5th Workshop on Markov Processes & Related Topics
Beijing, China, July 14-18, 2007
Jingshi Hotel, Beijing Normal University, 16 Jul, 09:00-09:30

Performance Analysis of Joining the Shortest Queue Model among a Large Number of Queues*

JIASHAN TANG

College of Mathematics and Physics, Nanjing University of Posts and Telecommunications

*This is a joint work with Don Dawson and Yiqiang Q Zhao

Motivation Modeling Convergence... Stationary... Conclusion

Outline

Motivation

Convergence Theorem (LLN)

Stationary Distribution

Conclutions

Motivation Modeling Convergence... Stationary... Conclusion

1 Motivation

1.1. Balancing techniques

• Changing the arrival and/or service rates

Changing the arrival rateChanging the service rate

• Joining different queues

- \triangleright JSQ model
- ▷ Extra arrival source may choose different queues to join
- ⊳ Dobrushin's mean-field model

1.1 Balancing techniques(con't)

• Jockeying

 \triangleright Periodic redistributing customers in all queues $\triangleright r$ difference jockeying

2 Modeling

2.1. Noninteraction parallel network

2.2. Mean field interaction parallel network: JSQ with large N

2.3. Description of the main result

Theorem. (1) For JSQ mean field interaction network, if $\lambda_0 + \lambda_1 < \mu$, then the unique stationary distribution of the "typical queue" of the interaction network is

$$\begin{aligned} \pi_0^{JSQ} &= 1 - \frac{\lambda_0 + \lambda_1}{\mu}, \\ \pi_k^{JSQ} &= \frac{\lambda_0 + \lambda_1}{\mu} \left(1 - \frac{\lambda_0}{\mu} \right) \left(\frac{\lambda_0}{\mu} \right)^{k-1}, k \ge 1. \end{aligned}$$

2.3 Description of the main result(con't) (2) If $\lambda_1 = 0$ then

$$\pi_k^{JSQ} = \left(1 - \frac{\lambda_0}{\mu}\right) \left(\frac{\lambda_0}{\mu}\right)^k, \quad k \ge 0.$$

(3) If $\lambda_0 = 0$, then

$$\begin{split} \pi_0^{JSQ} &= 1 - \frac{\lambda_1}{\mu}, \\ \pi_1^{JSQ} &= \frac{\lambda_1}{\mu}, \\ \pi_k^{JSQ} &= 0 \quad \text{ for all } \quad k \geq 2. \end{split}$$

2.4. Empirical probability measure

Let $X_j(t)$ be the queue length of queue j at time t, define

$$U_N(t) := \frac{1}{N} \sum_{j=1}^N \delta_{X_j(t)}$$

which is the empirical distribution of queue length of the N queues at time t.

2.5. Interaction function

Define an *interaction function* $h : \mathbf{R}_+ \times \mathcal{P}(E) \to \mathbf{R}$ as the following:

$$h(x,\nu) = \frac{\lambda_1}{\nu(\{ms(\nu)\})} \delta_{ms(\nu)}(x).$$

where $ms(\nu) = \inf\{x \ge 0, \nu(\{x\}) > 0\}$ is the minimum point of the support of the probability measure ν .

2.6. Master equation

For the above interaction function, define operator:

 $\Omega_{h,u(t)}f(i) = (\lambda_0 + h(i,u(t))(f(i+1) - f(i)) + \mu(f(i-1) - f(i))$

The nonlinear master equation has the following form

$$\frac{\mathrm{d}\langle u(t), f\rangle}{\mathrm{d}t} = \langle u(t), \Omega_{h, u(t)} f\rangle, \quad f \in C_b(E),$$

where $u(\cdot)$ is a measure-valued function from $[0, +\infty)$ to $\mathcal{P}(E)$.

