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1 Motivation

1.1. Balancing techniques

•Changing the arrival and/or service rates

B Changing the arrival rate
B Changing the service rate

• Joining different queues

B JSQ model
B Extra arrival source may choose different queues to join
B Dobrushin’s mean-field model
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1.1 Balancing techniques(con’t)

• Jockeying

B Periodic redistributing customers in all queues
B r difference jockeying
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2 Modeling

2.1. Noninteraction parallel network
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2.2. Mean field interaction parallel network: JSQ with large N
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2.3. Description of the main result

Theorem. (1) For JSQ mean field interaction network, if
λ0 + λ1 < µ, then the unique stationary distribution of the
“typical queue” of the interaction network is

π
JSQ
0 = 1− λ0+λ1

µ ,

π
JSQ
k = λ0+λ1

µ

(
1− λ0

µ

)(
λ0
µ

)k−1
, k ≥ 1.
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2.3 Description of the main result(con’t)

(2) If λ1 = 0 then

π
JSQ
k =

(
1− λ0

µ

)(
λ0

µ

)k

, k ≥ 0.

(3) If λ0 = 0, then

π
JSQ
0 = 1− λ1

µ ,

π
JSQ
1 = λ1

µ ,

π
JSQ
k = 0 for all k ≥ 2.
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2.4. Empirical probability measure

Let Xj(t) be the queue length of queuej at timet, define

UN (t) :=
1

N

N∑
j=1

δXj(t)

which is the empirical distribution of queue length of theN
queues at timet.
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2.5. Interaction function

Define aninteraction functionh : R+ × P(E) → R as the
following:

h(x, ν) =
λ1

ν({ms(ν)})
δms(ν)(x).

wherems(ν) = inf{x ≥ 0, ν({x}) > 0} is the minimum
point of the support of the probability measureν.
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2.6. Master equation

For the above interaction function, define operator:

Ωh,u(t)f (i) = (λ0+h(i, u(t))(f (i+1)−f (i))+µ(f (i−1)−f (i))

The nonlinearmaster equationhas the following form

d〈u(t), f〉
dt

= 〈u(t), Ωh,u(t)f〉, f ∈ Cb(E),

whereu(·) is a measure-valued function from[0, +∞) to
P(E).



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

2.7. Definition of q-solution

Definition 1. Let u ∈ P(E), P ∈ P(D∞(E),F) is
called a solution of the master equation with initial value
u if its marginal distributionut(·) = P ◦ X−1

t (·) satisfies
the master equation andu0 = u. Moreover,P is called a
q−solution if, in addition, it is Markovian in the sense of
McKean(Funaki(1984)), i.e. for anyj ∈ E,

P (Xt+s = j|Ft) = p(t,Xt, t + s, j), P − a.s.

where transition functionp(s, i, t, j) satisfies that

d

ds
p(t, i, t + s, j) =

∑
k∈E

p(t, i, t + s, k)Ωh,ut+s
I{j}(k), t ≥ 0.
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3 Convergence theorem ( LLN )

Theorem 2.Let UN (t) satisfies

sup
N

E(N)〈UN (0)(dx), x〉 < ∞,

UN (0)
weakly−→ U(0), 〈U(0)(dx), x2〉 < ∞.

Then the sequence{UN}∞N=1 converges in the sense of
weakly convergence of measure-valued stochastic processes
to a q-solution of the nonlinear master equation, moreover,
if λ0 + λ1 < µ andU(0)({0}) > 0, then the solution of the
master equation is unique.
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4 Stationary distribution

4.1. Definition

Definition 3. π ∈ Pp(E) is called a stationary distribution of
theq-solution of the master equation ifP ◦X−1

0 = π implies
that for allt ≥ 0, P ◦X−1

t = π.
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4.2. Join the shortest queue

Theorem 4. (1) Under the conditions of the convergence
theorem, lett →∞, then theQ-matrix of a “typical queue”
of the interaction queue is

