On Switching Diffusions and Jump-diffusions

Fubao Xi

Beijing Institute of Technology
xifb@bit.edu.cn

Outline

(I) Introduction to Switching Diffusions
(II) Feller Continuity: Special Case
(III) Feller Continuity: General Case
(IV) Strong Feller Continuity
(V) Exponential Ergodicity

(I) Switching Diffusions

Let $(X(t), Z(t))$ be a right continuously strong Markov process with the phase space $R^{d} \times N$, where $N:=\left\{1,2, \cdots, n_{0}\right\}$. $d X(t)=b(X(t), Z(t)) d t+\sigma(X(t), Z(t)) d B(t)$. (1.1)

$$
\begin{align*}
& P\{Z(t+\Delta)=l \mid Z(t)=k, X(t)=x\} \\
& \quad= \begin{cases}q_{k l}(x) \Delta+o(\Delta), & \text { if } k \neq l, \\
1+q_{k k}(x) \Delta+o(\Delta), & \text { if } k=l\end{cases} \tag{1.2}
\end{align*}
$$

uniformly in $R^{d}(\Delta \downarrow 0)$, where $0<q_{k l}(x)<+\infty$.

(I) Switching Diffusions

For the existence and uniqueness of the solution to (1.1) we make the following assumptions.

Assumption 1.1. For any $M>0$, there is a constant $H_{M}>0$ such that
$|b(x, k)-b(y, k)|+|\sigma(x, k)-\sigma(y, k)| \leq H_{M}|x-y|$
and

$$
\left|q_{k l}(x)-q_{k l}(y)\right| \leq H_{M}|x-y|
$$

for all $x, y \in U(M)$ and $k \neq l \in N$, where $U(M):=\left\{x \in R^{d}:|x| \leq M\right\}$.

(I) Switching Diffusions

Define an operator L on $C^{2,1}\left(R^{d} \times R_{+} \times N ; R_{+}\right)$:

$$
\begin{aligned}
& L V(x, t, k)=\frac{\partial}{\partial t} V(x, t, k) \\
& \quad+\frac{1}{2} \sum_{i, j=1}^{d} a_{i j}(x, k) \frac{\partial^{2}}{\partial x_{i} x_{j}} V(x, t, k) \\
& \quad+\sum_{i=1}^{d} b_{i}(x, k) \frac{\partial}{\partial x_{i}} V(x, t, k) \\
& \quad+\sum_{l \in N} q_{k l}(x)(V(x, t, l)-V(x, t, k)) .
\end{aligned}
$$

(I) Switching Diffusions

Assumption 1.2. There exists a nonnegative function $V(x, k)$ on $R^{d} \times N$ which is twice continuously differentiable in x such that for some constant $\alpha>0$,

$$
\begin{aligned}
& L V(x, k) \leq \alpha V(x, k), \quad(x, k) \in R^{d} \times N \\
& \inf \{V(x, k):|x| \geq M\} \rightarrow \infty, \quad M \rightarrow \infty
\end{aligned}
$$

(I) Switching Diffusions

Under Assumptions 1.1 and 1.2, we can prove that stochastic differential equation (SDE) (1.1) has a unique continuously regular (i.e., non-explosive) solution $X(t)$. Throughout the rest of this work, we shall always, as standing hypotheses, assume that Assumptions 1.1 and 1.2 hold. Hence (1.1) and (1.2) together determine a unique regular solution $(X(t), Z(t))$ which is a strong Markov process.

(I) Switching Diffusions

Generally, the process $(X(t), Z(t))$ can be called a diffusion process with state-dependent switching. In particular, when the functions $q_{k l}(x)$ in (1.2) are independent of x (i.e., $q_{k l}(x) \equiv q_{k l}>0$ for all $k \neq l$) and the second component $Z(t)$, which is independent of $B(t)$, is a Markov chain itself, the corresponding strong Markov process $(X(t), Z(t))$ then can be called a diffusion process with Markovian switching.