2.7. Definition of *q*-solution

Definition 1. Let $u \in \mathcal{P}(E)$, $P \in \mathcal{P}(D_{\infty}(E), \mathcal{F})$ is called a solution of the master equation with initial value u if its marginal distribution $u_t(\cdot) = P \circ X_t^{-1}(\cdot)$ satisfies the master equation and $u_0 = u$. Moreover, P is called a q-solution if, in addition, it is Markovian in the sense of McKean(Funaki(1984)), i.e. for any $j \in E$,

$$P(X_{t+s} = j | \mathcal{F}_t) = p(t, X_t, t+s, j), \quad P-a.s.$$

where transition function p(s, i, t, j) satisfies that

$$\frac{\mathrm{d}}{\mathrm{d}s}p(t,i,t+s,j) = \sum_{k \in E} p(t,i,t+s,k)\Omega_{h,u_{t+s}}I_{\{j\}}(k), t \ge 0.$$

3 Convergence theorem (LLN)

Theorem 2. Let $U_N(t)$ satisfies

$$\sup_{N} E^{(N)} \langle U_N(0)(\mathrm{d}x), x \rangle < \infty,$$

 $U_N(0) \xrightarrow{weakly} U(0), \quad \langle U(0)(\mathrm{d}x), x^2 \rangle < \infty.$

Then the sequence $\{U_N\}_{N=1}^{\infty}$ converges in the sense of weakly convergence of measure-valued stochastic processes to a q-solution of the nonlinear master equation, moreover, if $\lambda_0 + \lambda_1 < \mu$ and $U(0)(\{0\}) > 0$, then the solution of the master equation is unique.

4 Stationary distribution

4.1. Definition

Definition 3. $\pi \in \mathcal{P}_p(E)$ is called a stationary distribution of the *q*-solution of the master equation if $P \circ X_0^{-1} = \pi$ implies that for all $t \ge 0$, $P \circ X_t^{-1} = \pi$.

4.2. Join the shortest queue

Theorem 4. (1) Under the conditions of the convergence theorem, let $t \to \infty$, then the *Q*-matrix of a "typical queue" of the interaction queue is

$$Q^{JSQ} = \begin{pmatrix} -(\lambda_0 + \frac{\lambda_1}{\pi_0}) & \lambda_0 + \frac{\lambda_1}{\pi_0} & 0 & \cdots \\ \mu & -(\lambda_0 + \mu) & \lambda_0 & \cdots \\ 0 & \mu & -(\lambda_0 + \mu) & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

where $\pi = (\pi_0, \pi_1, \cdots)$ is the unique stationary distribution.

4.2 Join the shortest queue(con't)

(2) The unique stationary distribution is

$$\begin{aligned} \pi_0^{JSQ} &= 1 - \frac{\lambda_0 + \lambda_1}{\mu}, \\ \pi_k^{JSQ} &= \frac{\lambda_0 + \lambda_1}{\mu} \left(1 - \frac{\lambda_0}{\mu} \right) \left(\frac{\lambda_0}{\mu} \right)^{k-1}, k \ge 1 \end{aligned}$$

4.3. Join infinity queues randomly

Theorem 5. (1) If the extra customer can join all queues randomly, then the corresponding Q-matrix will be that

$$Q^{J_{\infty}Q} = \begin{pmatrix} -(\lambda_0 + \lambda_1) & \lambda_0 + \lambda_1 & 0 & \cdots \\ \mu & -(\lambda_0 + \lambda_1 + \mu) & \lambda_0 + \lambda_1 & \cdots \\ 0 & \mu & -(\lambda_0 + \lambda_1 + \mu) & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Which is equivalent to that of an M/M/1 queue with arrival and service rate are $\lambda_0 + \lambda_1$ and μ respectively.

