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(I) Switching Diffusions

Let (X(t), Z(t)) be a right continuously strong
Markov process with the phase space Rd ×N ,
where N := {1, 2, · · · , n0}.
dX(t) = b(X(t), Z(t))dt+σ(X(t), Z(t))dB(t). (1.1)

P{Z(t+ ∆) = l|Z(t) = k,X(t) = x}

=

{

qkl(x)∆ + o(∆), if k 6= l,

1 + qkk(x)∆ + o(∆), if k = l

(1.2)

uniformly in Rd (∆ ↓ 0), where 0 < qkl(x) < +∞.
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(I) Switching Diffusions

For the existence and uniqueness of the solution
to (1.1) we make the following assumptions.

Assumption 1.1. For any M > 0, there is a
constant HM > 0 such that

|b(x, k) − b(y, k)| + |σ(x, k) − σ(y, k)| ≤ HM |x− y|

and
|qkl(x) − qkl(y)| ≤ HM |x− y|

for all x, y ∈ U(M) and k 6= l ∈ N , where
U(M) := {x ∈ Rd : |x| ≤M}.
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(I) Switching Diffusions

Define an operator L on C2,1(Rd ×R+ ×N ;R+):

LV (x, t, k) =
∂

∂t
V (x, t, k)

+
1

2

d
∑

i,j=1

aij(x, k)
∂2

∂xixj
V (x, t, k)

+
d

∑

i=1

bi(x, k)
∂

∂xi
V (x, t, k)

+
∑

l∈N

qkl(x)
(

V (x, t, l) − V (x, t, k)
)

.
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(I) Switching Diffusions

Assumption 1.2. There exists a nonnegative
function V (x, k) on Rd ×N which is twice
continuously differentiable in x such that for
some constant α > 0,

LV (x, k) ≤ αV (x, k), (x, k) ∈ Rd ×N ;

inf{V (x, k) : |x| ≥M} → ∞, M → ∞.
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(I) Switching Diffusions

Under Assumptions 1.1 and 1.2, we can prove
that stochastic differential equation (SDE) (1.1)
has a unique continuously regular (i.e.,
non-explosive) solution X(t). Throughout the
rest of this work, we shall always, as standing
hypotheses, assume that Assumptions 1.1 and
1.2 hold. Hence (1.1) and (1.2) together
determine a unique regular solution (X(t), Z(t))
which is a strong Markov process.

On Switching Diffusionsand Jump-diffusions – p. 7/34



(I) Switching Diffusions

Generally, the process (X(t), Z(t)) can be called
a diffusion process with state-dependent
switching. In particular, when the functions qkl(x)
in (1.2) are independent of x (i.e., qkl(x) ≡ qkl > 0
for all k 6= l) and the second component Z(t),
which is independent of B(t), is a Markov chain
itself, the corresponding strong Markov process
(X(t), Z(t)) then can be called a diffusion
process with Markovian switching.
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(I) Switching Diffusions

Switching diffusion processes can be used to
describe a typical hybrid system that arises in
many applications of systems with multiple
modes or failure modes, such as fault-tolerant
control systems, multiple target tracking, and
flexible manufacturing systems:

Ghosh, Arapostathis and Marcus (1993)

Mariton (1990)
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(I) Switching Diffusions

Theoretically, diffusion processes with
state-dependent switching can be related to
coupled elliptic PDE systems. When σ(x, k) ≡ I,
large deviations and relevant results for them
with some small numerical parameter were
extensively studied:

Eizenberg and Freidlin (1990,1993a,1993b)

Xi (2005)
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(I) Switching Diffusions

Stability for Diffusion processes with Markovian
switching:

Basak, Bisi and Ghosh (1996)

Yuan and Mao (2003)

Xi (2002, 2004)

Stability for Diffusion processes with
state-dependent switching:

Basak, Bisi and Ghosh (1999)
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(I) Switching Diffusions

The f -exponential ergodicity for Diffusion
processes with state-dependent switching:

Xi and Zhao (2006)

The well known total variation norm is only a
special case of the so-called f -norm. However,
in the last reference, we only considered a
particular case when the diffusion matrices are
independent of k like a(x).
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(I) Switching Diffusions

The main reason for restricting us to the
particular case is as follows. There we could not
prove the Feller continuity for the general case of
(X(t), Z(t)) when the diffusion matrices depend
on not only x but also k by making use of the
coupling methods. It is known that the Feller
continuity of (X(t), Z(t)) is basic for its strong
Feller continuity and f -exponential ergodicity
results. Therefore, it is of considerable interest to
study the problem on the Feller continuity for the
general case of (X(t), Z(t)).
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(I) Switching Diffusions