(I) Switching Diffusions

Switching diffusion processes can be used to describe a typical hybrid system that arises in many applications of systems with multiple modes or failure modes, such as fault-tolerant control systems, multiple target tracking, and flexible manufacturing systems:

- Ghosh, Arapostathis and Marcus (1993)
- Mariton (1990)

(I) Switching Diffusions

Theoretically, diffusion processes with state-dependent switching can be related to coupled elliptic PDE systems. When $\sigma(x, k) \equiv I$, large deviations and relevant results for them with some small numerical parameter were extensively studied:

- Eizenberg and Freidlin (1990,1993a,1993b)
- Xi (2005)

(I) Switching Diffusions

Stability for Diffusion processes with Markovian switching:

- Basak, Bisi and Ghosh (1996)
- Yuan and Mao (2003)
- Xi $(2002,2004)$

Stability for Diffusion processes with state-dependent switching:

- Basak, Bisi and Ghosh (1999)

(I) Switching Diffusions

The f-exponential ergodicity for Diffusion processes with state-dependent switching:

- Xi and Zhao (2006)

The well known total variation norm is only a special case of the so-called f-norm. However, in the last reference, we only considered a particular case when the diffusion matrices are independent of k like $a(x)$.

(I) Switching Diffusions

The main reason for restricting us to the particular case is as follows. There we could not prove the Feller continuity for the general case of ($X(t), Z(t)$) when the diffusion matrices depend on not only x but also k by making use of the coupling methods. It is known that the Feller continuity of $(X(t), Z(t))$ is basic for its strong Feller continuity and f-exponential ergodicity results. Therefore, it is of considerable interest to study the problem on the Feller continuity for the general case of $(X(t), Z(t))$.

(I) Switching Diffusions

In this work we will introduce a more simply auxiliary process $(V(t), \psi(t))$ and make use of the Radon-Nikodym derivative of the measure induced by $(X(t), Z(t))$ in the space of trajectories with respect to the measure induced by $(V(t), \psi(t))$ to get the desired Feller continuity.
On the basis of the Feller continuity, as we did before, we then prove the strong Feller continuity and further investigate the f-exponential ergodicity for the general diffusion processes with state-dependent switching.

(II) Feller Continuity: Special Case

Assumption 2.1. There is a constant $H>0$ such that

$$
\begin{aligned}
& \qquad|b(x, k)| \leq H, \quad|\sigma(x, k)| \leq H, \quad q_{k l}(x) \leq H, \\
& \text { and } \\
& \qquad|b(x, k)-b(y, k)|+|\sigma(x, k)-\sigma(y, k)| \leq H|x-y| \\
& \text { for all } x, y \in q_{k l}(x)-q_{k l}(y)|\leq H| x-y \mid \\
& \text { and } k \neq l \in N .
\end{aligned}
$$

(II) Feller Continuity: Special Case

We introduce an auxiliary process $(V(t), \psi(t))$: $d V(t)=b(V(t), \psi(t)) d t+\sigma(V(t), \psi(t)) d B(t)$, and let the

$$
\begin{aligned}
& P\{\psi(t+\Delta)=l \mid \psi(t)=k\} \\
& \quad= \begin{cases}\Delta+o(\Delta), & \text { if } k \neq l, \\
1-\left(n_{0}-1\right) \Delta+o(\Delta), & \text { if } k=l\end{cases}
\end{aligned}
$$

provided $\Delta \downarrow 0$, where n_{0} is the number of elements in N.

(II) Feller Continuity: Special Case

We now introduce a metric $\lambda(\cdot, \cdot)$ on $R^{d} \times N$ as follows:

$$
\lambda((x, m),(y, n))=\rho(x, y)+d(m, n)
$$

where

$$
\rho(x, y)=|x-y|, \quad d(m, n)= \begin{cases}0, & m=n \\ 1, & m \neq n\end{cases}
$$

(II) Feller Continuity: Special Case

Lemma 2.2. Suppose that Assumption 2.1 holds.
For all $T>0$ and $\delta>0$, we have that
$P\left\{\max _{0 \leq \leq \leq T} \lambda\left(\left(V^{x}(t), \psi^{k}(t)\right),\left(V^{y}(t), \psi^{k}(t)\right)\right) \geq \delta\right\} \rightarrow 0$
as $\rho(x, y) \rightarrow 0$.

(II) Feller Continuity: Special Case

For a given $T>0$, denote $\mu_{1}^{T}(\cdot)$ the measure induced by $(X(t), Z(t))$ and $\mu_{2}^{T}(\cdot)$ the measure induced by $(V(t), \psi(t))$ in the space of trajectories for $0 \leq t \leq T$, respectively. Then, $\mu_{1}^{T}(\cdot)$ is absolutely continuous with respect to $\mu_{2}^{T}(\cdot)$ and the corresponding Radon-Nikodym derivative has the following form.