QJSQ =


−(λ0 + λ1

π0
) λ0 + λ1

π0
0 · · ·

µ −(λ0 + µ) λ0 · · ·
0 µ −(λ0 + µ) · · ·
... ... ... ...


whereπ = (π0, π1, · · · ) is the unique stationary distribution.
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4.2 Join the shortest queue(con’t)

(2) The unique stationary distribution is

π
JSQ
0 = 1− λ0+λ1

µ ,

π
JSQ
k = λ0+λ1

µ

(
1− λ0

µ

)(
λ0
µ

)k−1
, k ≥ 1
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4.3. Join infinity queues randomly

Theorem 5. (1) If the extra customer can join all queues
randomly, then the correspondingQ-matrix will be that

QJ∞Q =


−(λ0 + λ1) λ0 + λ1 0 · · ·

µ −(λ0 + λ1 + µ) λ0 + λ1 · · ·
0 µ −(λ0 + λ1 + µ) · · ·
...

...
... ...


Which is equivalent to that of anM/M/1 queue with arrival
and service rate areλ0 + λ1 andµ respectively.
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4.3 Join infinity queues randomly(con’t)

(2) If we letλ0 + λ1 < µ, then this queue will be stable and
the stationary distribution satisfies that

π
J∞Q
k =

(
1− λ0 + λ1

µ

)(
λ0 + λ1

µ

)k

, k ≥ 0 (1)
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4.4. Comparison of stationary distributions between JSQ and J∞Q

(1)πJSQ
0 = π

J∞Q
0 , which means that since the average ar-

rival rate and service rate are the same, the idle probability
of the servers are the same;

(2) The tail ofπJ∞Q
. is something likeconst · (λ0+λ1

µ )k, while

that ofπJSQ
. is something likeconst · (λ0

µ )k;

(3) The average queue length of JSQ is shorter than that
of J∞Q:

∑∞
k=0 kπ

JSQ
k = λ0+λ1

µ−λ0
< λ0+λ1

µ−(λ0+λ1)
=∑∞

k=0 kπ
J∞Q
k ;

(4) If λ1 = 0, thenπ
JSQ
k = π

J∞Q
k , k ≥ 0. Because in this

case, they all are equivalent toM(λ0)/M(µ)/1 queue.
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4.4 Comparison of stationary distributions between JSQ and J∞Q(con’t)

(5) As we know that the tail ofπJSQ
. is depending onλ0, if

we letλ0 = 0, then we have:πJSQ
0 = 1− λ1

µ , π
JSQ
1 = λ1

µ

andπ
JSQ
k = 0 for all k ≥ 2.

(6)λ1 ↑ (µ− λ0) such thatλ0 + λ1 ↑ µ, then the limit of the
stationary distribution of the JSQ is thatπ

JSQ
0 ↓ 0, πk ↑

(1 − λ0)(
λ0
µ )k−1, k ≥ 1, while the stationary distribution

of the J∞Q does not have the limit.

From these it is very easy to see that the performance of the
JSQ system has been improved.
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4.5. Join the m-th shortest queue:1 ≤ m ≤ s

If the extra customer can randomly join the queue whose
length is between the shortest ands-shortest, then conver-
gence result similar to Theorem 2 can also be established, in
this case, as the timet tends to infinity, then theQ-matrix
will be

qJ1∼sQ
ij =



λ0 + λ1

π1
0+···+π1

s−1
, j = i + 1, i = 0, · · · , s− 1

λ0, j = i + 1, i > s− 1
−λ0 − µ− λ1

π1
0+···+π1

s−1
, j = i, i = 0, · · · , s− 1

−λ0 − µ, j = i, i > s− 1
µ, j = i− 1, i ≥ 1
0, others
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4.5 Join them-th shortest queue:1 ≤ m ≤ s(con’t)

One can calculate the stationary distribution corresponds to
Q-matrix, as an example, we have

Theorem 6 (1) For the case ofs = 2, then the stationary
distribution of the limiting typical queue is that