4.3 Join infinity queues randomly(con't)

(2) If we let $\lambda_0 + \lambda_1 < \mu$, then this queue will be stable and the stationary distribution satisfies that

$$\pi_k^{J_{\infty}Q} = \left(1 - \frac{\lambda_0 + \lambda_1}{\mu}\right) \left(\frac{\lambda_0 + \lambda_1}{\mu}\right)^k, \quad k \ge 0 \qquad (1)$$

4.4. Comparison of stationary distributions between JSQ and $J_\infty Q$

(1) $\pi_0^{JSQ} = \pi_0^{J_{\infty}Q}$, which means that since the average arrival rate and service rate are the same, the idle probability of the servers are the same;

- (2) The tail of $\pi^{J \propto Q}_{\cdot}$ is something like $const \cdot (\frac{\lambda_0 + \lambda_1}{\mu})^k$, while that of π^{JSQ}_{\cdot} is something like $const \cdot (\frac{\lambda_0}{\mu})^k$;
- (3) The average queue length of JSQ is shorter than that of $J_{\infty}Q$: $\sum_{k=0}^{\infty} k\pi_k^{JSQ} = \frac{\lambda_0 + \lambda_1}{\mu - \lambda_0} < \frac{\lambda_0 + \lambda_1}{\mu - (\lambda_0 + \lambda_1)} = \sum_{k=0}^{\infty} k\pi_k^{J_{\infty}Q}$;

(4) If $\lambda_1 = 0$, then $\pi_k^{JSQ} = \pi_k^{J_{\infty}Q}$, $k \ge 0$. Because in this case, they all are equivalent to $M(\lambda_0)/M(\mu)/1$ queue.

4.4 Comparison of stationary distributions between JSQ and $J_{\infty}Q(con't)$

- (5) As we know that the tail of $\pi_{.}^{JSQ}$ is depending on λ_0 , if we let $\lambda_0 = 0$, then we have: $\pi_0^{JSQ} = 1 \frac{\lambda_1}{\mu}, \pi_1^{JSQ} = \frac{\lambda_1}{\mu}$ and $\pi_k^{JSQ} = 0$ for all $k \ge 2$.
- (6) $\lambda_1 \uparrow (\mu \lambda_0)$ such that $\lambda_0 + \lambda_1 \uparrow \mu$, then the limit of the stationary distribution of the JSQ is that $\pi_0^{JSQ} \downarrow 0, \pi_k \uparrow (1 \lambda_0)(\frac{\lambda_0}{\mu})^{k-1}, k \ge 1$, while the stationary distribution of the J_∞Q does not have the limit.

From these it is very easy to see that the performance of the JSQ system has been improved.

4.5. Join the *m*-th shortest queue: $1 \le m \le s$

If the extra customer can randomly join the queue whose length is between the shortest and s-shortest, then convergence result similar to Theorem 2 can also be established, in this case, as the time t tends to infinity, then the Q-matrix will be

$$q_{ij}^{J1\sim sQ} = \begin{cases} \lambda_0 + \frac{\lambda_1}{\pi_0^1 + \dots + \pi_{s-1}^1}, & j = i+1, i = 0, \cdots, s-1 \\ \lambda_0, & j = i+1, i > s-1 \\ -\lambda_0 - \mu - \frac{\lambda_1}{\pi_0^1 + \dots + \pi_{s-1}^1}, & j = i, i = 0, \cdots, s-1 \\ -\lambda_0 - \mu, & j = i, i > s-1 \\ \mu, & j = i-1, i \ge 1 \\ 0, & \text{others} \end{cases}$$

4.5 Join the *m*-th shortest queue: $1 \le m \le s(\text{con't})$

One can calculate the stationary distribution corresponds to Q-matrix, as an example, we have