(II) Feller Continuity: Special Case

$$
\begin{aligned}
& M_{T}(V(\cdot), \psi(\cdot)):=\frac{d \mu_{1}^{T}}{d \mu_{2}^{T}}(V(\cdot), \psi(\cdot)) \\
& =\prod_{i=0}^{n(T)-1} q_{\psi\left(T_{i}\right) \psi\left(T_{i+1}\right)}\left(V\left(\tau_{i+1}\right)\right) \\
& \quad \times \exp \left(-\sum_{i=0}^{n(T)} \int_{\tau_{i}}^{T_{i+1} \wedge T}\left[q_{\psi\left(\tau_{i}\right)}(V(s))-n_{0}+1\right] d s\right)
\end{aligned}
$$

(II) Feller Continuity: Special Case

where

$$
q_{k}(x)=\sum_{l \neq k} q_{k l}(x),
$$

τ_{i} is the sequence of Markov times defined by

$$
\tau_{0}=0, \quad \tau_{i+1}=\inf \left\{s>\tau_{i}: \psi(s) \neq \psi\left(\tau_{i}\right)\right\}
$$

and

$$
n(T)=\max \left\{i: \tau_{i} \leq T\right\} .
$$

(II) Feller Continuity: Special Case

Lemma 2.3. Suppose that Assumption 2.1 holds.
For all $T>0$, we have that

$$
E\left|M_{T}\left(V^{x}(\cdot), \psi^{k}(\cdot)\right)-M_{T}\left(V^{y}(\cdot), \psi^{k}(\cdot)\right)\right| \rightarrow 0
$$

as $\rho(x, y) \rightarrow 0$.
Lemma 2.4. Suppose that Assumption 2.1 holds.
For all $T>0$ and $(x, k) \in R^{d} \times N$, the Radon-Nikodym derivative $M_{T}\left(V^{x}(\cdot), \psi^{k}(\cdot)\right)$ is integrable.

(II) Feller Continuity: Special Case

Using Lemmas 2.2, 2.3 and 2.4., we can prove
Theorem 2.6. Suppose that Assumption 2.1 holds. The process $(X(t), Z(t))$ determined by (1.1) and (1.2) has Feller property. Proof:
$E f\left(X^{x}(t), Z^{k}(t)\right)=E f\left(V^{x}(t), \psi^{k}(t)\right) \cdot M_{t}\left(V^{x}(\cdot), \psi^{k}(\cdot)\right)$

- Wu (2001)

(III) Feller Continuity: General Case

For any given $M>0$, set

$$
\tau_{M}=\inf \left\{t \geq 0:\left(X^{x}(t), Z^{k}(t)\right) \notin U(M) \times N\right\}
$$

where $U(M)=\left\{x \in R^{d}:|x| \leq M\right\}$.
Lemma 3.1. For any fixed bounded domain D in R^{d} and $t \geq 0$, we then have $P\left\{\tau_{M} \leq t\right\} \rightarrow 0$ uniformly over (x, k) in $D \times N$ as $M \uparrow \infty$. Using a truncation argument, we then can prove the Feller continuity for the general case of $(X(t), Z(t))$.

(III) Feller Continuity: General Case

Theorem 3.2. Under Assumptions 1.1 and 1.2 (the standing hypotheses) but not Assumption 2.1, The process $(X(t), Z(t))$ determined by (1.1) and (1.2) still has Feller property.
Remark 3.3. The dependence on k of the diffusion matrices does perplex the problem greatly. Actually, even if the diffusion matrices are independent of x and take the simple forms like $a(k), k \in N$, we still could not prove the Feller continuity result by using the coupling methods.

(IV) Strong Feller Continuity

Assumption 4.1. There exists a positive constant H such that

$$
\sup \left\{q_{k l}(x): x \in R^{d}, k \neq l \in N\right\} \leq H<+\infty .
$$

Let $\left\{\eta_{m}\right\}$ be the sequence of Markov times defined by

$$
\eta_{0}=0, \quad \eta_{m}=\inf \left\{s>\eta_{m-1}: Z(t) \neq Z\left(\eta_{m-1}\right)\right\} .
$$

Set $\eta=\lim _{m \rightarrow \infty} \eta_{m}$ and $J(t)=\max \left\{m: \eta_{m} \leq t\right\}$.