In this work we will introduce a more simply
auxiliary process (V (t), ψ(t)) and make use of
the Radon–Nikodym derivative of the measure
induced by (X(t), Z(t)) in the space of
trajectories with respect to the measure induced
by (V (t), ψ(t)) to get the desired Feller continuity.
On the basis of the Feller continuity, as we did
before, we then prove the strong Feller continuity
and further investigate the f -exponential
ergodicity for the general diffusion processes
with state-dependent switching.
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(II) Feller Continuity: Special Case

Assumption 2.1. There is a constant H > 0 such
that

|b(x, k)| ≤ H, |σ(x, k)| ≤ H, qkl(x) ≤ H,

|b(x, k) − b(y, k)| + |σ(x, k) − σ(y, k)| ≤ H|x− y|

and
|qkl(x) − qkl(y)| ≤ H|x− y|

for all x, y ∈ Rd and k 6= l ∈ N .
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(II) Feller Continuity: Special Case

We introduce an auxiliary process (V (t), ψ(t)):
dV (t) = b(V (t), ψ(t))dt + σ(V (t), ψ(t))dB(t),
and let the

P{ψ(t+ ∆) = l|ψ(t) = k}

=

{

∆ + o(∆), if k 6= l,

1 − (n0 − 1)∆ + o(∆), if k = l

provided ∆ ↓ 0, where n0 is the number of
elements in N .
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(II) Feller Continuity: Special Case

We now introduce a metric λ(·, ·) on Rd ×N as
follows:

λ
(

(x,m), (y, n)
)

= ρ(x, y) + d(m,n),

where

ρ(x, y) = |x− y|, d(m,n) =

{

0, m = n,

1, m 6= n.
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(II) Feller Continuity: Special Case

Lemma 2.2. Suppose that Assumption 2.1 holds.
For all T > 0 and δ > 0, we have that

P

{

max
0≤t≤T

λ
(

(V x(t), ψk(t)), (V y(t), ψk(t))
)

≥ δ

}

→ 0

as ρ(x, y) → 0.
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(II) Feller Continuity: Special Case

For a given T > 0, denote µT1 (·) the measure
induced by (X(t), Z(t)) and µT2 (·) the measure
induced by (V (t), ψ(t)) in the space of
trajectories for 0 ≤ t ≤ T , respectively. Then,
µT1 (·) is absolutely continuous with respect to
µT2 (·) and the corresponding Radon–Nikodym
derivative has the following form.

On Switching Diffusionsand Jump-diffusions – p. 19/34



(II) Feller Continuity: Special Case

MT

(

V (·), ψ(·)
)

:=
dµT1
dµT2

(

V (·), ψ(·)
)

=

n(T )−1
∏

i=0

qψ(τi)ψ(τi+1)

(

V (τi+1)
)

× exp

(

−

n(T )
∑

i=0

∫ τi+1∧T

τi

[

qψ(τi)(V (s)) − n0 + 1
]

ds

)
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(II) Feller Continuity: Special Case

where
qk(x) =

∑

l 6=k

qkl(x),

τi is the sequence of Markov times defined by

τ0 = 0, τi+1 = inf{s > τi : ψ(s) 6= ψ(τi)}

and
n(T ) = max{i : τi ≤ T}.

On Switching Diffusionsand Jump-diffusions – p. 21/34



(II) Feller Continuity: Special Case

Lemma 2.3. Suppose that Assumption 2.1 holds.
For all T > 0, we have that

E
∣

∣MT

(

V x(·), ψk(·)
)

−MT

(

V y(·), ψk(·)
)
∣

∣ → 0

as ρ(x, y) → 0.
Lemma 2.4. Suppose that Assumption 2.1 holds.
For all T > 0 and (x, k) ∈ Rd ×N , the
Radon–Nikodym derivative MT

(

V x(·), ψk(·)
)

is
integrable.
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(II) Feller Continuity: Special Case

Using Lemmas 2.2, 2.3 and 2.4., we can prove

Theorem 2.6. Suppose that Assumption 2.1
holds. The process (X(t), Z(t)) determined by
(1.1) and (1.2) has Feller property.
Proof:

Ef(Xx(t), Zk(t)) = Ef(V x(t), ψk(t))·Mt

(

V x(·), ψk(·)
)

Wu (2001)
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(III) Feller Continuity: General Case

For any given M > 0, set

τM = inf{t ≥ 0 : (Xx(t), Zk(t)) /∈ U(M) ×N},

where U(M) = {x ∈ Rd : |x| ≤M}.
Lemma 3.1. For any fixed bounded domain D in
Rd and t ≥ 0, we then have P{τM ≤ t} → 0
uniformly over (x, k) in D ×N as M ↑ ∞.
Using a truncation argument, we then can prove
the Feller continuity for the general case of
(X(t), Z(t)).
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(III) Feller Continuity: General Case

Theorem 3.2. Under Assumptions 1.1 and 1.2
(the standing hypotheses) but not Assumption
2.1, The process (X(t), Z(t)) determined by (1.1)
and (1.2) still has Feller property.
Remark 3.3. The dependence on k of the
diffusion matrices does perplex the problem
greatly. Actually, even if the diffusion matrices
are independent of x and take the simple forms
like a(k), k ∈ N , we still could not prove the Feller
continuity result by using the coupling methods.

