
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Decomposition method

o Comparing D(f), Var(f), we can construct a sequence
Dirichlet forms restricted on each level and a birth
-death process .

#® Define Dirichlet form on E;

Dilf) =5 S m@)Aile,y)(fi@) ~ fi(y)?

x,yck;

§; = inf{D;(fi) : fi € D(Dy),mi(f:) = 0, mi(f7) =1}
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Decomposition method

o Comparing D(f), Var(f), we can construct a sequence
Dirichlet forms restricted on each level and a birth
-death process .

#® Define Dirichlet form on E;

Dilf) =5 S m@)Aile,y)(fi@) ~ fi(y)?

z,yeE;
§; = inf{Di(f:) : fi € D(Dy),mi(fi) = 0,mi(f7) =1}

o Define a birth-death process (BD) Q,

b; = > mi(@)Bi(z,y)  (i>0)

zeE;,yeE; 11
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Decomposition method

# Notations: d; = inf,.cp, ZyeEkH By (x,y),
e = infeepm, D yep, , Ok(T,Y),
Ck — SuPZEEEk [ZyEEk+1 Bk(ajv y) + ZzGEk_l Ok(ilf, Z)]’
2 2
dp e

& —CL — 7/ — —
b ag

where we use the convention Cy(z,y) = 0,e9 = 0.
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Decomposition method

» Notations: d = infiep, > cp, ., Br(,9),

e = infeepm, D yep, , Ok(T,Y),
Ck — SuPZEEEk [ZyEEk+1 Bk(xv y) + ZzGEk_l Ck(ﬂ?, Z)]’

di e
Cvkzck—b———
k Qg

where we use the convention Cy(z,y) = 0,e9 = 0.

#® (. plays an important role in our estimation, and in
some cases, oy = 0 for all £ > 0, and the spectral gap

estimation can be sharp, which we will see in Corollary
2.
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Spectral gap for QBD

® For the spectral gap of BD @, Chen’s book [2004]
presented perfect solutions, which can be expressed by

a variational formula. Denote \ = gap(Q).
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Spectral gap for QBD

® For the spectral gap of BD @, Chen’s book [2004]
presented perfect solutions, which can be expressed by

a variational formula. Denote \ = gap(Q).
® Theorem 1: If 6, > 0 for all £ > 0, then

N B
< gap(Q) < A,
Sup gy
k>0

where {q;} Is a sequence of numbers greater than or
equals to 1.
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Spectral gap for QBD

® For the spectral gap of BD @, Chen’s book [2004]
presented perfect solutions, which can be expressed by

a variational formula. Denote \ = gap(Q).
® Theorem 1: If 6, > 0 for all £ > 0, then

where {q;} Is a sequence of numbers greater than or
equals to 1.

f o > A, q =

g‘“|>z|

® Incasethat o =0, if 6, < X, g
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Spectral gap for QBD

# Corollary 2:
Case 1. If By = b1, C, = aiI, where Iis a unit
matrix, which is finite or infinite.
Case 2. If B, = b 1u!, C, = aplv!, where 1, p, v
are column vector, and every componentof 1is 1
Then: (1) If 5, > ) for all k&, we have

gap(Q) = A;
(2) If §;, < X for all k&, we have

inf 8, < < \.
inf k< gap(Q) <
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Open Jackson networks

#® N-node open Jackson network is a continuous-time
random walk on ZZ% with transition intensities ¢, from

the state o = (!, ..., ") to the state 3 = (3!, ..., V),
where
i If 0—a=c¢;
Gap =\ HiPio, If f—a=—¢ 1<4,7<N
wipij, I B—a=—e +e;

Here e; denote the vector (0,...,0,1,0,...,0), having its
i-th coordinate equal to 1.
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Open Jackson networks

#® N-node open Jackson network is a continuous-time
random walk on ZZ% with transition intensities ¢, from

the state o = (!, ..., ") to the state 3 = (3!, ..., V),
where

i If 6 —a=c¢;
Gap =\ HiPio, If f—a=—¢ 1<, <N
wipij, I B—a=—e +e;

Here e; denote the vector (0,...,0,1,0,...,0), having its
i-th coordinate equal to 1.

® P = (p;;) Is a transition probability matrix on the state
pace {0,1,..., N}. Assume p;; = po; = 0, pjo > 0, and
poo = 1, forall 1 <i<N.
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Open Jackson networks
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Ergodicity of Jackson networks

#® Jackson [1963, Management Science]:

Ergodicity <—v; <pu; 1<i<N

oo N
where v; satisfying v; = A+ ) ) )\jpy;), here
k=1 j=1

k
(ng)) = Pk, P = (pij)ij=01...N

Spectral gap for quasi-birth-death processes with application to Jackson networks —



Ergodicity of Jackson networks

# Jackson [1963, Management Science]:

Ergodicity <—v; <pu; 1<i<N

oo N
where v; satisfying v; = A + » > Ajp§];), here
k=1 j=1
k
(ng)) = Pk, P = (pij)ij=01...N
# From Spieksma and Tweedie [1994,Commun.Statis.
Stoch.Models.], we know the open Jackson network is
exponentially ergodic, but no convergence rate was
given.
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Ergodicity of Jackson networks

® Symmetrizable condition:

AkPEIPI0 = NIPIEPKO k#1Lk1=12.,N
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Ergodicity of Jackson networks

® Symmetrizable condition:

AkPEIPI0 = NIPIEPKO k#1Lk1=12.,N

# Under symmetrizable condition, we have v, = 2=,

Pko

Ergodicity (v < pup, 1 < k< N) <= Mg < urpro 1<k <N
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2-node Jackson networks

® Theorem 3: For 2-node reversible Jackson network, we
have

_ 2
where 1 < g, q, < 00, Ay = (/i1 — \/)\1%—%) > 0,

— 2
Ay = (\/,u —\/)\2%—%) > (.
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2-node Jackson networks

® Theorem 3: For 2-node reversible Jackson network, we
have

_ 2
where 1 < ¢, q, < 00, A; ,/u1—\/)\1+m) > 0,

Z( 2—\/)\2%—)‘;}1?012) > 0.

o x\/ y>0
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2-node Jackson networks

® Theorem 3: For 2-node reversible Jackson network, we
have

. 2
where 1 < g, q, < 00, Ay = ,/u1—\/)\1+m) > 0,
Ny = (Vi =\ ho + Az

o x\/ y>0

N———
&
V
O

# In particular, If p12 = p2; = 0, we have

gap(Q) = (Vi1 — VM2 A (Vi — vV A2)?
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N Is finite or N = o0

# For finite-node open Jackson network, we can also see
It as a QBD, and its spectral gap is greater than O.
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N Is finite or N = o0

# For finite-node open Jackson network, we can also see
It as a QBD, and its spectral gap is greater than O.

#® When N = oo, It can be viewed as a reaction-diffusion
process which arising from statistical physics. There
are many many reaction-diffusion process examples in
Chen’s book [2004], but this new one is excluded. This
may be the future work.
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QED

Thank You !
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