(IV) Strong Feller Continuity

Proposition 4.2. Suppose that Assumption 4.1

 holds.$$
\begin{aligned}
& P^{(x, k)}(\eta=+\infty)=1, \quad P^{(x, k)}(J(t)<+\infty)=1 ; \\
& \quad P^{(x, k)}((X(t), Z(t)) \in D) \\
& =\sum_{m=1}^{\infty} P^{(x, k)}((X(t), Z(t)) \in D, J(t)=m) .
\end{aligned}
$$

For any given $t>0$, set

$$
P(t)=\left\{P(t,(x, k), A):(x, k) \in R^{d} \times N, A \in \mathcal{B}\left(R^{d} \times N\right)\right\}
$$

(IV) Strong Feller Continuity

For each $k \in N$, let $X_{k}(t)$ satisfy the following SDE in R^{d},

$$
d X_{k}(t)=b\left(X_{k}(t), k\right) d t+\sigma\left(X_{k}(t), k\right) d B(t) .
$$

Assumption 4.3. For each $k \in N$, assume that the single diffusion process $X_{k}(t)$ is a strong Feller process and it has transition density $p^{(k)}(t, x, y)$ with respect to the Lebesgue measure.

(IV) Strong Feller Continuity

Let the reference measure $\mu(\cdot)$ is the product measure on $R^{d} \times N$ of the Lebesgue measure on R^{d} and the counting measure on N.
Theorem 4.4. Suppose that Assumptions 4.1 and 4.3 hold. For every $(x, k) \in R^{d} \times N$ and every $t>0$, the transition probability $P(t,(x, k), \cdot)$ of $(X(t), Z(t))$ is absolutely continuous with respect to $\mu(\cdot)$. Furthermore, for any given $t>0$, the transition probability kernel $P(t)$ defined as before is strong Feller continuous.

(V) Exponential Ergodicity

In this section we investigate the exponential ergodicity for the strong Markov process $(X(t), Z(t))$. For this we make an assumption. Assumption 5.2. For each $k \in N$, assume that the single diffusion process $X_{k}(t)$ determined before is a strong Feller process, that it has transition density $p^{(k)}(t, x, y)$ with respect to the Lebesgue measure, and that the support of $X_{k}(t)$ is equal to R^{d} for all $t>0$.

(V) Exponential Ergodicity

For any positive function $f(x, k) \geq 1$ defined on $R^{d} \times N$ and any signed measure $\nu(\cdot)$ defined on $\mathcal{B}\left(R^{d} \times N\right)$ we write

$$
\|\nu\|_{f}=\sup \{|\nu(g)|:|g| \leq f\} .
$$

Note that the well known total variation norm $\|\nu\|$ is just $\|\nu\|_{f}$ in the special case where $f \equiv 1$. Hence, the f-norm is a very strong norm. Moreover, the larger f is, the stronger f-norm will be.

(V) Exponential Ergodicity

For a function $\infty>f \geq 1$ on $R^{d} \times N$, Markov process $(X(t), Z(t))$ is said to be f-exponentially ergodic if there exist a probability measure $\pi(\cdot)$, a constant $\theta<1$ and a finite-valued function $\Theta(x, k)$ such that

$$
\|P(t,(x, k), \cdot)-\pi(\cdot)\|_{f} \leq \Theta(x, k) \theta^{t}
$$

for all $t \geq 0$ and all $(x, k) \in R^{d} \times N$.

(V) Exponential Ergodicity

Moreover, a nonnegative function $V(x, k)$ defined on $R^{d} \times N$ is called a norm-like function if $V(x, k) \rightarrow \infty$ as $|x| \rightarrow \infty$ for all $k \in N$. Now we need to introduce a Foster-Lyapunov drift condition as follows. For some $\alpha, \beta>0$ and a norm-like function $V(x, k)$ which is twice continuously differentiable in x,

$$
\begin{equation*}
L V(x, k) \leq-\alpha V(x, k)+\beta \tag{5.5}
\end{equation*}
$$

for $(x, k) \in R^{d} \times N$.

(V) Exponential Ergodicity

Theorem 5.3. Suppose that (5.5) and Assumptions 3.1 and 5.2 hold. Then the strong Markov process $(X(t), Z(t))$ is f-exponentially ergodic with $f=V+1$.

Remark. One may further consider the f-exponential ergodicity for jump-diffusions with Markovian switching or state-dependent switching.