On Switching Diffusionsand Jump-diffusions – p. 25/34



(IV) Strong Feller Continuity

Assumption 4.1. There exists a positive constant
H such that

sup{qkl(x) : x ∈ Rd, k 6= l ∈ N} ≤ H < +∞.

Let {ηm} be the sequence of Markov times
defined by

η0 = 0, ηm = inf{s > ηm−1 : Z(t) 6= Z(ηm−1)}.

Set η = limm→∞ ηm and J(t) = max{m : ηm ≤ t}.
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(IV) Strong Feller Continuity

Proposition 4.2. Suppose that Assumption 4.1
holds.

P (x,k)
(

η = +∞
)

= 1, P (x,k)
(

J(t) < +∞
)

= 1;

P (x,k)
(

(X(t), Z(t)) ∈ D
)

=
∑∞

m=1 P
(x,k)

(

(X(t), Z(t)) ∈ D, J(t) = m
)

.

For any given t > 0, set

P (t) = {P (t, (x, k), A) : (x, k)∈Rd×N,A∈B(Rd×N)}
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(IV) Strong Feller Continuity

For each k ∈ N , let Xk(t) satisfy the following
SDE in Rd,

dXk(t) = b(Xk(t), k)dt + σ(Xk(t), k)dB(t).

Assumption 4.3. For each k ∈ N , assume that
the single diffusion process Xk(t) is a strong
Feller process and it has transition density
p(k)(t, x, y) with respect to the Lebesgue
measure.
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(IV) Strong Feller Continuity

Let the reference measure µ(·) is the product
measure on Rd ×N of the Lebesgue measure on
Rd and the counting measure on N .
Theorem 4.4. Suppose that Assumptions 4.1
and 4.3 hold. For every (x, k) ∈ Rd ×N and
every t > 0, the transition probability P (t, (x, k), ·)
of (X(t), Z(t)) is absolutely continuous with
respect to µ(·). Furthermore, for any given t > 0,
the transition probability kernel P (t) defined as
before is strong Feller continuous.
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(V) Exponential Ergodicity

In this section we investigate the exponential
ergodicity for the strong Markov process
(X(t), Z(t)). For this we make an assumption.
Assumption 5.2. For each k ∈ N , assume that
the single diffusion process Xk(t) determined
before is a strong Feller process, that it has
transition density p(k)(t, x, y) with respect to the
Lebesgue measure, and that the support of Xk(t)

is equal to Rd for all t > 0.
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(V) Exponential Ergodicity

For any positive function f(x, k) ≥ 1 defined on
Rd ×N and any signed measure ν(·) defined on
B(Rd ×N) we write

‖ν‖f = sup{|ν(g)| : |g| ≤ f}.

Note that the well known total variation norm ‖ν‖
is just ‖ν‖f in the special case where f ≡ 1.
Hence, the f -norm is a very strong norm.
Moreover, the larger f is, the stronger f -norm will be.

On Switching Diffusionsand Jump-diffusions – p. 31/34



(V) Exponential Ergodicity

For a function ∞ > f ≥ 1 on Rd ×N , Markov
process (X(t), Z(t)) is said to be f -exponentially
ergodic if there exist a probability measure π(·), a
constant θ < 1 and a finite-valued function
Θ(x, k) such that

‖P (t, (x, k), ·) − π(·)‖f ≤ Θ(x, k)θt

for all t ≥ 0 and all (x, k) ∈ Rd ×N .
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(V) Exponential Ergodicity

Moreover, a nonnegative function V (x, k) defined
on Rd ×N is called a norm-like function if
V (x, k) → ∞ as |x| → ∞ for all k ∈ N . Now we
need to introduce a Foster-Lyapunov drift
condition as follows. For some α, β > 0 and a
norm-like function V (x, k) which is twice
continuously differentiable in x,

LV (x, k) ≤ −αV (x, k) + β (5.5)

for (x, k) ∈ Rd ×N .
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(V) Exponential Ergodicity

Theorem 5.3. Suppose that (5.5) and
Assumptions 3.1 and 5.2 hold. Then the strong
Markov process (X(t), Z(t)) is f -exponentially
ergodic with f = V + 1.

Remark. One may further consider the f -exponential
ergodicity for jump-diffusions with Markovian switching or
state-dependent switching.
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