π0 = 1− λ0 + λ1

µ

π1 =
1

2

√(1− λ0

µ

)2 (
1− λ0 + λ1

µ

)2

+ 4
λ0 + λ1

µ

(
1− λ0

µ

)(
1− λ0 + λ1

µ

)
−
(

1− λ0

µ

)(
1− λ0+λ1

µ

))

πk =
1

2

(
1− λ0

µ

)((
1− λ0

µ

)(
1− λ0 + λ1

µ

)
+ 2

λ0 + λ1

µ

−
√(

1− λ0
µ

)2 (
1− λ0+λ1

µ

)2

+ 4λ0+λ1
µ

(
1− λ0

µ

)(
1− λ0+λ1

µ

))(
λ0
µ

)k−2

, k ≥ 2

Moreover, the average arrival rate isλ0 + λ1.
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4.5 Join them-th shortest queue:1 ≤ m ≤ s(con’t)

(2) If λ1 = 0, then

πk =

(
1− λ0

µ

)(
λ0

µ

)k

, k ≥ 0.

(3) If λ0 = 0, then
π0 = 1− λ1

µ

π1 = 1
2

(√(
1− λ1

µ

)2

+ 4λ1

µ

(
1− λ1

µ

)
−
(
1− λ1

µ

))

π2 = 1
2

(
1 + λ1

µ
−
√(

1− λ1

µ

)2

+ 4λ1

µ

(
1− λ1

µ

))
πk = 0, k ≥ 3.
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5 Conclusions

•WhenN is large, the interaction queueing network can be
studied in terms of “typical” queue

• Load-balancing described as the mean-field interaction in
this talk does improve the system performance

•We expect that this method can be used to study other
balancing mechanisms
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————————

Thank you

————————

E-mail: jiashant@yahoo.ca

http://math.carleton.ca/~tangjs
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Notation
R ——— the set of all real numbers,
R+ —— the set of all nonnegative numbers,
(E, E) — E = {0, 1, 2, · · · } and be equipped with discrete topology,
Cb(E) — the set of bounded continuous functions inE,
D∞(E) - the set of functions from[0,∞) to E which are c̀adl̀ag,
X(t, w) – coordinate process withw ∈ D∞(E),
Ft ——– σ{X(s), 0 ≤ s ≤ t},
F ——— σ{X(s), s ≥ 0},
P(E) —– the set of probability measures onE,
Pp(E) — space of elements inP(E) with finite pth moment,

P(D∞(E),F) — probability measures on(D∞(E),F).

〈ν, f〉 =
∫

f (x)ν(dx)

http://math.carleton.ca/~tangjs

	Motivation
	Balancing techniques

	Modeling
	Noninteraction parallel network
	 Mean field interaction parallel network: JSQ with large N
	Description of the main result
	Empirical probability measure
	Interaction function
	 Master equation
	 Definition of q-solution

	Convergence theorem
	Stationary distribution
	Definition
	Join the shortest queue
	Join infinity queues randomly
	Comparison of stationary distributions between JSQ and JQ
	Join the m-th shortest queue: 1ms

	Conclusion
	BNUJSQ1.pdf
	Motivation
	Balancing techniques

	Modeling
	Noninteraction parallel network
	 Mean field interaction parallel network: JSQ with large N
	Description of the main result
	Empirical probability measure
	Interaction function
	 Master equation
	 Definition of q-solution

	Convergence theorem
	Stationary distribution
	Definition
	Join the shortest queue
	Join infinity queues randomly
	Comparison of stationary distributions between JSQ and JQ
	Join the m-th shortest queue: 1ms

	Conclusion

	BNUJSQ1.pdf
	Motivation
	Balancing techniques

	Modeling
	Noninteraction parallel network
	 Mean field interaction parallel network: JSQ with large N
	Description of the main result
	Empirical probability measure
	Interaction function
	 Master equation
	 Definition of q-solution

	Convergence theorem
	Stationary distribution
	Definition
	Join the shortest queue
	Join infinity queues randomly
	Comparison of stationary distributions between JSQ and JQ
	Join the m-th shortest queue: 1ms

	Conclusion