Theorem 6 (1) For the case of s = 2, then the stationary distribution of the limiting typical queue is that

$$\begin{aligned} \pi_0 &= 1 - \frac{\lambda_0 + \lambda_1}{\mu} \\ \pi_1 &= \frac{1}{2} \left(\sqrt{\left(1 - \frac{\lambda_0}{\mu}\right)^2 \left(1 - \frac{\lambda_0 + \lambda_1}{\mu}\right)^2 + 4\frac{\lambda_0 + \lambda_1}{\mu} \left(1 - \frac{\lambda_0}{\mu}\right) \left(1 - \frac{\lambda_0 + \lambda_1}{\mu}\right)} \right. \\ &- \left(1 - \frac{\lambda_0}{\mu}\right) \left(1 - \frac{\lambda_0 + \lambda_1}{\mu}\right) \right) \\ \pi_k &= \frac{1}{2} \left(1 - \frac{\lambda_0}{\mu}\right) \left(\left(1 - \frac{\lambda_0}{\mu}\right) \left(1 - \frac{\lambda_0 + \lambda_1}{\mu}\right) + 2\frac{\lambda_0 + \lambda_1}{\mu} \\ &- \sqrt{\left(1 - \frac{\lambda_0}{\mu}\right)^2 \left(1 - \frac{\lambda_0 + \lambda_1}{\mu}\right)^2 + 4\frac{\lambda_0 + \lambda_1}{\mu} \left(1 - \frac{\lambda_0}{\mu}\right) \left(1 - \frac{\lambda_0 + \lambda_1}{\mu}\right)} \right) \left(\frac{\lambda_0}{\mu}\right)^{k-2}, \quad k \ge 2 \end{aligned}$$

Moreover, the average arrival rate is $\lambda_0 + \lambda_1$.

4.5 Join the *m*-th shortest queue: $1 \le m \le s(\text{con't})$ (2) If $\lambda_1 = 0$, then

$$\pi_k = \left(1 - \frac{\lambda_0}{\mu}\right) \left(\frac{\lambda_0}{\mu}\right)^k, \qquad k \ge 0.$$

(3) If $\lambda_0 = 0$, then

$$\pi_{0} = 1 - \frac{\lambda_{1}}{\mu}$$

$$\pi_{1} = \frac{1}{2} \left(\sqrt{\left(1 - \frac{\lambda_{1}}{\mu}\right)^{2} + 4\frac{\lambda_{1}}{\mu} \left(1 - \frac{\lambda_{1}}{\mu}\right)} - \left(1 - \frac{\lambda_{1}}{\mu}\right) \right)$$

$$\pi_{2} = \frac{1}{2} \left(1 + \frac{\lambda_{1}}{\mu} - \sqrt{\left(1 - \frac{\lambda_{1}}{\mu}\right)^{2} + 4\frac{\lambda_{1}}{\mu} \left(1 - \frac{\lambda_{1}}{\mu}\right)} \right)$$

$$\pi_{k} = 0, \qquad k \ge 3.$$

5 Conclusions

- When N is large, the interaction queueing network can be studied in terms of "typical" queue
- Load-balancing described as the mean-field interaction in this talk does improve the system performance
- We expect that this method can be used to study other balancing mechanisms

Motivation Modeling Convergence... Stationary... Conclusion

Thank you

E-mail: jiashant@yahoo.ca

Notation

 ${\bf R}$ ——— the set of all real numbers,

 \mathbf{R}_+ —— the set of all nonnegative numbers,

 $(E, \mathcal{E}) - E = \{0, 1, 2, \cdots\}$ and be equipped with discrete topology,

 $C_b(E)$ — the set of bounded continuous functions in E,

 $D_{\infty}(E)$ - the set of functions from $[0,\infty)$ to E which are càdlàg,

X(t,w) – coordinate process with $w \in D_{\infty}(E)$,

$$\mathcal{F}_t - \sigma\{X(s), 0 \le s \le t\},$$

$$\mathcal{F} \longrightarrow \sigma\{X(s), s \ge 0\},$$

 $\mathcal{P}(E)$ — the set of probability measures on E,

 $\mathcal{P}_p(E)$ — space of elements in $\mathcal{P}(E)$ with finite *p*th moment,

 $\mathcal{P}(D_{\infty}(E),\mathcal{F})$ — probability measures on $(D_{\infty}(E),\mathcal{F})$. $\langle \nu, f \rangle = \int f(x) \nu(dx)$

Motivation Modeling Convergence... Stationary... Conclusion

